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Nonlinear duopoly with price competition and horizontal
product differentiation

Bischi et al. (2010) study nonlinear dynamics in oligopolies

by considering the case of quantity-setting firms
when information is incomplete (Bischi et al., 1998, 2007)

Fanti et al. (2013)
consider the case of price-setting firms and incomplete
information
assume linear costs (constant returns to scale)

We extend the study of Fanti et al. (2013) by considering a
nonlinear duopoly with price competition, horizontal

differentiation and quadratic production costs
(decreasing returns to scale)
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Ingredients

The economy is composed by firms and consumers

There exists:

a competitive sector that produces the numeraire good
k ≥ 0 (whose price is normalised to 1)

a duopolistic sector where firm 1 and firm 2 produce
(horizontally) differentiated products of variety 1 and
variety 2, respectively

pi ≥ 0 and qi ≥ 0 are the price and quantity of product
of firm i (i = 1, 2), respectively
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Ingredients

Consumers

• Consumers’ preferences towards q1 and q2 are captured by
the utility function U(q1, q2) = a(q1 + q2)−

1
2(q

2
1 + q2

2 + 2dq1q2)

• The direct demands are then given by
q1 = a(1−d)−p1+dp2

1−d2 and q2 = a(1−d)−p2+dp1
1−d2

a > 0 is the extent of market demand of both goods and
d ∈ (−1, 1) is the deg. of horizontal product differentiation

∗ If d = 0 products of variety 1 and variety 2 are independent
and each firm behaves as a monopolist

∗ If d > 0 (resp. d < 0) products are substitutes (resp.
complements)

∗ If d → 1 (resp. d → −1 ) they are perfect substitutes (resp.
perfect complements)
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Ingredients

Duopolistic firms

• The cost function can be written as ci = wq2
i

• Firm i maximises profits Πi = piqi − wq2
i with respect to pi

• Marginal profits of the i th firm are given by

∂Πi

∂pi
=

[a(1 − d) + dpj ](1 − d2 + 2w)− 2(1 − d2 + w)pi
(

1 − d2
)2

i , j = 1, 2, i 6= j
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Ingredients

Dynamic setting

• Both players have limited information

• Both firms follow an adjustment process based on local
estimates of their own marginal profit in the current period:

pi,t+1 = pi,t + αpi,t
∂Πi(pi,t , pj,t)

∂pi,t
, i = 1, 2, t ∈ Z+

where α > 0 is a coefficient that captures the speed of
adjustment of firm i ’s price with respect to a marginal change in
profits, αpi,t is the intensity of the reaction of player i
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Ingredients

FINAL SYSTEM Tq

x ′ =
[

1 + αa
1+d + 2 αaw

(1−d)(1+d)2

]

x − 2
[

α

1−d2 + αw
(1−d2)2

]

x2 +
[

αd
1−d2 + 2 αdw

(1−d2)2

]

xy

y ′ =
[

1 + αa
1+d + 2 αaw

(1−d)(1+d)2

]

y − 2
[

α

1−d2 + αw
(1−d2)2

]

y2 +
[

αd
1−d2 + 2 αdw

(1−d2)2

]

xy

where x ′ = p1,t+1, x = p1,t , y ′ = p2,t+1, and y = p2,t ,
d ∈ (−1, 1), a > 0, w ≥ 0, α > 0

OUR AIM: to analyze the dynamics of system Tq (quadratic
costs) and to compare it with system Tl (linear costs)
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Fixed points and local stability

FEASIBLE SET

• A trajectory ψt = {(x(t), y(t))}∞t=0 is said feasible if
(x(t), y(t)) ∈ R2

+ for all t

• the set D ⊆ R2
+ whose points generate feasible trajectories is

feasible set

PROPOSITION
If d → ±1 then the set D − {(0, 0)} is empty
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Fixed points and local stability

PROPOSITION: steady states

System Tq admits four fixed points for all parameter values:
1 E0 = (0, 0)

2 E1q =
(

0, a(1−d)(1−d2+2w)
2(1−d2+w)

)

3 E2q =
(

a(1−d)(1−d2+2w)
2(1−d2+w)

, 0
)

4 E∗
q = (x∗

q , x
∗
q ) =

(

a(1−d2+2w)
(1+d)(2−d)+2w ,

a(1−d2+2w)
(1+d)(2−d)+2w

)

E∗
q is the unique interior Nash equilibrium of this model

the equilibrium value of the quantity q∗
q is positive for all

parameter values

condition a > w must hold to ensure q∗
l > 0
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Fixed points and local stability

PROPOSITION: comparison

Let a > w . If a > 17
8 then x∗

q > x∗
l ; if a ≤ 1 then x∗

q ≤ x∗
l

The extent of market demand a determines whether prices
under decreasing returns to scale are higher w.r.t.

constant returns to scale :

when market demand is large (resp. small), equilibrium prices
under decreasing returns to scale are higher (resp. lower) than
under constant returns to scale

this because when costs are nonlinear and the extent of market
demand is large firms operate close to their full production
capacity and prices tend to be higher than when cost are linear
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Fixed points and local stability

Local stability

• E0 is an unstable node

• E1q and E2q can be both unstable nodes or saddle points

• The interior fixed point E∗
q may lose stability iff at least one

eigenvalue crosses −1 (as for the case with linear costs)

• Only the interior fixed point can be attractive
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Fixed points and local stability

PROPOSITION: comparison

Let a > w

∀d ∈ (−1, 1), ∃ᾱ(d) such that if α > ᾱ(d) then E∗
q and E∗

l
are both locally unstable

∃I(0) such that ∀d ∈ I(0), ∃α̃(d) such that if α < α̃(d) then
E∗

q and E∗
l are both locally stable

∃I(0) such that ∀d ∈ I(0) then λ‖(E∗
q ) < λ‖(E∗

l ) and
λ⊥(E∗

q ) < λ⊥(E∗
l ) iff a > 1

2
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Fixed points and local stability
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Figure: Bifurcation curves on the parameter plane identifying regions
at which different stability regimes occurs for w = 0.2. In panel (a)
a = 3 while in panel (b) a = 0.3. st means locally stable, un means
locally unstable while sad means saddle.
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Invariant sets and synchronized trajectories

1 The diagonal ∆ is an invariant set also for Tq, i.e.
Tq(x , x) = (x ′, x ′), as for Tl

2 THE RESTRICTION φq OF THE SYSTEM TO ∆ is
topologically conjugate to the logistic map z ′ = µqz(1 − z)
with

µq = 1 +
αa

1 − d2

(

1 − d2 + 2w
1 + d

)

by the linear transformation

x =
(1 − d2)(1 + d) + αa(1 − d2 + 2w)

α((2 − d)(1 + d) + 2w)
z

3 Equal initial conditions imply equal dynamic behavior
forever: trajectories embedded into ∆, i.e. those
characterized by x = y for all t , are called synchronized
trajectories (Bischi and Gardini 2000 and Bischi et al.
1998)
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Invariant sets and synchronized trajectories

PROPOSITION: comparison between d−intervals
corresponding to local stability

Assume a > w

1 If αa(1 + 2w) < 2, then x∗
q is a locally stable fixed point of

φq ∀d ∈ (d1q, d2q), −1 < d1q < 0 < d2q < 1
2 Let a ≤ 1

2 and α(a + w) < 2 or a > 1
2 and αa(1 + 2w) < 2.

Then:
x∗

q is a locally stable fixed point of φq ∀d ∈ (d1q ,d2q)
x∗

l is a locally stable fixed point of φl ∀d ∈ (d1l ,d2l)
Let P = 2a(a − 1)(4 − α) + αw and Q = 4(2a − 1)− aα.
Then:

if P > 0 and Q < 0 then d1q > d1l and d2q > d2l ;
if P < 0 and Q 6= 0 then d1q < d1l and d2q > d2l ;
if P > 0 and Q > 0 the case is open
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Invariant sets and synchronized trajectories
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Invariant sets and synchronized trajectories

REMARK
1 If aα(1 + 2w) < 3 then φq admits an attractor

∀d ∈ (d̄1q, d̄2q)

2 The comparison between the intervals (d̄1q, d̄2q) and
(d̄1l , d̄2l) (containing the d−values such that an attractor
exists in the quadratic and linear cases) follows the same
properties stated in Proposition

PROPOSITION: existence of divergent trajectories

(i) A threshold value ᾱq does exist such that synchronized
trajectories are divergent ∀α > ᾱq given the other
parameter values (the same result holds if a > ā or w > w̄)

(ii) Let ᾱl be the corresponding value of ᾱq in the linear costs
model. Then:

- if w = 0 then ᾱq = ᾱl

- if w > 0 then ᾱq ≥ ᾱl iff 1 + d − 2a ≥ 0
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Invariant sets and synchronized trajectories

SOME CONCLUSIONS:

1 the convergence of synchronized trajectories toward the
Nash equilibrium is necessarily associated with
intermediate values of d , confirming the result obtained
with linear costs

2 if x∗
q is locally stable for a given d-value then it loses

stability via a period doubling bifurcation due to an increase
in the degree of substitutability (resp. complementarity)
between products, i.e. d moves to 1 (resp. to −1)

3 synchronized dynamics increases in complexity while
moving from the case of products of independent varieties
to complementary or substitutable, while, at the limit cases
(d → ±1) no bounded dynamics occurs on ∆
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1 RECALL that a feasible trajectory starting from
(x(0), y(0)), x(0) 6= y(0), is said to synchronize if
|x(t)− y(t)| → 0 as t → +∞

2 If α is not too high and parameter d assumes intermediate
values, then E∗

q is locally stable and trajectories starting
from a neighborhood of E∗

q synchronizes, i.e. if firms start
from different initial conditions, they will behave in the
same way in the long term

3 If E∗
q loses its local stability THEN:

PROPOSITION

(i) Let aα(1 + 2w) < 2. Then λ⊥(E∗
q ) < λ‖(E∗

q ), ∀d ∈ I+(0) and
λ⊥(E∗

q ) > λ‖(E∗
q ), ∀d ∈ I−(0)

(ii) Let α(a + w) < 2. Then λ⊥(E∗
l ) < λ‖(E∗

l ), ∀d ∈ I+(0) and
λ⊥(E∗

l ) > λ‖(E∗
l ), ∀d ∈ I−(0)
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Condition for E∗
q to be locally stable for d = 0 is αa(1 + 2w) < 2

- If synchronized trajectories converge to x∗
q with

independent products, then trajectories starting from initial
conditions close to it with x(0) 6= y(0):

synchronize in the long term as long as d ∈ I(0)

do not synchronize (i.e. the fixed point loses firstly its
transverse stability) as d increases

Hence If there exists a feasible initial condition (x(0), y(0)) with
x(0) 6= y(0), then it necessarily converges to ANOTHER
BOUNDED ATTRACTOR B existing out of the diagonal
and coexisting with E∗

q
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PRODUCTS ARE SUBSTITUTES
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Figure: (a) A 2-period cycle (balck points) coexists with the fixed
point for α = 0.4, d = 0.4, w = 0.5 and a = 2. (b) If d = 0.5 two
cyclic attracting closed invariant curves have been created out of the
diagonal
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PRODUCTS ARE COMPLEMENTS

If E∗
q is locally stable for d = 0 and d decreases, the Nash

equilibrium loses firstly the stability along the diagonal, via a
period doubling bifurcation which creates an attracting 2−cycle

Immediately after this first flip bifurcation, the 2-period
cycle is locally stable and synchronization occurs

if the degree of horizontal product differentiation still
decreases, a sequence of flip bifurcation occurs on the
diagonal, and attracting periodic cycles are created around
the unstable Nash equilibrium
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PRODUCTS ARE COMPLEMENTS

0 2.8
0

2.8

y

x

(c)

0 2.8
0

2.8

y

x

(d)

Figure: (c) If d = −0.328 a 4-period cycle attracts all synchronized
trajectories, while a 4-piece quasi periodic attractor exists out of the
diagonal and synchronization does not take place. (d) If d = −0.351,
two coexisting complex attractros are owned and the basin structure
is quite complex
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PRODUCTS ARE INDEPENDENT

Products of each variety are INDEPENDENT (d = 0)

In this case system becomes:

Tq(d = 0) :
{

x ′ = (1 + aα+ 2aαw)x − 2α(1 + w)x2

y ′ = (1 + aα+ 2aαw)y − 2α(1 + w)y2 ,

which is a diagonal system having both equations conjugated
to the logistic map
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We proved that:

1 the eigenvalues associated to the Jacobian matrix are
symmetric

2 any periodic point along the diagonal has always identical
eigenvalues

3 any period doubling bifurcation along the diagonal, which
is associated to the bifurcation cascade of the logistic map,
is followed by a simultaneous period doubling bifurcation in
the symmetric direction

4 the same holds in the case with linear costs

=⇒ COMPLEX PHENOMENON OF MULTISTABILITY: many
coexisting attracting cycles having their own basins of attraction

(as in Bischi and Kopel 2003)
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PROPOSITION: comparison

Let d = 0, a > w and α̃q := 2
a(1+2w) , α̃l :=

2
a+w . Then:

(i) if a > 1
2 then E∗

q and E∗
l are both locally stable (resp.

unstable) ∀α < α̃q (resp. ∀α > α̃l ); if α ∈ (α̃q, α̃l) then E∗
q is

locally unstable while E∗
l is locally stable;

(ii) if a < 1
2 then E∗

q and E∗
l are both locally stable (resp.

unstable) ∀α < α̃l (resp. ∀α > α̃q); if α ∈ (α̃l , α̃q) then E∗
q is

locally stable while E∗
l is locally unstable
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1 the primary period doubling bifurcation occurs earlier in the
case of quadratic (resp. linear) costs if a > 1

2 (resp. a < 1
2 ),

while it occurs simultaneously in the two cases if a = 1
2

2 also the second flip bifurcation occurs earlier in the
quadratic costs (resp. linear costs) case if a > 1

2 (resp.
a < 1

2 )

3 this result holds also for all the subsequent bifurcations
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Figure: (a) If a = 2, w = 0.5 and α = 0.51, Tq(d = 0) admits two
stable coexisting cycles of period 2, whose basins of attraction are
represented by the green and orange regions respectively. (b) If
α = 0.62, Tq(d = 0) admits two stable coexisting cycles of period 4,
whose basins of attraction are represented by the yellow and blue
regions respectively
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SOME CONCLUSIONS

1 Coexisting attractors can exist in either cases of
substitutability and complementarity of products (positive
and negative values of d , respectively)

2 In the case of substitutability the final outcome of the
economy is predictable

3 In the case of complementarity, the structure of the basins
of attraction may be more complex and the final outcome
the economy may follow is unpredictable (sensitivity with
respect to the final outcome)

4 Multistability occurs also in the case of independent
products (d = 0)

Thank you!
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