Nonlinear Multiplier-Accelerator Model with Investment and Consumption Delays

Akio Matsumoto and Ferenc Szidearovszky

Chuo Univerisity (Japan) and University of Pécs (Hungary)

Workshop of MDEF 2014 in Urbino

19 September 2014

$$
\begin{array}{c}\n\equiv \rightarrow \quad \equiv \quad \circlearrowleft \circ \infty \\
19/09/14 \qquad \quad 2 \;/ \; 20\n\end{array}
$$

 2990

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ …

1 Introduction

² Macro Dynamic Model

×

メロト メ都 トメ ヨ トメ ヨ

- **1** Introduction
- ² Macro Dynamic Model
- **3** One-Delay Model

 \leftarrow \Box

重

 \rightarrow \overline{m} \rightarrow \rightarrow \rightarrow \rightarrow

- **1** Introduction
- ² Macro Dynamic Model
- **3** One-Delay Model
- **4** Two-Delay Model

4 D F

4 何 ▶ ×. ⊞ ⊁ K

Þ

- **1** Introduction
- ² Macro Dynamic Model
- **3** One-Delay Model
- **4** Two-Delay Model
- **6** Concluding Remarks

4 D F ∢● \rightarrow э \rightarrow × э

-41

"Delay" and "Nonlinearity" were once thought to be the two main ingredients for endogenous cyclic behavior

∢ ⊡

- "Delay" and "Nonlinearity" were once thought to be the two main ingredients for endogenous cyclic behavior
	- Kalecki (1935): investment lag

 \leftarrow

- "Delay" and "Nonlinearity" were once thought to be the two main ingredients for endogenous cyclic behavior
	- Kalecki (1935): investment lag
	- \bullet Kaldor (1940): S-shaped investment function; the profit principle

- "Delay" and "Nonlinearity" were once thought to be the two main ingredients for endogenous cyclic behavior
	- Kalecki (1935): investment lag
	- Kaldor (1940) : S-shaped investment function; the profit principle
	- Goodwin (1951): S-shaped investment function; the acceleration principle

- "Delay" and "Nonlinearity" were once thought to be the two main ingredients for endogenous cyclic behavior
	- Kalecki (1935): investment lag
	- Kaldor (1940) : S-shaped investment function; the profit principle
	- Goodwin (1951): S-shaped investment function; the acceleration principle
- The roles of nonlinearities are highlightened in demonstrating emergence of periodic and aperiodic behavior while the roles of the delay are made implicit.

- "Delay" and "Nonlinearity" were once thought to be the two main ingredients for endogenous cyclic behavior
	- Kalecki (1935): investment lag
	- \bullet Kaldor (1940): S-shaped investment function; the profit principle
	- Goodwin (1951): S-shaped investment function; the acceleration principle
- The roles of nonlinearities are highlightened in demonstrating emergence of periodic and aperiodic behavior while the roles of the delay are made implicit.
	- chaos theory in discrete-time models

- "Delay" and "Nonlinearity" were once thought to be the two main ingredients for endogenous cyclic behavior
	- Kalecki (1935): investment lag
	- Kaldor (1940) : S-shaped investment function; the profit principle
	- Goodwin (1951): S-shaped investment function; the acceleration principle
- The roles of nonlinearities are highlightened in demonstrating emergence of periodic and aperiodic behavior while the roles of the delay are made implicit.
	- chaos theory in discrete-time models
- We reconsider the **lost roles of delays** for the emergence of persistent fluctuations in a continuous-time Goodwinian model

Goodwin, R. "The Nonlinear Accelerator and the Persistence of Business Cycle," Econometrica, 19, 1-17, 1951.

• Output adjustment process:

 $\epsilon \dot{Y}(t) = \dot{K}(t) - (1 - \alpha)Y(t)$ $\dot{K}(t) = I(t) = \varphi(\dot{Y}(t-\delta))$ with $\varphi(0) = 0$, $\varphi'(\dot{Y}) > 0$, $\varphi''(\dot{Y}) \neq 0$

Goodwin, R. "The Nonlinear Accelerator and the Persistence of Business Cycle," Econometrica, 19, 1-17, 1951.

• Output adjustment process:

$$
\varepsilon \dot{Y}(t) = \dot{K}(t) - (1 - \alpha) Y(t)
$$

$$
\dot{K}(t) = I(t) = \varphi(\dot{Y}(t - \delta))
$$

with $\varphi(0) = 0$, $\varphi'(\dot{Y}) > 0$, $\varphi''(\dot{Y}) \neq 0$

● Dynamic equation: delay differential equation of neutral type

$$
\varepsilon \dot{Y}(t) = \varphi(\dot{Y}(t-\delta)) - (1-\alpha)Y(t)
$$

Goodwin, R. "The Nonlinear Accelerator and the Persistence of Business Cycle," Econometrica, 19, 1-17, 1951.

• Output adjustment process:

$$
\varepsilon \dot{Y}(t) = \dot{K}(t) - (1 - \alpha) Y(t)
$$

$$
\dot{K}(t) = I(t) = \varphi(\dot{Y}(t - \delta))
$$

with $\varphi(0) = 0$, $\varphi'(\dot{Y}) > 0$, $\varphi''(\dot{Y}) \neq 0$

● Dynamic equation: delay differential equation of neutral type

$$
\varepsilon \dot{Y}(t) = \varphi(\dot{Y}(t-\delta)) - (1-\alpha)Y(t)
$$

• Approximated version: second order nonlinear differential equation

$$
\varepsilon \delta \ddot{Y}(t) + \left[\varepsilon + (1-a)\delta\right] \dot{Y}(t) - \varphi(\dot{Y}(t)) + (1-\alpha)Y(t) = 0
$$

Phillips, A., "Stabilization Policy in a Closed Economy," Economic Journal, 64, 832-842, 1954

Two delay macro dynamic model

$$
C(t) = \alpha Y(t - \eta),
$$

$$
I(t) = \varphi(Y(t - \delta)),
$$

$$
Y(t) = \int_0^t \frac{1}{\varepsilon} e^{-\frac{t - \tau}{\varepsilon}} E(\tau) d\tau
$$

where $E(\tau) = C(\tau) + I(\tau)$.

4 D F

Phillips, A., "Stabilization Policy in a Closed Economy," Economic Journal, 64, 832-842, 1954

Two delay macro dynamic model

$$
C(t) = \alpha Y(t - \eta),
$$

$$
I(t) = \varphi(\dot{Y}(t - \delta)),
$$

$$
Y(t) = \int_0^t \frac{1}{\varepsilon} e^{-\frac{t - \tau}{\varepsilon}} E(\tau) d\tau
$$

where $E(\tau) = C(\tau) + I(\tau)$.

 \bullet Differentiating the last equation with t yields a differential equation with two delays

$$
\varepsilon \dot{Y}(t) = \varphi(\dot{Y}(t-\delta)) + Y(t) - \alpha Y(t-\eta) = 0
$$

• Linearly approximated version:

$$
\varepsilon \dot{Y}(t) + Y(t) - \nu \dot{Y}(t - \delta) - \alpha Y(t - \eta) = 0
$$
 with $\nu = \varphi'(0)$

4 日下

4 何 ▶

э \rightarrow \mathcal{A}

· Linearly approximated version:

$$
\varepsilon \dot{Y}(t) + Y(t) - \nu \dot{Y}(t - \delta) - \alpha Y(t - \eta) = 0 \text{ with } \nu = \varphi'(0)
$$

• Simplification

$$
\dot{Y}(t) + aY(t) - b\dot{Y}(t - \delta) - cY(t - \eta) = 0
$$

$$
a = \frac{1}{\varepsilon}, \ b = \frac{\nu}{\varepsilon} \text{ and } c = \frac{\alpha}{\varepsilon}
$$

4 0 8

• Linearly approximated version:

$$
\varepsilon \dot{Y}(t) + Y(t) - \nu \dot{Y}(t - \delta) - \alpha Y(t - \eta) = 0 \text{ with } \nu = \varphi'(0)
$$

 \bullet Simplification

$$
\dot{Y}(t) + aY(t) - b\dot{Y}(t-\delta) - cY(t-\eta) = 0
$$

$$
a=\frac{1}{\varepsilon},\ \ b=\frac{\nu}{\varepsilon}\ \text{and}\ \ c=\frac{\alpha}{\varepsilon}
$$

• The corresponding characteristic equation is

$$
\lambda + a - b\lambda e^{-\delta\lambda} - c e^{-\eta\lambda} = 0.
$$

4 D F

• Linearly approximated version:

$$
\varepsilon \dot{Y}(t) + Y(t) - \nu \dot{Y}(t - \delta) - \alpha Y(t - \eta) = 0 \text{ with } \nu = \varphi'(0)
$$

 \bullet Simplification

$$
\dot{Y}(t) + aY(t) - b\dot{Y}(t-\delta) - cY(t-\eta) = 0
$$

$$
a=\frac{1}{\varepsilon},\ \ b=\frac{\nu}{\varepsilon}\ \text{and}\ \ c=\frac{\alpha}{\varepsilon}
$$

• The corresponding characteristic equation is

$$
\lambda + a - b\lambda e^{-\delta\lambda} - c e^{-\eta\lambda} = 0.
$$

4 D F

• Assumption 1. $\delta > \eta$

Nondelay model:

$$
\varepsilon \dot{Y}(t) - \varphi(\dot{Y}(t)) + (1 - \alpha)Y(t) = 0
$$

K ロ ▶ K 御 ▶ K 舌

 \rightarrow \rightarrow э

Nondelay model:

$$
\varepsilon \dot{Y}(t) - \varphi(\dot{Y}(t)) + (1 - \alpha)Y(t) = 0
$$

• Linear version

$$
\varepsilon \dot{Y}(t) - \nu \dot{Y}(t) + (1 - \alpha) Y(t) = 0
$$

4 日下

→ 何 ▶ \mathcal{A} э. \rightarrow × в

Nondelay model:

$$
\varepsilon \dot{Y}(t) - \varphi(\dot{Y}(t)) + (1 - \alpha)Y(t) = 0
$$

• Linear version

$$
\varepsilon \dot{Y}(t) - \nu \dot{Y}(t) + (1 - \alpha) Y(t) = 0
$$

Characteristic equation

$$
(\epsilon-\nu)\lambda+(1-\alpha)=0\Longrightarrow \left\{\begin{array}{l} \epsilon>\nu\text{: locally stable} \\ \\ \epsilon<\nu\text{: locally unstable} \end{array}\right.
$$

4 D F ∢母 \rightarrow

Nondelay model:

$$
\varepsilon \dot{Y}(t) - \varphi(\dot{Y}(t)) + (1 - \alpha)Y(t) = 0
$$

a Linear version

$$
\varepsilon \dot{Y}(t) - \nu \dot{Y}(t) + (1 - \alpha) Y(t) = 0
$$

Characteristic equation

$$
(\epsilon - \nu)\lambda + (1 - \alpha) = 0 \Longrightarrow \left\{ \begin{array}{l} \epsilon > \nu: \text{ locally stable} \\ \\ \epsilon < \nu: \text{ locally unstable} \end{array} \right.
$$

Assumption 2. *ε* > *ν*

4 0 8

 \rightarrow

Theorem

Given Assumption 2, the zero solution of one-delay differential equation

$$
\lambda + a - b\lambda e^{-\delta\lambda} - c e^{-\eta\lambda} = 0
$$

with $\delta = 0$, $\eta = 0$ or $\delta = \eta$ is locally asymptotically stable for all $\eta > 0$, $\delta > 0$ or $\delta = \eta > 0$.

$$
(1-b)\lambda + a - ce^{-\eta\lambda} = 0 \text{ if } \delta = 0 \text{ and } \eta > 0,
$$

$$
\lambda + a - c - b\lambda e^{-\delta \lambda} = 0 \text{ if } \delta > 0 \text{ and } \eta = 0,
$$

$$
\lambda + a - (b\lambda + c)e^{-\delta\lambda} = 0 \text{ if } \delta = \eta > 0.
$$

∢ □ ▶ ⊰ _□ ▶ ⊰ ∃ ▶ ⊰

Characteristic equation with two delays

$$
\lambda + a - b\lambda e^{-\delta\lambda} - ce^{-\eta\lambda} = 0
$$

$$
1 + a_1(\lambda)e^{-\delta\lambda} + a_2(\lambda)e^{-\eta\lambda} = 0
$$

$$
a_1(\lambda) = -\frac{b\lambda}{\lambda + a} \text{ and } a_2(\lambda) = -\frac{c}{\lambda + a}
$$

э

4 ロ ▶ 4 母 ▶ 4

э \rightarrow ×

Characteristic equation with two delays

$$
\lambda + a - b\lambda e^{-\delta\lambda} - ce^{-\eta\lambda} = 0
$$

$$
1 + a_1(\lambda)e^{-\delta\lambda} + a_2(\lambda)e^{-\eta\lambda} = 0
$$

$$
a_1(\lambda) = -\frac{b\lambda}{\lambda + a} \text{ and } a_2(\lambda) = -\frac{c}{\lambda + a}
$$

• Suppose that $\lambda = i\omega$, $\omega > 0$

$$
a_1(i\omega) = -\frac{b\omega^2}{a^2 + \omega^2} - i\frac{ab\omega}{a^2 + \omega^2}
$$

$$
a_2(i\omega) = -\frac{ac}{a^2 + \omega^2} + i\frac{c\omega}{a^2 + \omega^2}
$$

 QQ

• The absolute values

$$
|a_1(i\omega)| = \sqrt{\left(\frac{b\omega^2}{a^2 + \omega^2}\right)^2 + \left(\frac{ab\omega}{a^2 + \omega^2}\right)^2} = \frac{b\omega}{\sqrt{a^2 + \omega^2}}
$$

$$
|a_2(i\omega)| = \sqrt{\left(\frac{ac}{a^2 + \omega^2}\right)^2 + \left(\frac{c\omega}{a^2 + \omega^2}\right)^2} = \frac{c\omega}{\sqrt{a^2 + \omega^2}}
$$

B

э

K ロ ⊁ K 倒 ≯ K ミ ≯ K

• The absolute values

$$
|a_1(i\omega)| = \sqrt{\left(\frac{b\omega^2}{a^2 + \omega^2}\right)^2 + \left(\frac{ab\omega}{a^2 + \omega^2}\right)^2} = \frac{b\omega}{\sqrt{a^2 + \omega^2}}
$$

$$
|a_2(i\omega)| = \sqrt{\left(\frac{ac}{a^2 + \omega^2}\right)^2 + \left(\frac{c\omega}{a^2 + \omega^2}\right)^2} = \frac{c\omega}{\sqrt{a^2 + \omega^2}}
$$

• The arguments

$$
\arg [a_1(i\omega)] = \tan^{-1} \left(\frac{a}{\omega}\right) + \pi
$$

$$
\arg [a_2(i\omega)] = \pi - \tan^{-1} \left(\frac{\omega}{a}\right)
$$

4 0 8

→ 伊 ▶

- 4 田 8

$$
\bullet \ 1 + a_1(i\omega)e^{-\delta\lambda} + a_2(i\omega)e^{-\eta\lambda} = 0
$$

 $1 \leq |a_1(i\omega)| + |a_2(i\omega)|$, $|a_1(i\omega)| \leq 1 + |a_2(i\omega)|$, $|a_2(i\omega)| \leq 1 + |a_1(i\omega)|$.

 \leftarrow

• These three conditions to the following two conditions,

$$
f(\omega) = (1 - b^2)\omega^2 - 2bc\omega + a^2 - c^2 \le 0
$$

and

$$
g(\omega)=(1-b^2)\omega^2+2bc\omega+a^2-c^2\geq 0
$$

where $f(\omega)$ and $g(\omega)$ have the same discriminant,

$$
D=4[c^2-a^2(1-b^2)].
$$

4 0 8

• These three conditions to the following two conditions,

$$
f(\omega) = (1 - b^2)\omega^2 - 2bc\omega + a^2 - c^2 \le 0
$$

and

$$
g(\omega)=(1-b^2)\omega^2+2bc\omega+a^2-c^2\geq 0
$$

where $f(\omega)$ and $g(\omega)$ have the same discriminant,

$$
D=4[c^2-a^2(1-b^2)].
$$

• Let ω_1 and ω_2 be solutions of $f(\omega) = 0$ and let ω_3 and ω_4 be solutions of $g(\omega) = 0$.

つひひ

• These three conditions to the following two conditions,

$$
f(\omega) = (1 - b^2)\omega^2 - 2bc\omega + a^2 - c^2 \le 0
$$

and

$$
g(\omega)=(1-b^2)\omega^2+2bc\omega+a^2-c^2\geq 0
$$

where $f(\omega)$ and $g(\omega)$ have the same discriminant,

$$
D=4[c^2-a^2(1-b^2)].
$$

- Let ω_1 and ω_2 be solutions of $f(\omega) = 0$ and let ω_3 and ω_4 be solutions of $g(\omega) = 0$.
- \bullet It is confirmed that the two conditions, $f(\omega) \leq 0$ and $g(\omega) \geq 0$, are satisfied when ω is in interval $[\omega_3, \omega_4]$.

つへへ

• The internal angels, θ_1 and θ_2 , of the triangle can be calculated by the law of cosine,

$$
\theta_1(\omega) = \cos^{-1}\left(\frac{a^2 + (1 + b^2)\omega^2 - c^2}{2b\omega\sqrt{a^2 + \omega^2}}\right)
$$

$$
\theta_2(\omega) = \cos^{-1}\left(\frac{a^2 + (1 - b^2)\omega^2 + c^2}{2c\sqrt{a^2 + \omega^2}}\right)
$$

4 D F

• The internal angels, θ_1 and θ_2 , of the triangle can be calculated by the law of cosine,

$$
\theta_1(\omega) = \cos^{-1}\left(\frac{a^2 + (1 + b^2)\omega^2 - c^2}{2b\omega\sqrt{a^2 + \omega^2}}\right)
$$

$$
\theta_2(\omega) = \cos^{-1}\left(\frac{a^2 + (1 - b^2)\omega^2 + c^2}{2c\sqrt{a^2 + \omega^2}}\right)
$$

Solving the following two equations for *δ* and *η*

$$
\{ \arg \left[a_1(i\omega)e^{-i\delta\omega} \right] + 2m\pi \} \pm \theta_1(\omega) = \pi
$$

$$
\{ \arg \left[a_2(i\omega)e^{-i\eta\omega} \right] + 2n\pi \} \mp \theta_2(\omega) = \pi
$$

4 D F

• Solutions are

$$
\delta = \frac{1}{\omega} \left[\tan^{-1} \left(\frac{a}{\omega} \right) + \pi + (2m - 1)\pi \pm \theta_1(\omega) \right]
$$

and

$$
\eta = \frac{1}{\omega} \left[-\tan^{-1} \left(\frac{\omega}{a} \right) + \pi + (2n - 1)\pi \mp \theta_2(\omega) \right]
$$

重

 298

重

メロト メ都 トメ ヨ トメ

• Solutions are

$$
\delta = \frac{1}{\omega} \left[\tan^{-1} \left(\frac{a}{\omega} \right) + \pi + (2m - 1)\pi \pm \theta_1(\omega) \right]
$$

and

$$
\eta = \frac{1}{\omega} \left[-\tan^{-1} \left(\frac{\omega}{a} \right) + \pi + (2n - 1)\pi \mp \theta_2(\omega) \right]
$$

• For any ω satisfying $f(\omega) \leq 0$ and $g(\omega) \geq 0$, we can find the pairs of (δ, η) constructing stability crossing curves for $\omega_3 \leq \omega \leq \omega_4$.

$$
C_1(m,n) = \{\delta_1(\omega,m), \eta_1(\omega,n)\}
$$

where

$$
\delta_1(\omega, m) = \frac{1}{\omega} \left[\tan^{-1} \left(\frac{a}{\omega} \right) + 2m\pi + \theta_1(\omega) \right]
$$

$$
\eta_1(\omega, n) = \frac{1}{\omega} \left[-\tan^{-1} \left(\frac{\omega}{a} \right) + 2n\pi - \theta_2(\omega) \right]
$$

• For any ω satisfying $f(\omega) \leq 0$ and $g(\omega) \geq 0$, we can find the pairs of (δ, η) constructing stability crossing curves for $\omega_3 < \omega < \omega_4$ and

$$
C_2(m,n) = \{\delta_2(\omega,m), \eta_2(\omega,n)\}
$$

where

$$
\delta_2(\omega, m) = \frac{1}{\omega} \left[\tan^{-1} \left(\frac{a}{\omega} \right) + 2m\pi - \theta_1(\omega) \right]
$$

$$
\eta_2(\omega, n) = \frac{1}{\omega} \left[-\tan^{-1} \left(\frac{\omega}{a} \right) + 2n\pi + \theta_2(\omega) \right]
$$

with $m, n = 0, 1, 2, ...$ Notice that m and n are selected to be nonnegative integers so that $\delta > 0$ and $\eta > 0$.

つひひ

 \Box

 \Box

• Stability switches with $\eta = 2$, $m = 0, 1, ..., 8$ and $n = 1, 2, 3, 4$

 \leftarrow

• Stability switching curves

∢ ⊡ - 6

1 The local stability condition of the equilibrium point of the non-delay model is shown.

4 D F

 QQ

- **1** The local stability condition of the equilibrium point of the non-delay model is shown.
- 2 Asymptotical stability of the three different one-delay models is shown

4 D F

- **1** The local stability condition of the equilibrium point of the non-delay model is shown.
- 2 Asymptotical stability of the three different one-delay models is shown
- **3** In the two-delay case, the stability switching curves are obtained on which stability is lost.

- **1** The local stability condition of the equilibrium point of the non-delay model is shown.
- 2 Asymptotical stability of the three different one-delay models is shown
- In the two-delay case, the stability switching curves are obtained on which stability is lost.
- ⁴ stability loss and gain repeatedly occurs.