

Heterogeneity in Signal Precision and Clustering of Defaults

A. K. Karlis1*,*³ G. Galanis² S. Terovitis² M. S. Turner1*,*³

¹Department of Physics, University of Warwick, UK. ²Department of Economics, University of Warwick, UK. ³ Complexity Center, University of Warwick, UK.

• The importance of leverage on the stability of the market has been widely recognized (e.g. Basel III).

- The importance of leverage on the stability of the market has been widely recognized (e.g. Basel III).
- Geanakoplos introduced the so-called "Leverage Cycle"(Geanakoplos, 1996, 2010; Thurner et al., 2012; Poledna et al., 2014).

- The importance of leverage on the stability of the market has been widely recognized (e.g. Basel III).
- Geanakoplos introduced the so-called "Leverage Cycle"(Geanakoplos, 1996, 2010; Thurner et al., 2012; Poledna et al., 2014).

The leverage cycle in a nutshell:

- The importance of leverage on the stability of the market has been widely recognized (e.g. Basel III).
- Geanakoplos introduced the so-called "Leverage Cycle"(Geanakoplos, 1996, 2010; Thurner et al., 2012; Poledna et al., 2014).

The leverage cycle in a nutshell:

Leverage becomes too high in boom times, and too low in bad times.

- The importance of leverage on the stability of the market has been widely recognized (e.g. Basel III).
- Geanakoplos introduced the so-called "Leverage Cycle"(Geanakoplos, 1996, 2010; Thurner et al., 2012; Poledna et al., 2014).

The leverage cycle in a nutshell:

- Leverage becomes too high in boom times, and too low in bad times.
- As a result, in boom times asset prices are too high, and in crisis times they are too low.

Driving Questions:

Driving Questions:

1 The link between heterogeneity and the clustering of defaults.

Driving Questions:

- **1** The link between heterogeneity and the clustering of defaults.
- **²** Is a deterministic (non-linear) description of the default process feasible?

• Traders have a choice between owning a risky and risk-free asset.

- **•** Traders have a choice between owning a risky and risk-free asset.
- Two kinds of traders:
	- **1** Noise traders.
	- **2** Hedge funds (HF). (Receive a private noisy signal. Signal precision varies among HFs).

Agent-based Framework

- **•** Traders have a choice between owning a risky and risk-free asset.
- Two kinds of traders:
	- **1** Noise traders.
	- **2** Hedge funds (HF). (Receive a private noisy signal. Signal precision varies among HFs).
- Credit: The HFs can increase the size of their long position by borrowing from a bank using the asset as collateral.

• The distribution of waiting times between defaults is qualitatively different on the micro and macro level.

• The distribution of waiting times between defaults is qualitatively different on the micro and macro level. **1** Microscopic level: Exponentially distributed ⇒ Poisson process.

- The distribution of waiting times between defaults is qualitatively different on the micro and macro level.
	- **1** Microscopic level: Exponentially distributed ⇒ Poisson process.
	- **2** After aggregation: Power-law ⇒ Scale invariance.

- The distribution of waiting times between defaults is qualitatively different on the micro and macro level.
	- **1** Microscopic level: Exponentially distributed ⇒ Poisson process.
	- **2** After aggregation: Power-law ⇒ Scale invariance.

Consequences of the fat-tail

- The scale-free character of the power-law distribution leads to clustering of defaults.
- The statistical properties of the default process, as viewed on the aggregate level, can be accurately described by an Intermittent (type III) process.

• The price of the risky asset in the absence of the HFs is assumed to follow a mean-reverting AR(1) process.

- The price of the risky asset in the absence of the HFs is assumed to follow a mean-reverting $AR(1)$ process.
- Thus, the demand (in cash value) $\xi_t = D^{nt} p_t$ of the NTs follows

$$
\log(\xi_t^{nt}) = \rho \log(\xi_{t-1}^{nt}) + (1 - \rho) \log(VN) + \sigma \chi_t, \quad (1)
$$

where $\chi_t = N(0, 1)$ and $\rho \in (0, 1)$ (Poledna et al., 2014).

HFs are represented by risk averse agents with CRRA.

The maximization yields

$$
D_t^j = \frac{m}{\alpha \sigma_j^2} W_t^j, \quad m = V - p_t. \tag{2}
$$

Demand is capped by $\lambda^j = D_t^j p_t/W_t^j \leq \lambda_{\sf max}$, λ_{max} the maximum allowed leverage set externally.

• The wealth of a HF evolves according to

$$
W_{t+1}^j = W_t^j + (p_{t+1} - p_t)D_t^j - F_t^j \tag{3}
$$

 F_t^j , managerial fees following the $1/10$ rule:

$$
\mathcal{F}_t^j = \gamma \left(W_t + 10 \max \left\{ W_t^j - W_{t-1}^j, 0 \right\} \right) \tag{4}
$$

• The price of the risky asset is determined by the market clearance condition

$$
D_t^{nt}(p_t) + \sum_{j=1}^n D_t^j(p_t) = N.
$$
 (5)

Theorem

Consider an exponential density function $P(\tau; \mu)$, parametrized by $\mu \in \mathbb{R}_+$. Assume that μ is itself a random variable with a density function $W(\mu)$. If $W(\mu)$ can be expanded in a power-series, i.e. $W(\mu) = \sum^{\infty}$ $\sum_{k=0}^{\infty} b_k \mu^k$, for $\mu\rightarrow0^+$, then the compound probability function defined as

$$
\tilde{P}(\tau)\equiv\int_0^\infty W(\mu)P(\tau;\mu)d\mu
$$

for $\tau \gg 1$, to the leading order of $\mathcal{O}(1/\tau)$, decays as $\tilde{P}(\tau) \propto \tau^{-(n+2)}$, where n is the order of the expansion around $\mu = 0.$

Proof.

The compound density is $\mathscr{L} [\phi(\mu)]$, $\phi(\mu) \equiv \mu W(\mu)$, where $\mathscr{L} [.]$ denotes the Laplace transform with respect to *µ*. Watson's Lemma: If $f(\mu)$ can be written as $f(\mu) = \mu^a \sum^m$ $\sum_{k=0} b_k \mu^k + R_{m+1}(\mu)$, with $a > -1$, then $\mathscr{L}\left[f(\mu)\right](\tau) \sim \sum^{m} b_k \frac{\Gamma(a+k+1)}{a^{a+k+1}}$ $\frac{a+k+1}{\tau^{a+k+1}} + \mathcal{O}\left(\frac{1}{\tau^{a+r}}\right)$ \setminus *.* (6) *τ* a+m+2 $k=0$ Given that $\phi(\mu) = \mu \sum_{\alpha=1}^{\infty}$ $\sum_{k=0}^{\infty} b_k \mu^k$, $\tilde{P}(\tau) \propto \tau^{-(n+2)} + \mathcal{O}\left(\frac{1}{\tau^{n+3}}\right)$. \Box

Theorem

Let $T_n \in \mathbb{R}_+$, $n \geq 0$, be a sequence of i.d.d. random variables. Assume that the probability density function $\tilde{P}(\mathcal{T}_n=\tau) \propto \tau^{-\alpha}$, for $\tau \to \infty$. Consider now the renewal process $S_n = \sum_{n=1}^{n}$ $\sum_{i=0}$ T_i. Let $Y(t) = 1_{[0,t]}(S_n)$, where $1_A : \mathbb{R} \to \{0,1\}$ denotes the indicator function, satisfying

$$
1_A = \left\{ \begin{array}{rcl} 1 & : & x \in A \\ 0 & : & x \notin A \end{array} \right.
$$

If $2 < \alpha \leq 3$, then the autocorrelation function of $Y(t)$, for $t \to \infty$ decays as

$$
C(t') \propto t'^{2-\alpha} \tag{7}
$$

Clustering of Defaults

Asymmetric Information Leads to Clustering of Defaults

An important effect of the emergent heavy-tail statistics stemming from the heterogeneity of the market, is the absence of a characteristic time-scale for the occurrence of defaults (scale-free asymptotic behaviour).

[Introduction](#page-1-0) [The Model](#page-16-0) [Results](#page-21-0) [Conclusions](#page-31-0) [References](#page-33-0)

[Numerical results](#page-27-0)

Clustering of Defaults

Asymmetric Information Leads to Clustering of Defaults

An important effect of the emergent heavy-tail statistics stemming from the heterogeneity of the market, is the absence of a characteristic time-scale for the occurrence of defaults (scale-free asymptotic behaviour).

- Fitting the aggregate distribution we obtain $\tilde{P}(\tau) \sim \tau^{-(7/3)}.$
- According to Theorem 2, the autocorrelation function decays as,

$$
C(t') \sim t'^{-1/3}.\tag{8}
$$

All statistical properties of default events can be replicated by a very simple deterministic map.

$$
x_{t+1} = x_t + ux_t^z \mod 1, \ z > 1.
$$
 (9)

- Characteristic behaviour: The evolution of x_t is regular close to the vicinity of 0 (marginally unstable fixed point) and chaotic away from it \Rightarrow Random alternation between almost regular and chaotic dynamics.
	- Regular motion \rightarrow Laminar phase.
	- Chaotic motion \rightarrow Turbulent phase.

• The distribution of waiting times between transition from the laminar to the turbulent phase follows a power-law (Schuster and Just, 2006).

$$
\rho(\tau) \propto \tau^{-\frac{z}{z-1}},\tag{10}
$$

• Also, the autocorrelation function of x_t decays algebraically

$$
C(t') \propto t'^{\frac{z-2}{z-1}}, \ 3/2 \leq z < 2. \tag{11}
$$

Setting $z = \frac{7}{4}$, and mapping the:

- \bullet HFs Active \rightarrow Laminar phase.
- Default events \rightarrow Turbulent phase.

$$
\rho(t) \sim \tau^{-7/3}, \ C(t') = t'^{-1/3} \tag{12}
$$

- We assume that the heterogeneity of the agents stems from the HFs' different quality of the mispricing signals they receive.
- We show that the failure function of the HFs is qualitatively different when observed on the micro and the aggregate level.
- • We also show that the scale-free property of the emergent statistics on the aggregate level is directly connected with the clustering of defaults.

[Introduction](#page-1-0) [The Model](#page-16-0) [Results](#page-21-0) [Conclusions](#page-31-0) [References](#page-33-0)

Which is the Real Cause?

. . . A crucial part of my story is heterogeneity between investors. . . But an important difference is that I do not invoke any asymmetric information. . . Of course, the asymmetric information revolution in economics was a tremendous advance, and asymmetric information plays a critical role in many lender-borrower relationships; sometimes, however, the profession becomes obsessed with it. . . (Geanakoplos, 2010)

- Geanakoplos, J., Dec. 1996. Promises promises. Cowles Foundation Discussion Papers 1143, Cowles Foundation for Research in Economics, Yale University. URL <http://ideas.repec.org/p/cwl/cwldpp/1143.html>
- Geanakoplos, J., 2010. The leverage cycle. In: NBER Macroeconomics Annual 2009, Volume 24. University of Chicago Press, pp. 1–65.
- Poledna, S., Thurner, S., Farmer, J. D., Geanakoplos, J., 2014. Leverage-induced systemic risk under Basle II and other credit risk policies. Journal of Banking & Finance 42 (C), 199–212.

URL <http://ideas.repec.org/a/eee/jbfina/v42y2014icp199-212.html>

- Schuster, H., Just, W., 2006. Deterministic Chaos: An Introduction. Wiley. URL <http://books.google.co.uk/books?id=9y2qSGpQR7QC>
- Thurner, S., Farmer, J. D., Geanakoplos, J., 2012. Leverage causes fat tails and clustered volatility. Quantitative Finance 12, 695,707.