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Motivation and literature

Binary games with impulsive agents:
I Bischi, Gardini, Merlone (2009): Discrete Dynamics in Nature and Society
I Bischi, Gardini, Merlone (2009): Journal of Dynamical Systems and Geometric

Theories

Extension to ternary games with impulsive agents and linear costs (Braess paradox):
I Dal Forno, Merlone (2013): Mathematics and Computers in Simulation
I Diback, Avrutin, Dal Forno: (work in progress)

Introduction of proportional agents (homogeneous population):
I Dal Forno, Merlone, Avrutin (2014): Discrete Dynamics in Nature and Society

Experiments and agent-based model (heterogeneity is necessary):
I Dal Forno, Merlone (2013): Proceedings of the 2013 Winter Simulation

Conference

Our goal here:

When considering the heterogeneous population, which properties are inherited

from the homogeneous populations, what is lost and what is gained?



Motivation and literature

Binary games with impulsive agents:
I Bischi, Gardini, Merlone (2009): Discrete Dynamics in Nature and Society
I Bischi, Gardini, Merlone (2009): Journal of Dynamical Systems and Geometric

Theories

Extension to ternary games with impulsive agents and linear costs (Braess paradox):
I Dal Forno, Merlone (2013): Mathematics and Computers in Simulation
I Diback, Avrutin, Dal Forno: (work in progress)

Introduction of proportional agents (homogeneous population):
I Dal Forno, Merlone, Avrutin (2014): Discrete Dynamics in Nature and Society

Experiments and agent-based model (heterogeneity is necessary):
I Dal Forno, Merlone (2013): Proceedings of the 2013 Winter Simulation

Conference

Our goal here:

When considering the heterogeneous population, which properties are inherited

from the homogeneous populations, what is lost and what is gained?



The formal model

The game:

I a repeated game

I a continuum of players chooses actions from A = {L,R}
I each player updates its choice at each time t = 0,1,2, . . .

I the set of players is normalized to the interval [0,1]

We introduce the following notation:

I zL
t ∈ [0,1] denotes the fraction of players choosing action L at

time t ;

I zR
t ∈ [0,1] denotes the fraction of players choosing action R at

time t .



The formal model

Binary choices: when at any time t a fraction zR
t of the

population chooses action R, then a fraction zL
t = 1− zR

t
chooses action L. The state of the system can be represented
by

z = zR ∈ [0,1]

Cost functions are linear and depend on z:
I L : [0,1]→ R is the cost associated to action L

L(z) = aL + bLzL = aL + bL(1− z)

I R : [0,1]→ R is the cost associated to action R

R(z) = aR + bRzR = aR + bRz

with aL,aR,bL,bR > 0.



The formal model

Agents are cost minimizers and myopic:

I If L � R or, equivalently, R (zt) > L (zt) then
a fraction of the zt agents who chose R switches to L

I If L ≺ R or, equivalently, R (zt) < L (zt) then
a fraction of the (1− zt) agents who chose L switches to R

Consequently, we define the following intervals (or regions)
where each strategy is dominant:

I RL = {zR ∈ [0,1] : L(zR) < R(zR)}
I RR = {zR ∈ [0,1] : L(zR) > R(zR)}



Dynamics with Homogeneous
Population



The map with impulsive agents

Impulsive agents (X ): the switching rate only depends on the
sign of the difference between payoffs no matter how much
they differ.

Taking into account that xL
t = 1− xR

t , this is a 1D piecewise
linear function with one discontinuity:

FX : xR
t+1 =


(1− δL) xR

t if xR
t ∈ RL

(1− δR) xR
t + δR if xR

t ∈ RR

where δR and δL model the fraction of players switching choice.



The map with impulsive agents

Proposition:
Given δL, δR, the map has only one attractor, a stable cycle of
some period k , and any initial condition x0 ∈ [0,1] gives a
trajectory converging to such k -cycle.

Bischi, Gardini, Merlone (2009a, 2009b)



The map with proportional agents

Proportional agents (Y ): the switching rate depends not only on
the sign of the difference between payoffs, but also on the
relative difference between payoffs.

When R � L, the difference L(yR)−R(yR) is normalized by the
largest value of this difference, obtained in correspondence of
yR = 0:

L(0)− R(0) = aL + bL − aR

When R ≺ L, the difference R(yR)− L(yR) is normalized by the
largest value of this difference, obtained in correspondence of
yR = 1:

R(1)− L(1) = aR + bR − aL



The map with proportional agents

Taking into account that yL
t = 1− yR

t , this is a 1D piecewise
smooth map:

FY : yR
t+1 =

{
(1− δLρ

R
t )y

R
t if yt ∈ RL

(1− δRρ
L
t )y

R
t + δRρ

L
t if yt ∈ RR

with

ρL
t =

aL + bL − aR − (bL + bR)yR
t

aL + bL − aR

and

ρR
t =

aR − aL − bL + (bL + bR)yR
t

aR + bR − aL



The map with proportional agents

Proposition:
Map Fy is continuous in [0,1] and (when feasible)

y∗ =
aL − aR + bL

bL + bR

is the unique fixed point, which is globally stable – although it
may be either locally stable or unstable.

Dal Forno, Merlone, Avrutin (2014)



Dynamics with Heterogeneous
Population



Heterogeneous population

In the heterogeneous population agents compare the payoffs
and react according to their own type, as:

(xR
t+1, y

R
t+1) = (FX (xR

t ),FY (yR
t )) = F(xR

t , y
R
t )

with map F : [0, i]× [0,1− i]→ [0, i]× [0,1− i] defined as:

F :



FX : xR
t+1 =

{
(1− δL) xR

t

(1− δR) xR
t + δR i

if xR
t + yR

t ∈ RL

FY : yR
t+1 =

{
(1− δLρ

R
t )y

R
t

(1− δRρ
L
t )y

R
t + δRρ

L
t (1− i)

if xR
t + yR

t ∈ RR



A convenient graphical representation
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A convenient graphical representation

We represent the map using the aggregating variable
zR := xR + yR, which describes the state of the system.
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A convenient graphical representation
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Heterogeneous population: results

Proposition:
Assume 0 < zR

t < 1 and define

αL
t =

xL
t

xL + yL
t
=

i − xR
t

1− zR
t
, αR

t =
xR

t

zR
t

If L
(
zR

t
)
< R

(
zR

t
)
, then

zR
t+1 = αL

[
zR

t + δR

(
1− zR

t

)]
+
(

1− αL
) [

zR
t + δRρ

R
t

(
1− zR

t

)]
;

if L
(
zR

t
)
< R

(
zR

t
)
, then

zR
t+1 = αR

[
zR

t − δL

(
1− zR

t

)]
+
(

1− αR
) [

zR
t − δLρ

R
t

(
1− zR

t

)]
.



From impulsive to proportional behavior: what
happens in between?
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From impulsive to proportional behavior: what
happens in between?

Consider aL = aR = 27, bL = bR = 24

i = 1 i = .5

We still have cycles, but we have lost period adding structure
and symmetry.



Period 2 cycles

To find 2-cycles we consider orbits belonging to RL and RR:

(x,y) = fR (fL (x,y))

The orbit of a cycle of period two is given by the feasible
solution xR∗ ∈ [0, i] and yR∗ ∈ [0,1− i] of the system{

xR = δR
δL(1−δR)+δR

i

γ0
(
yR)4

+ γ1
(
yR)3

+ γ2
(
yR)2

+ γ3yR + γ4 = 0

where γ0, γ1, γ2, γ3, γ4 can be computed from xR and the map
parameters: aL,bL,aR,bR, i , δL, δR.



Period 2 cycles: an example

In general, in the two regions, the ratios of impulsive agents
determine different α and the different heterogeneous
population dynamics which are selected
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Period 2 cycles: an example
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Coexistence: an example
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Coexistence: an example
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Coexistence: an example

Depending on the initial condition we have either a 2- or a
3-cycle



Conclusion



Conclusion

With heterogeneous population the dynamics is much more
complex

I the dynamics of the heterogeneous population is a convex
linear combination of the homogeneous populations
dynamics

I even a small percentage of impulsive agents qualitatively
rules the dynamics

What is inherited?
I We still have cycles: overshooting is still persistent

What is lost?
I We lose period adding and symmetry: less elegant

mathematical structure
What is gained?

I We have coexistence: the initial condition matters
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