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Leverage Cycle

The importance of leverage on the stability of the market
has been widely recognized (e.g. Basel III).

Geanakoplos introduced the so-called “Leverage
Cycle”(Geanakoplos, 1996, 2010; Thurner, Farmer, and
Geanakoplos, 2012; Poledna, Thurner, Farmer, and
Geanakoplos, 2014).

The leverage cycle in a nutshell:
Leverage becomes too high in boom times, and too low in
bad times.
As a result, in boom times asset prices are too high, and
in crisis times they are too low.
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Motivation

Driving Questions:

1 The link between heterogeneity and the clustering of
defaults.

2 Is a deterministic (non-linear) description of the default
process feasible?
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Agent-based Framework

Traders have a choice between owning a risky and
risk-free asset.

Two kinds of traders:
1 Noise traders.
2 Hedge funds (HF). (Receive a private noisy signal.

Signal precision varies among HFs).
Credit: The HFs can increase the size of their long
position by borrowing from a bank using the asset as
collateral.
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Key Results

The distribution of waiting times between defaults is
qualitatively different on the micro and macro level.

1 Microscopic level: Exponentially distributed ⇒ Poisson
process.

2 After aggregation: Power-law ⇒ Scale invariance.

Consequences of the fat-tail

The scale-free character of the power-law distribution
leads to clustering of defaults.
The statistical properties of the default process, as viewed
on the aggregate level, can be accurately described by an
Intermittent (type III) process.

Introduction 5/21



Introduction The Model Results Conclusions References

Key Results

The distribution of waiting times between defaults is
qualitatively different on the micro and macro level.

1 Microscopic level: Exponentially distributed ⇒ Poisson
process.

2 After aggregation: Power-law ⇒ Scale invariance.

Consequences of the fat-tail

The scale-free character of the power-law distribution
leads to clustering of defaults.
The statistical properties of the default process, as viewed
on the aggregate level, can be accurately described by an
Intermittent (type III) process.

Introduction 5/21



Introduction The Model Results Conclusions References

Key Results

The distribution of waiting times between defaults is
qualitatively different on the micro and macro level.

1 Microscopic level: Exponentially distributed ⇒ Poisson
process.

2 After aggregation: Power-law ⇒ Scale invariance.

Consequences of the fat-tail

The scale-free character of the power-law distribution
leads to clustering of defaults.
The statistical properties of the default process, as viewed
on the aggregate level, can be accurately described by an
Intermittent (type III) process.

Introduction 5/21



Introduction The Model Results Conclusions References

Key Results

The distribution of waiting times between defaults is
qualitatively different on the micro and macro level.

1 Microscopic level: Exponentially distributed ⇒ Poisson
process.

2 After aggregation: Power-law ⇒ Scale invariance.

Consequences of the fat-tail

The scale-free character of the power-law distribution
leads to clustering of defaults.
The statistical properties of the default process, as viewed
on the aggregate level, can be accurately described by an
Intermittent (type III) process.

Introduction 5/21



Introduction The Model Results Conclusions References

Noise Traders

The price of the risky asset in the absence of the HFs is
assumed to follow a mean-reverting AR(1) process.

Thus, the demand (in cash value) ξt = Dntpt of the NTs
follows

log(ξnt
t ) = ρ log(ξnt

t−1) + (1− ρ) log(VN) + σχt , (1)

where χt = N(0, 1) and ρ ∈ (0, 1) (Poledna et al., 2014).
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Hedge Funds I

HFs are represented by risk averse agents with CRRA.

Utility: U = 1− e−αr j
t , where r j

t denotes the rate of
return of the jth HF, i.e. r j

t = (W j
t −W j

t−1)/W j
t−1.

Each HF receives a private noisy signal Ṽ = V + εj .
V the fundamental value of the risky asset.
εj ∼ N(0, σj).

Their wealth at each period is W j
t = Dj

tpt + C j
t .

Dj
t , demand for the risky asset.

pt , price.
C j

t , amount of risk-free asset (cash).
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Funds

The maximization yields

Dj
t =

m
ασ2

j
W j

t , m = V − pt . (2)

Demand is capped by λj = Dj
tpt/W j

t ≤ λmax,
λmax the maximum allowed leverage set externally.
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Price

The wealth of a HF evolves according to

W j
t+1 = W j

t + (pt+1 − pt)Dj
t − F j

t (3)

F j
t , managerial fees following the 1/10 rule:

F j
t = γ

(
Wt + 10 max

{
W j

t −W j
t−1, 0

})
(4)

The price of the risky asset is determined by the market
clearance condition

Dnt
t (pt) +

n∑
j=1

Dj
t(pt) = N . (5)
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Mathematical Statements

Theorem
Consider an exponential density function P(τ ;µ),
parametrized by µ ∈ R+. Assume that µ is itself a random
variable with a density function W (µ). If W (µ) can be
expanded in a power-series, i.e. W (µ) =

∞∑
k=0

bkµ
k , for

µ→ 0+, then the compound probability function defined as

P̃(τ) ≡
∫ ∞

0
W (µ)P(τ ;µ)dµ

for τ � 1, to the leading order of O (1/τ), decays as
P̃(τ) ∝ τ−(n+2), where n is the order of the expansion around
µ = 0.
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Mathematical Statements

Proof

Proof.
The compound density is L [φ(µ)] , φ(µ) ≡ µW (µ), where L [.]
denotes the Laplace transform with respect to µ.
Watson’s Lemma: If f (µ) can be written as
f (µ) = µa

m∑
k=0

bkµ
k + Rm+1(µ), with a > −1, then

L [f (µ)] (τ) ∼
m∑

k=0
bk

Γ(a + k + 1)

τ a+k+1 +O
(

1
τ a+m+2

)
. (6)

Given that φ(µ) = µ
∞∑

k=0
bkµ

k , P̃(τ) ∝ τ−(n+2) +O
( 1
τn+3

)
.
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Mathematical Statements

Autocorrelation

Theorem
Let Tn ∈ R+, n ≥ 0, be a sequence of i.d.d. random variables. Assume
that the probability density function P̃(Tn = τ) ∝ τ−α, for τ →∞.
Consider now the renewal process Sn =

n∑
i=0

Ti . Let Y (t) = 1[0,t] (Sn),

where 1A : R→ {0, 1} denotes the indicator function, satisfying

1A =

{
1 : x ∈ A
0 : x /∈ A

If 2 < α ≤ 3, then the autocorrelation function of Y (t), for t →∞
decays as

C(t ′) ∝ t ′2−α (7)
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Numerical results

Failure Function — Microscopic Level
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Numerical results

After Aggregation
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Numerical results

Clustering of Defaults

Asymmetric Information Leads to Clustering of Defaults
An important effect of the emergent heavy-tail statistics
stemming from the heterogeneity of the market, is the absence
of a characteristic time-scale for the occurrence of defaults
(scale-free asymptotic behaviour).

Fitting the aggregate distribution we obtain
P̃(τ) ∼ τ−(7/3).
According to Theorem 2, the autocorrelation function
decays as,

C(t ′) ∼ t ′−1/3
. (8)
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Numerical results

Autocorrelation Function
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Numerical results

Deterministic Description I

All statistical properties of default events can be replicated by a
very simple deterministic map.

xt+1 = xt + ux z
t mod 1, z > 1. (9)

Characteristic behaviour: The evolution of xt is regular close to the
vicinity of 0 (marginally unstable fixed point) and chaotic away
from it ⇒ Random alternation between almost regular and chaotic
dynamics.

Regular motion → Laminar phase.
Chaotic motion → Turbulent phase.
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Numerical results

Deterministic Description II

The distribution of waiting times between transition from the
laminar to the turbulent phase follows a power-law (Schuster and
Just, 2006).

ρ(τ) ∝ τ−
z

z−1 , (10)

Also, the autocorrelation function of xt decays algebraically

C(t ′) ∝ t ′
z−2
z−1 , 3/2 ≤ z < 2. (11)

Setting z = 7
4 , and mapping the:

HFs Active → Laminar phase.
Default events → Turbulent phase.

ρ(t) ∼ τ−7/3, C(t ′) = t ′−1/3 (12)
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We assume that the heterogeneity of the agents stems
from the HFs’ different quality of the mispricing signals
they receive.
We show that the failure function of the HFs is
qualitatively different when observed on the micro and
the aggregate level.
We also show that the scale-free property of the emergent
statistics on the aggregate level is directly connected with
the clustering of defaults.
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Which is the Real Cause?

. . . A crucial part of my story is heterogeneity
between investors. . . But an important difference is
that I do not invoke any asymmetric
information. . . Of course, the asymmetric information
revolution in economics was a tremendous advance,
and asymmetric information plays a critical role in
many lender-borrower relationships; sometimes,
however, the profession becomes obsessed with
it. . . (Geanakoplos, 2010)
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