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The importance of leverage on the stability of the market
has been widely recognized (e.g. Basel IlI).

Geanakoplos introduced the so-called “Leverage
Cycle”(Geanakoplos, 1996, 2010; Thurner et al., 2012;
Poledna et al., 2014).

The leverage cycle in a nutshell:

Leverage becomes too high in boom times, and too low in
bad times.

As a result, in boom times asset prices are too high, and
in crisis times they are too low.
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Driving Questions:

@ The link between heterogeneity and the clustering of
defaults.

@ Is a deterministic (non-linear) description of the default
process feasible?
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@ Traders have a choice between owning a risky and
risk-free asset.
@ Two kinds of traders:
@ Noise traders.
@ Hedge funds (HF). (Receive a private noisy signal.
Signal precision varies among HFs).
@ Credit: The HFs can increase the size of their long
position by borrowing from a bank using the asset as
collateral.
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@ The distribution of waiting times between defaults is
qualitatively different on the micro and macro level.
@ Microscopic level: Exponentially distributed = Poisson
process.

@ After aggregation: Power-law = Scale invariance.

Consequences of the fat-tail

@ The scale-free character of the power-law distribution
leads to clustering of defaults.

@ The statistical properties of the default process, as viewed

on the aggregate level, can be accurately described by an
Intermittent (type Ill) process.
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@ The price of the risky asset in the absence of the HFs is
assumed to follow a mean-reverting AR(1) process.

@ Thus, the demand (in cash value) & = D" p, of the NTs
follows

log(&°) = plog(&7%1) + (1 — p) log(VN) +oxe, (1)

where x; = N(0,1) and p € (0,1) (Poledna et al., 2014).
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@ HFs are represented by risk averse agents with CRRA.
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The maximization yields

m

Dl = Wi, m=V —p. (2)

2
OéO'J-

o Demand is capped by N = Dip,/W! < Amax,

Amax the maximum allowed leverage set externally.
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@ The wealth of a HF evolves according to
W#+1 W + (Pes1 — Pt)D{ - F{ (3)
o F!, managerial fees following the 1/10 rule:
Fl =~ (We + 10max { W} — W/_;,0}) (4)

@ The price of the risky asset is determined by the market
clearance condition

DI (pe) + 3 Di(pe) = . (5)

Jj=1
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Theorem

Consider an exponential density function P(T; ),
parametrized by ;1 € R, . Assume that y is itself a random
variable with a density function W (). If W(u) can be

expanded in a power-series, i.e. W(u) = % by, for
k=0

w — 0T, then the compound probability function defined as

P(r) = [~ W()P(rp)dp
for T > 1, to the leading order of O (1/7), decays as

P( ) oc 7=("+2) where n is the order of the expansion around
= 0.
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Proof.

The compound density is .Z [¢p(u)], ¢(p) = pW(u), where Z[.]
denotes the Laplace transform with respect to .
Watson's Lemma: If f(u) can be written as

f(u) = p? kZO brp* + Rmy1(p), with a > —1, then

Ma+k+1) 1
20~ aCid o (). ©

Given that ¢(u) = p 3 bepX, P(1) oc 772 1 0 (L5).
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Let T, € Ry, n >0, be a sequence of i.d.d. random variables. Assume
that the probability density function P(T, = 7) o< 7%, for 7 — 0.
n
Consider now the renewal process S, = T;. Let Y(t) = 1[99 (Sn),
i=0
where 14 : R — {0,1} denotes the indicator function, satisfying

1. — 1 : x€eA
AT10 - x¢A

If2 < a < 3, then the autocorrelation function of Y(t), for t — oo
decays as

C(t) o t'*" (7)
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Asymmetric Information Leads to Clustering of Defaults

An important effect of the emergent heavy-tail statistics
stemming from the heterogeneity of the market, is the absence
of a characteristic time-scale for the occurrence of defaults
(scale-free asymptotic behaviour).
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Asymmetric Information Leads to Clustering of Defaults

An important effect of the emergent heavy-tail statistics
stemming from the heterogeneity of the market, is the absence
of a characteristic time-scale for the occurrence of defaults
(scale-free asymptotic behaviour).

e Fitting the aggregate distribution we obtain
P(r) ~ /3.

@ According to Theorem 2, the autocorrelation function
decays as,

c(t) ~t' 3. (8)
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@ All statistical properties of default events can be replicated by a
very simple deterministic map.

Xey1 = Xe +ux; mod 1, z> 1. (9)

@ Characteristic behaviour: The evolution of x; is regular close to the
vicinity of 0 (marginally unstable fixed point) and chaotic away
from it = Random alternation between almost regular and chaotic
dynamics.

e Regular motion — Laminar phase.
e Chaotic motion — Turbulent phase.
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@ The distribution of waiting times between transition from the

laminar to the turbulent phase follows a power-law (Schuster and
Just, 2006).

p(r) oc T, (10)
@ Also, the autocorrelation function of x; decays algebraically
z—2
C(t)oxt'= 1, 3/2<z<2. (11)

Setting z = I, and mapping the:

o HFs Active — Laminar phase.
o Default events — Turbulent phase.

p(t) ~ 73 C(t) =73 (12)
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Conclusions

@ We assume that the heterogeneity of the agents stems
from the HFs’ different quality of the mispricing signals
they receive.

@ We show that the failure function of the HFs is
qualitatively different when observed on the micro and
the aggregate level.

@ We also show that the scale-free property of the emergent
statistics on the aggregate level is directly connected with
the clustering of defaults.
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Conclusions

... A crucial part of my story is heterogeneity
between investors. .. But an important difference is
that | do not invoke any asymmetric

information. . . Of course, the asymmetric information
revolution in economics was a tremendous advance,
and asymmetric information plays a critical role in
many lender-borrower relationships; sometimes,
however, the profession becomes obsessed with

it. .. (Geanakoplos, 2010)
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