## Product Innovation Incentives by an Incumbent Firm: A Dynamic Analysis

Herbert Dawid Michel Keoula Michael Kopel Peter M. Kort

Bielefeld University

Univ. of Graz Tilburg Univ.

MDEF, September 2014, Urbino

• Gain new insights into intertemporally optimal innovation behavior of incumbents in dynamic oligopolies

• Present a (new) numerical method to determine boundaries of basins of attraction between locally stable steady states in dynamic optimization problems and dynamic games.

#### Motivation

- The evolution of many industries is characterized by the repeated emergence of new 'sub-markets', due to the introduction of products with differentiated functionality/technology relative to the established products.
  - hybrid cars, convertible minis
  - netbooks
  - flatscreen TVs
  - E-Readers
- New submarkets do not replace products in the existing product range, but these products are added to the product range of existing producers
- Firms have to invest in R&D in order to develop the new products

• • = • • = •

#### **Research Questions**

- How are the incentives to invest in product innovation influenced by the production capacities of the firm on the established market?
- Might a strong position on the established market prevent a firm from product innovation?
- How do the answers to the questions above depend on the quality of the new product and the degree of substitutability between the established and the new product?

#### General Model Setup

- Monopolist offers an established 'old' product (product 1).
- Standard capacity dynamics for production of old product:

$$\dot{K}_1 = I_1 - \delta_1 K_1 \quad \delta_1 > 0, K_1(0) = K_1^{ini}$$

• At t = 0 the firm starts an innovation project aiming at the development of a new differentiated product (product 2). Arrival time  $\tau$  is stochastic. Arrival rate of the new product depends on current R&D investment  $I_R(t)$ and knowledge stock  $K_R(t)$ :

$$\lambda(t) = \lim_{\Delta \to 0} \frac{1}{\Delta} \operatorname{Prob} \left\{ \tau \in [t, t + \Delta] \mid \tau \ge t \right\} = \alpha I_R(t) + \beta K_R^{\psi}(t)$$

#### • Dynamics of the knowledge stock:

$$\dot{K}_R = I_R - \delta_R K_R \quad \delta_R > 0, K_R(0) = 0$$

#### General Model Setup

• 2 modes:

$$m(t) = \begin{cases} m_1 & t < \tau \\ m_2 & t \ge \tau \end{cases}$$

• Firm starts with  $K_2(\tau) = 0$  at time  $\tau$  when it introduces the new product.

$$\dot{K}_2 = I_2 - \delta_2 K_2 \quad \delta_2 > 0, \ t \ge \tau$$

• Capacities on both markets and knowledge stock are adapted dynamically with linear-quadratic costs.

#### **Optimization Problem**

• Objective Function:

$$J = \mathbb{I}\!\!E \left[ \int_0^\infty e^{-rt} \left[ (1 - K_1 - \eta K_2) K_1 + (1 + \theta - \eta K_1 - K_2) K_2 - \mu_1 I_1 - \frac{\gamma_1}{2} I_1^2 - \mu_2 I_2 - \frac{\gamma_2}{2} I_2^2 - \mu_R I_R - \frac{\gamma_R}{2} I_R^2 \right] dt \right],$$

• State and Mode Dynamics:

$$\begin{split} \dot{K}_{i} &= I_{i} - \delta^{i} K_{i}, \qquad i \in \{1, 2, R\} \\ K_{i}(t) &\geq 0 \ \forall t \geq 0, \quad i \in \{1, 2, R\} \\ \lim_{\Delta \to 0} \frac{1}{\Delta} Prob \ \{m(t + \Delta) = m_{2} \mid m(t) = m_{1}\} = \alpha I_{R}(t) + \beta K_{R}^{\psi}(t) \\ I_{2}(t) &= 0, \ \forall t \text{ s.t. } m(t) = m_{1} \\ K_{1}(0) &= K_{1}^{ini} \geq 0, \quad K_{2}(0) = K_{R}(0) = 0, \quad m(0) = m_{1} \end{split}$$

.⊒ .>.

#### Mode $m_2$ : After the innovation

• Obviously firm chooses  $I_R(t) = 0$  for all  $t > \tau$ .

•  $\Rightarrow$  In mode  $m_2$  firms faces standard capital accumulation problem with two products.

• Linear-quadratic problem  $\Rightarrow$  quadratic value function  $V_{(m_2)}(K_1, K_2)$ 

• Under appropriate conditions unique stable positive steady state exists

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Mode $m_1$ : Before the innovation

- Non linear-quadratic problem with stochastic terminal time  $\tau$ .
- Combination of Maximum Principle and Numerical Dynamic Programming (collocation with Chebyshev polynomials) used for analysis
- HJB Equation:

$$\begin{aligned} rV_{(m_1)}(K_1, K_R)) &= \max_{I_1, I_R} \left[ K_1(1 - K_1) - \mu_1 I_1 - \frac{1}{2} \gamma_1 I_1^2 \right. \\ &+ \frac{\partial V_{(m_1)}}{\partial K_1} (I_1 - \delta_1 K_1) - \mu_R I_R - \frac{1}{2} \gamma_R I_R^2 + \frac{\partial V_{(m_1)}}{\partial K_R} (I_R - \delta_R K_R) \\ &+ (\alpha I_R + \beta K_R^{\psi}) (V_{(m_2)}(K_1, 0) - V_{(m_1)}(K_1, K_R) \right] \end{aligned}$$

Optimal Investments

$$I_1^* = \frac{1}{\gamma_1} \left( \frac{\partial V_{(m_1)}}{\partial K_1} - \mu_1 \right)$$
$$I_R^* = \frac{1}{\gamma_R} \left( \frac{\partial V_{(m_1)}}{\partial K_R} - \mu_R + \alpha (V_{m_2}(K_1, 0) - V_{(m_1)}) \right)$$

Steady states of the cannonical system in  $m_1$  derived through the maximum principle

- Three steady states: two with positive knowledge stock, one with zero knowledge stock (and zero hazard rate).
- The first and the third are saddle points in the cannonical system (i.e. candidates for fixed points of the dynamics under opitmal investment strategies).
- Global analysis based on HJB approach is needed to find out which fixed point is reached for which initial values of  $(K_1, K_R)$ !

#### Collocation in Models with Multiple Stable Fixed Points

- Numerical solution of HJB often obtained through polynomial approximation of value function (collocation method).
- In dynamic optimization problems (dynamic games) where the optimized dynamics has multiple (locally) stable fixed point the optimal control typically jumps at the boundary between the basins of attraction.
- A jump in the control corresponds to a jump in the derivative of the value function (a kink).
- ⇒ the standard collocation method based on polynomial approximation is not able to capture the qualitative features of the optimal feedback and the value function.
- Use a new method to calculate approximations of 'local value functions' around the steady state.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



Dawid/Keoula/Kopel/Kort

MDEF 2014 12 / 22



▶ < ∃ ▶</p>



- ₹ 🖹 🕨



► < Ξ > <</p>

< A



- < ∃ →



Dawid/Keoula/Kopel/Kort

MDEF 2014 12 / 22

- ∃ →

### Value function (black line is the boundary of the basins)



< ∃ >

#### **Optimal Investment Functions**



MDEF 2014 14 / 22

#### **Optimal Dynamics**



Dawid/Keoula/Kopel/Kort

MDEF 2014 15 / 22

э

▶ < ∃ ▶</p>

A.

#### **Optimal Dynamics**



MDEF 2014 16 / 22

э.

#### **Innovation Probability**



MDEF 2014 17 / 22

3 →

#### Welfare Optimizing Dynamics



MDEF 2014 18 / 22

A (1) > A (1) > A

# Sensitivity: Horizontal Differentiation Parameter (positive Steady State)



#### Conclusions

• Initial capacity on established markets negatively (for substitutes) influences R&D invesmtents and innovation rate.

• In scenarios with two steady states long run state and mode depend on initial conditions: large initial capacities may prevent innovation in the long run.

• 'Skiba area' of initial conditions is characterized where different long run states and modes have positive probability.

#### Extensions

• Oligopolistic Competition

• Anticipatory build-up of capacities for the new product

Delays between R&D investment and effect on innovation rate
⇒ 'time-to-build'-type problem

Thank you for your attention !