A dynamic marketing model with best reply and inertia

Gian Italo Bischi - Lorenzo Cerboni Baiardi University of Urbino (Italy)

URL: www.mdef.it/gian-italo-bischi/

Urbino, September 18, 2014

 Ω

"Farris, P., Pfeifer, P.E., Nierop, E., Reibstein, D. "When Five is a Crowd in the Market Share Attraction Model: The Dynamic Stability of Competition". Marketing - Journal of Research and Management (2005), p. 29-45.

$$
x_i(t+1) = (1 - \lambda_i)x_i(t) + \lambda_i \left(\sqrt{B \frac{\sum_{j \neq i} a_j x_j(t)}{a_i}} - \sum_{j \neq i} a_j x_j(t) \right)
$$

 Ω

"Farris, P., Pfeifer, P.E., Nierop, E., Reibstein, D. "When Five is a Crowd in the Market Share Attraction Model: The Dynamic Stability of Competition". Marketing - Journal of Research and Management (2005), p. 29-45.

$$
x_i(t+1) = (1 - \lambda_i)x_i(t) + \lambda_i \left(\sqrt{B \frac{\sum_{j \neq i} a_j x_j(t)}{a_i}} - \sum_{j \neq i} a_j x_j(t) \right)
$$

It results from standard arguments in marketing modelling:

$$
customers' attraction: A_i = a_i x_i^{\beta_i}
$$

 200

"Farris, P., Pfeifer, P.E., Nierop, E., Reibstein, D. "When Five is a Crowd in the Market Share Attraction Model: The Dynamic Stability of Competition". Marketing - Journal of Research and Management (2005), p. 29-45.

$$
x_i(t+1) = (1 - \lambda_i)x_i(t) + \lambda_i \left(\sqrt{B \frac{\sum_{j \neq i} a_j x_j(t)}{a_i}} - \sum_{j \neq i} a_j x_j(t) \right)
$$

It results from standard arguments in marketing modelling:

customers' attraction: $A_i = a_i x_i^{\beta_i}$ i

$$
\text{market share:} \quad s_i(t) = \frac{A_i(t)}{\sum_{j=1}^n A_j(t)}
$$

 200

"Farris, P., Pfeifer, P.E., Nierop, E., Reibstein, D. "When Five is a Crowd in the Market Share Attraction Model: The Dynamic Stability of Competition". Marketing - Journal of Research and Management (2005), p. 29-45.

$$
x_i(t+1) = (1 - \lambda_i)x_i(t) + \lambda_i \left(\sqrt{B \frac{\sum_{j \neq i} a_j x_j(t)}{a_i}} - \sum_{j \neq i} a_j x_j(t) \right)
$$

It results from standard arguments in marketing modelling:

customers' attraction: $A_i = a_i x_i^{\beta_i}$ i

$$
\text{market share:} \quad s_i(t) = \frac{A_i(t)}{\sum_{j=1}^n A_j(t)}
$$

profits: $\Pi_i(t) = Bs_i(t) - x_i(t)$

 Ω

The resulting profits are

$$
\Pi_i(t) = \frac{a_i x_i^{\beta_i}(t)}{a_i x_i^{\beta_i}(t) + \sum_{j \neq i} a_j x_j^{\beta_j}(t)} - x_i(t)
$$

 \rightarrow

重

 299

 \mathbf{p}

Ξ.

 \leftarrow

The resulting profits are

$$
\Pi_i(t) = \frac{a_i x_i^{\beta_i}(t)}{a_i x_i^{\beta_i}(t) + \sum_{j \neq i} a_j x_j^{\beta_j}(t)} - x_i(t)
$$

Each firm maximizes its own profit function computing its gradient

$$
\frac{\partial \Pi_i(t+1)}{\partial x_i} = 0
$$

 QQ

э

The resulting profits are

$$
\Pi_i(t) = \frac{a_i x_i^{\beta_i}(t)}{a_i x_i^{\beta_i}(t) + \sum_{j \neq i} a_j x_j^{\beta_j}(t)} - x_i(t)
$$

Each firm maximizes its own profit function computing its gradient

$$
\frac{\partial \Pi_i(t+1)}{\partial x_i} = 0
$$

Setting $\beta_i = 1$, this leads to

$$
x_i(t+1) = \sqrt{\frac{\sum_{j \neq i} a_j x_j^{(e)}(t+1)}{a_i}} - \sum_{j \neq i} a_j x_j^{(e)}(t+1)
$$

化重新润滑脂

 Ω

Assuming naïve expectations, $x_i^{(e)}$ $j_j^{(e)}(t+1) := x_j(t)$, Farris et al. derive the following "Best Response" dynamic model with adaptive adjustment:

$$
x_i(t+1) = (1 - \lambda_i)x_i(t) + \lambda_i \left(\sqrt{\frac{\sum_{j \neq i} a_j x_j(t)}{a_i}} - \sum_{j \neq i} a_j x_j(t) \right)
$$

つひひ

Assuming naïve expectations, $x_i^{(e)}$ $j_j^{(e)}(t+1) := x_j(t)$, Farris et al. derive the following "Best Response" dynamic model with adaptive adjustment:

$$
x_i(t+1) = (1 - \lambda_i)x_i(t) + \lambda_i \left(\sqrt{\frac{\sum_{j \neq i} a_j x_j(t)}{a_i}} - \sum_{j \neq i} a_j x_j(t) \right)
$$

Setting $N = 2$ and the new (rescaled) variables

$$
x = a_1 a_2 x_1, \ y = a_1 a_2 x_2
$$

we have

$$
\text{Farris:} \begin{cases} \begin{aligned} x' &= (1 - \lambda_1)x + \lambda_1 a_2 \left(\sqrt{y} - y\right) \\ y' &= (1 - \lambda_2)y + \lambda_2 a_1 \left(\sqrt{x} - x\right) \end{aligned} \end{cases}
$$

$$
P_{UU} : \begin{cases} q_1' = (1 - \lambda_1) q_1 + \lambda_1 \left(\sqrt{\frac{q_2}{c_1}} - q_2 \right) \\ q_2' = (1 - \lambda_2) q_2 + \lambda_2 \left(\sqrt{\frac{q_1}{c_2}} - q_1 \right) \end{cases}
$$

. p

Box 4

 \leftarrow

重

 299

$$
Puu : \begin{cases} q_1' = (1 - \lambda_1) q_1 + \lambda_1 \left(\sqrt{\frac{q_2}{c_1}} - q_2 \right) \\ q_2' = (1 - \lambda_2) q_2 + \lambda_2 \left(\sqrt{\frac{q_1}{c_2}} - q_1 \right) \end{cases}
$$

new var : $x = c_2 q_1$, $y = c_1 q_2$

4 0 8

 -990

$$
Puu : \begin{cases} q_1' = (1 - \lambda_1) q_1 + \lambda_1 \left(\sqrt{\frac{q_2}{c_1}} - q_2 \right) \\ q_2' = (1 - \lambda_2) q_2 + \lambda_2 \left(\sqrt{\frac{q_1}{c_2}} - q_1 \right) \end{cases}
$$

new var : $x = c_2 q_1$, $y = c_1 q_2$

$$
Puu' : \begin{cases} x' = (1 - \lambda_1)x + \lambda_1 \frac{c_2}{c_1} (\sqrt{y} - y) \\ y' = (1 - \lambda_2)y + \lambda_2 \frac{c_1}{c_2} (\sqrt{x} - x) \end{cases}
$$

4 0 8

 -990

$$
Puu : \begin{cases} q_1' = (1 - \lambda_1) q_1 + \lambda_1 \left(\sqrt{\frac{q_2}{c_1}} - q_2 \right) \\ q_2' = (1 - \lambda_2) q_2 + \lambda_2 \left(\sqrt{\frac{q_1}{c_2}} - q_1 \right) \end{cases}
$$

new var : $x = c_2 q_1$, $y = c_1 q_2$

$$
Puu' : \begin{cases} x' = (1 - \lambda_1)x + \lambda_1 \frac{c_2}{c_1} (\sqrt{y} - y) \\ y' = (1 - \lambda_2)y + \lambda_2 \frac{c_1}{c_2} (\sqrt{x} - x) \end{cases}
$$

$$
Farris : \begin{cases} x' = (1 - \lambda_1)x + \lambda_1 a_2 (\sqrt{y} - y) \\ y' = (1 - \lambda_2)y + \lambda_2 a_1 (\sqrt{x} - x) \end{cases}
$$

4 0 8

 -990

$$
Puu : \begin{cases} q_1' = (1 - \lambda_1) q_1 + \lambda_1 \left(\sqrt{\frac{q_2}{c_1}} - q_2 \right) \\ q_2' = (1 - \lambda_2) q_2 + \lambda_2 \left(\sqrt{\frac{q_1}{c_2}} - q_1 \right) \end{cases}
$$

new var : $x = c_2 q_1$, $y = c_1 q_2$

$$
Puu' : \begin{cases} x' = (1 - \lambda_1)x + \lambda_1 \frac{c_2}{c_1} (\sqrt{y} - y) \\ y' = (1 - \lambda_2)y + \lambda_2 \frac{c_1}{c_2} (\sqrt{x} - x) \end{cases}
$$

$$
Farris : \begin{cases} x' = (1 - \lambda_1)x + \lambda_1 a_2 (\sqrt{y} - y) \\ y' = (1 - \lambda_2)y + \lambda_2 a_1 (\sqrt{x} - x) \end{cases}
$$

We obt[a](#page-15-0)in the Puu' from the Farris setting $a_2 = 1/a_1$ $a_2 = 1/a_1$

 200

The equilibria' abscissas follows from the fourth order algebric equation:

$$
\eta \left[\frac{\left(1-a_1 a_2 \right)^2}{a_1 a_2} \eta^3 + 2 \left(1-a_1 a_2 \right) \eta^2 + a_2 \left(a_1 + 1 \right) \eta - a_2 \right] = 0
$$

where *η* := √ $\overline{\mathsf{x}}$. An analogous equation for $\zeta:=\sqrt{\mathsf{y}}$ holds.

From Cardano's formula, the number of real solutions is given provided the sign of the discriminant:

$$
D(a_1, a_2): \begin{cases} > 0 & 1 \text{ real solution} \\ & = 0 & 1 \text{ real solution and } 2 \text{ coincident} \\ & < 0 & 3 \text{ distinct real solutions} \end{cases}
$$

 QQ

Equilibria

Section of the function $D(a_1, a_2)$ with the plane $(a_1, a_2, 0)$

Gian Italo Bischi - Lorenzo Cerboni Baiardi University of Urbino (I[ta](#page-0-0)ly) (URL: www.mdef.it/gian-italo-bischi/) Urbino, September 18, 2014 7 / 20

Equilibria

Section of the function $D(a_1, a_2)$ with the plane $(x, y, 0)$

Gian I[ta](#page-0-0)lo Bischi - Lorenzo Cerboni Baiardi University of Urbino (Iniversity of Urbino, September 18, 2014 8/20

Proposition

Besides $E_0 = (0, 0)$ a non vanishing fixed point always exists in the region $S = (0, 1) \times (0, 1)$. If $a_1 a_2 \neq 1$ then two further distinct fixed points exist in the region S if the following inequality holds

$$
D(a_1, a_2) = \frac{a_1^2 a_2^4}{108 (1 - a_1 a_2)^6} [27 + a_1 a_2 (4 a_1 + 4 a_2 - 18) - a_1^2 a_2^2] < 0
$$

and if $D(a_1, a_2) = 0$ these two further fixed points are merging, i.e. there are two real coincident solutions of the cubic equation. In the particular case $a_1a_2=1$ the unique fixed point $E=\left(\frac{1}{\sqrt{2\pi}}\right)$ $\frac{1}{(a_1+1)^2}$, $\frac{1}{(a_2+1)}$ $\frac{1}{(a_2+1)^2}$) is get.

つへへ

Bifurcation path: $a_2 = -a_1/9 + 13/3$

4 0 8

-41

→ イヨ → イヨ

4 0 8

 \leftarrow \equiv \rightarrow

4 0 8

Typical scenario (after the final bifurcation)

 U r[bin](#page-22-0)[o,](#page-23-0) [Se](#page-0-0)[pt](#page-1-0)[emb](#page-40-0)[er](#page-0-0) [1](#page-1-0)[8, 2](#page-40-0)01 \overline{U} 13 /

Fixed poits are:

$$
E_1 = \left(\frac{a^2}{(1+a)^2}, \frac{a^2}{(1+a)^2}\right) \in \Delta = \{(x, y) \in \mathbb{R}^2 | x = y \}
$$

Fixed poits are:

$$
E_1 = \left(\frac{a^2}{(1+a)^2}, \frac{a^2}{(1+a)^2}\right) \in \Delta = \{(x, y) \in \mathbb{R}^2 | x = y \}
$$

For $a \geqslant 3$ the two further fixed points in symmetric positions with respect to ∆:

$$
E_2 = \frac{a^2}{2(a-1)^2(a+1)} \left(a - 1 + \sqrt{(a+1)(a-3)}, a - 1 - \sqrt{(a+1)(a-3)} \right)
$$

$$
E_3 = \frac{a^2}{2(a-1)^2(a+1)} \left(a - 1 - \sqrt{(a+1)(a-3)}, a - 1 + \sqrt{(a+1)(a-3)} \right)
$$

URBING, SEPTEMBER [1](#page-1-0)[8, 2](#page-40-0)[014](#page-0-0)

The symmetric case: stability of $E_1 \in \Delta$

Local asymptotic stability for

$$
a
$$

4 D F

- 4母 ト 4目 ト 4目

The symmetric case: stability of $E_1 \in \Delta$

Local asymptotic stability for

$$
a
$$

Transverse instability (saddle) via pichfork, merging of two further fixed points E_2 and E_3 , for

 $a \geqslant a_p$

The symmetric case: stability of $E_1 \in \Delta$

Local asymptotic stability for

$$
a
$$

Transverse instability (saddle) via pichfork, merging of two further fixed points E_2 and E_3 , for

 $a \geqslant a_p$

Unstability via flip for

$$
\mathsf a\geqslant \mathsf a_{\mathsf f}=1+2\sqrt{1-2\left(\frac{1}{\lambda_1}+\frac{1}{\lambda_2}\right)+\frac{4}{\lambda_1\lambda_2}}\geqslant 3
$$

Fixed points and their basin of attraction

The symmetric case: stability of E_2 and E_3

Local asymptotic stability for

$$
a < a_h = 1 + \sqrt[3]{2\left(\frac{1}{\lambda_1} + \frac{1}{\lambda_2}\right) + 2\sqrt{\left(\frac{1}{\lambda_1} + \frac{1}{\lambda_2}\right)^2 - \frac{16}{27}} + \sqrt[3]{2\left(\frac{1}{\lambda_1} + \frac{1}{\lambda_2}\right) - 2\sqrt{\left(\frac{1}{\lambda_1} + \frac{1}{\lambda_2}\right)^2 - \frac{16}{27}}}
$$

4 0 8

. . . 3 . . 3

The symmetric case: stability of E_2 and E_3

Local asymptotic stability for

$$
a < a_h = 1 + \sqrt[3]{2\left(\frac{1}{\lambda_1} + \frac{1}{\lambda_2}\right) + 2\sqrt{\left(\frac{1}{\lambda_1} + \frac{1}{\lambda_2}\right)^2 - \frac{16}{27}} + \sqrt[3]{2\left(\frac{1}{\lambda_1} + \frac{1}{\lambda_2}\right) - 2\sqrt{\left(\frac{1}{\lambda_1} + \frac{1}{\lambda_2}\right)^2 - \frac{16}{27}}}
$$

Unstability via Hopf for $a \geq a_h$

Profits

Computing the profits we get:

$$
\Pi_1 > \Pi_2 \iff (x-y)(x+y-a^2) < 0
$$

4.0.3

Conclusions: effect of eterogeneities

o Farris

Gian I[ta](#page-0-0)lo Bischi - Lorenzo Cerboni Baiardi (I

o Farris

N homogeneous firms (i.e. identical parameters)

o Farris

- *N* homogeneous firms (i.e. identical parameters)
- Study the synchronous dynamics and common behavour

- *N* homogeneous firms (i.e. identical parameters)
- Study the synchronous dynamics and common behavour

4 D F

- イ母 ト イヨ ト イヨ ト

 \bullet N as bifurcation parameter

- *N* homogeneous firms (i.e. identical parameters)
- Study the synchronous dynamics and common behavour

4 0 8

- N as bifurcation parameter
- Bischi Cerboni Baiardi

- *N* homogeneous firms (i.e. identical parameters)
- Study the synchronous dynamics and common behavour
- • N as bifurcation parameter
- Bischi Cerboni Baiardi
	- Stress on the effect of eterogeneities (i.e. differences in parameters)

- *N* homogeneous firms (i.e. identical parameters)
- Study the synchronous dynamics and common behavour
- • N as bifurcation parameter
- Bischi Cerboni Baiardi
	- Stress on the effect of eterogeneities (i.e. differences in parameters)
	- A rich dynamical scenario is observed

- *N* homogeneous firms (i.e. identical parameters)
- Study the synchronous dynamics and common behavour
- • N as bifurcation parameter
- Bischi Cerboni Baiardi
	- Stress on the effect of eterogeneities (i.e. differences in parameters)
	- A rich dynamical scenario is observed
	- Eterogeneities and initial conditions: asymptotic behavour of the system

Bibliography

- Bischi, G.I., Gardini, L. and Kopel, M "Analysis of Global Bifurcations in a Market Share Attraction Model", Journal of Economic Dynamics and Control, 24 (2000) 855-879
- Ħ Bischi, G.I., Cerboni Baiardi L. "Fallacies of composition in nonlinear marketing models", Communications in Nonlinear Science and Numerical Simulation, DOI: 10.1016/j.cnsns.2014.04.018 (2014, in press)
- F Farris, P., Pfeifer, P.E., Nierop, E., Reibstein, D. "When Five is a Crowd in the Market Share Attraction Model: The Dynamic Stability of Competition" Marketing - Journal of Research and Management, 1 (1) (2005) 29-45.
- Puu T. "Chaos in Duopoly Pricing" Chaos, Solitons & Fractals, 1 (6) (1991) 573-581.