Dynamic agglomeration patterns in a 2 - country 4 - region NEG model Pasquale Commendatore, Ingrid Kubin, Pascal Mossay, and Iryna Sushko MDEF, Urbino 18-20 September 2014 #### Aim of the work Analyze the impact of regional integration (vs. the effect of international integration) on the location of economic activities #### **Contributions** - Rich structure of equilibria - Stability and dynamics #### **Related Literature** Lower trade costs (internal or external) favour full agglomeration within countries - Monfort & Nicolini (2000, JUE) - Numerical study of a 4-region NEG model with CES preferences - Behrens, Gaigne, Ottaviano & Thisse (2007, EER) Partial study of a 4-region NEG model with quadratic preferences Presence of a stable asymmetric Home country distribution The size of the outside country impacts on the structure of the Home country Commendatore, Kubin, Petraglia, Sushko(2014, JEDC) 3-region FE NEG Model ### 2-country 4-region FE NEG Model ### **Short-Run Economy** #### Income $$Y_{1,t} = L/4 + \pi_{1,t}(1 - x_t)E/2$$, $Y_{3,t} = L/4 + \pi_{3,t}y_tE/2$ $Y_{2,t} = L/4 + \pi_{2,t}x_tE/2$, $Y_{4,t} = L/4 + \pi_{4,t}(1 - y_t)E/2$ ### Entrepreneur profit $$\begin{split} \pi_{1,t} &= \frac{\mu}{\sigma E} \big[\frac{Y_{1,t}}{\Delta_{1,t}} + \phi_{Ih} \frac{Y_{2,t}}{\Delta_{2,t}} \big] &, \quad \pi_{3,t} = \frac{\mu}{\sigma E} \big[\phi_E \big(\frac{Y_{2,t}}{\Delta_{2,t}} \big) + \frac{Y_{3,t}}{\Delta_{3,t}} + \phi_{If} \frac{Y_{4,t}}{\Delta_{4,t}} \big] \\ \pi_{2,t} &= \frac{\mu}{\sigma E} \big[\phi_{Ih} \frac{Y_{1,t}}{\Delta_{1,t}} + \frac{Y_{2,t}}{\Delta_{2,t}} + \phi_E \big(\frac{Y_{3,t}}{\Delta_{3,t}} \big) \big] &, \quad \pi_{4,t} = \frac{\mu}{\sigma E} \big[\phi_{If} \frac{Y_{3,t}}{\Delta_{3,t}} + \frac{Y_{4,t}}{\Delta_{4,t}} \big] \end{split}$$ ### Price index and indirect utility $$P_{r,t} = \beta \frac{\sigma}{\sigma - 1} E^{1/(1-\sigma)} \Delta_{r,t}^{1/(1-\sigma)} , V_{r,t} = \frac{\pi_{r,t}}{P_{r,t}^{\mu}}$$ where $$\Delta_{1,t} = \frac{1}{2} \left(1 - \left(1 - \phi_{Ih} \right) x_t \right) \qquad , \quad \Delta_{3,t} = \frac{1}{2} (\phi_{If} + (1 - \phi_{If}) y_t + \phi_E x_t)$$ $$\Delta_{2,t} = \phi_{Ih} (1 - x_t) / 2 + x_t / 2 + \phi_E y_t / 2 = \frac{1}{2} (\phi_{Ih} + (1 - \phi_{Ih}) x_t + \phi_E y_t) \quad , \qquad \Delta_{4,t} = \frac{1}{2} (1 - (1 - \phi_{If}) y_t)$$ ### **Dynamic Map** $$Z: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x = \begin{cases} 0 & \text{if } Z_h(x,y) < 0, \\ Z_h(x,y) & \text{if } 0 \leq Z_h(x,y) \leq 1, \\ 1 & \text{if } Z_h(x,y) > 1, \\ 0 & \text{if } Z_f(x,y) < 0, \\ Z_f(x,y) & \text{if } 0 \leq Z_f(x,y) \leq 1, \\ 1 & \text{if } Z_f(x,y) > 1, \end{pmatrix}$$ ere where $$Z_h(x,y) = x + \gamma x (1-x) \frac{\Omega_h(x,y)-1}{1+x(\Omega_h(x,y)-1)},$$ $$Z_f(x,y) = y + \gamma y (1-y) \frac{\Omega_f(x,y)-1}{1+y(\Omega_f(x,y)-1)},$$ $$\Omega_h(x,y) = \frac{V_2(x,y)}{V_1(x,y)}, \quad \Omega_f(x,y) = \frac{V_3(x,y)}{V_4(x,y)}.$$ ### State variables: x, y Incomes, price indices, profits, utilities, and real wages can be expressed in terms of x and y ### **Dynamics** - The domain of the map is the unit square, $[0, 1] \times [0, 1]$ - The regional mobility of entrepreneurs (migration) follows the replicator dynamics equation: Z(x, y). - What happens with a simultaneous change of interior trade costs $(\phi_{lh} = \phi_{lf} = \phi)$? ## Fixed points (long-run equilibra) #### Core-Periphery fixed points $$CP_{00}: (x, y) = (0, 0), CP_{01}: (x, y) = (0, 1)$$ $$CP_{11}: (x, y) = (1, 1), CP_{10}: (x, y) = (1, 0)$$ Interior symmetric fixed point $$S_{aa}$$: $(x, y) = (a, a)$ Interior asymmetric fixed points $$AS_{ab}$$: $(x, y) = (a, b)$, AS_{ba} : $(x, y) = (b, a)$ #### Border asymmetric fixed points $$AS_{0a}: (x, y) = (0, a), AS_{a0}: (x, y) = (a, 0)$$ $$AS_{1a}$$: $(x, y) = (1, a)$, AS_{a1} : $(x, y) = (a, 1)$ Interior fixed points are determined by the conditions : $\Omega_h(x,y) = 1$ and $\Omega_f(x,y) = 1$ Border fixed points by the condition $\Omega_h(x,y) = 1$ and y = 0 or y = 1 (on lower side or upper side) or by the condition $\Omega_f(x,y) = 1$ and x = 0 or x = 1 (on left side or right side) ## (Stable) long-run stationary equilibra - CP equilibria: the manufacturing activity is agglomerated within countries - Interior symmetric equilibrium: industry is distributed within countries (with a larger share in the border region); - Border asymmetric fixed points: industry is agglomerated in one Country and dispersed in other country (with a larger share in the border region). The bifurcation curves define the stability regions of fixed points $BT_{d0}: CP_{00}$ BT_{d1} and 1: CP₁₁ $BT_{(1)0}$: CP_{01} and CP_{10} Multistability: Blue: 4 attracting fixed CP Red: attracting symmetric equilibrium ## Yis the migration speed $$\sigma = 2$$, $\phi E = 0.1$ Green region: stable period-2 cycle Magenta region: stable period-4 cycle White area: higher periodicity, chaos Dark Grey: CP as Milnor attractors Yellow: attracting border asymmetric fixed points Yis the migration speed Basins of attraction of four CP stable fixed points - separated by stable sets of border saddle fixed points, AS_{b0} , AS_{0b} , AS_{1c} , AS_{c1} As ϕ is decreased the basin of CP_{11} enlarges and the basins of CP_{00} , CP_{01} and CP_{10} shrink #### We are in the yellow region: - a) CP_{00} (after crossing BT_{d0}) has lost stability and CP_{10} and CP_{10} (after crossing $BT_{(1)0}$) are saddle; Via fold bif.: two (asymmetric) stable border fixed poits AS_{c1} and AS_{1c} and 2 saddle (AS_{d1} and AS_{1d}) - b) Decreasing ϕ the basin of CP_{11} shrinks; Via fold bif: 2 interior fixed points emerge S_{aa} (saddle), S_{bb} (repelling) We are in the (red) region: - ☐ Via (subcritical) pitchfork bif.: - the stable symmetric interior fixed point S_{aa}; - 2 saddles interior asymmetric fixed points: AS_{ef} and AS_{fe}; - Four co-existing stable equilibria: CP₁₁, S_{aa}, AS_{c1}, AS_{1c} After crossing BT_{d1}, CP₁₁ loses stability (merging with Sbb, AS1d and ASd1); three co-existing stable equilibria: S_{aa} , AS_{c1} , AS_{1c} Further decreasing φ , AS_{c1} and AS_{1c} lose stability, S_{aa} only stable equilibrium $$\Phi = 0.134$$ - a) After Flip bifurcation of S_{aa} : attracting 2-cycle (on the diagonal); 2 saddle period-2 cycles (on y = 0 and x = 0); - b) After supercritical pitchfork bifurcation of period-2 cycle: 2 stable period-2 cycles (symmetric along the diagonal); 2 Saddle period-4 cycles (on y=0 and x=0); - a) and b) AS_{c1} and AS_{1c} Milnor attractors. ϕ_F is the international trade freeness ### Conclusions - 1. Increasing internal (and external) trade freeness enhances the likelihood of industrial agglomeration in the two countries - 2. Reducing internal (and external) trade freeness increases the likelihood of industrial dispersion within the two countries (but also the emergence of complex behaviour). - 3. Increasing the mobility speed could also make more likely agglometarion of industrial activities but this occurence is much less predictable. - 4. Rich multistability scenarios.