# Nonlinear Multiplier-Accelerator Model with Investment and Consumption Delays

#### Akio Matsumoto and Ferenc Szidearovszky

Chuo University (Japan) and University of Pécs (Hungary)

#### Workshop of MDEF 2014 in Urbino

19 September 2014



・ロト ・聞 ト ・ ヨト ・ ヨト

Introduction

Macro Dynamic Model

<ロト </p>

- Introduction
- Macro Dynamic Model
- One-Delay Model

- **(() ) ) ( () ) ) () )** 

- Introduction
- Macro Dynamic Model 2
- One-Delay Model
- Two-Delay Model

3

∃ ▶ ∢

< 一型

- Introduction
- Macro Dynamic Model
- One-Delay Model
- Two-Delay Model
- Oncluding Remarks

э

• "Delay" and "Nonlinearity" were once thought to be the two main ingredients for endogenous cyclic behavior

- "Delay" and "Nonlinearity" were once thought to be the two main ingredients for endogenous cyclic behavior
  - Kalecki (1935): investment lag

- "Delay" and "Nonlinearity" were once thought to be the two main ingredients for endogenous cyclic behavior
  - Kalecki (1935): investment lag
  - Kaldor (1940): S-shaped investment function; the profit principle

- "Delay" and "Nonlinearity" were once thought to be the two main ingredients for endogenous cyclic behavior
  - Kalecki (1935): investment lag
  - Kaldor (1940): S-shaped investment function; the profit principle
  - Goodwin (1951): S-shaped investment function; the acceleration principle

- "Delay" and "Nonlinearity" were once thought to be the two main ingredients for endogenous cyclic behavior
  - Kalecki (1935): investment lag
  - Kaldor (1940): S-shaped investment function; the profit principle
  - Goodwin (1951): S-shaped investment function; the acceleration principle
- The roles of nonlinearities are highlightened in demonstrating emergence of periodic and aperiodic behavior while the roles of the delay are made implicit.

- "Delay" and "Nonlinearity" were once thought to be the two main ingredients for endogenous cyclic behavior
  - Kalecki (1935): investment lag
  - Kaldor (1940): S-shaped investment function; the profit principle
  - Goodwin (1951): S-shaped investment function; the acceleration principle
- The roles of nonlinearities are highlightened in demonstrating emergence of periodic and aperiodic behavior while the roles of the delay are made implicit.
  - chaos theory in discrete-time models

- "Delay" and "Nonlinearity" were once thought to be the two main ingredients for endogenous cyclic behavior
  - Kalecki (1935): investment lag
  - Kaldor (1940): S-shaped investment function; the profit principle
  - Goodwin (1951): S-shaped investment function; the acceleration principle
- The roles of nonlinearities are highlightened in demonstrating emergence of periodic and aperiodic behavior while the roles of the delay are made implicit.
  - chaos theory in discrete-time models
- We reconsider the **lost roles of delays** for the emergence of persistent fluctuations in a continuous-time Goodwinian model

Goodwin, R. "The Nonlinear Accelerator and the Persistence of Business Cycle," *Econometrica*, 19, 1-17, 1951.

• Output adjustment process:

$$\begin{split} \varepsilon \dot{Y}(t) &= \dot{K}(t) - (1 - \alpha) Y(t) \\ \dot{K}(t) &= I(t) = \varphi(\dot{Y}(t - \delta)) \\ \text{with } \varphi(0) &= 0, \ \varphi'(\dot{Y}) > 0, \ \varphi''(\dot{Y}) \neq 0 \end{split}$$

Goodwin, R. "The Nonlinear Accelerator and the Persistence of Business Cycle," *Econometrica*, 19, 1-17, 1951.

• Output adjustment process:

$$\varepsilon \dot{Y}(t) = \dot{K}(t) - (1 - \alpha)Y(t)$$
$$\dot{K}(t) = I(t) = \varphi(\dot{Y}(t - \delta))$$
with  $\varphi(0) = 0$ ,  $\varphi'(\dot{Y}) > 0$ ,  $\varphi''(\dot{Y}) \neq 0$ 

• Dynamic equation: delay differential equation of neutral type

$$\varepsilon \dot{Y}(t) = \varphi(\dot{Y}(t-\delta)) - (1-\alpha)Y(t)$$

Goodwin, R. "The Nonlinear Accelerator and the Persistence of Business Cycle," *Econometrica*, 19, 1-17, 1951.

• Output adjustment process:

$$\begin{aligned} \varepsilon \dot{Y}(t) &= \dot{K}(t) - (1 - \alpha) Y(t) \\ \dot{K}(t) &= I(t) = \varphi(\dot{Y}(t - \delta)) \\ \text{with } \varphi(0) &= 0, \ \varphi'(\dot{Y}) > 0, \ \varphi''(\dot{Y}) \neq 0 \end{aligned}$$

• Dynamic equation: delay differential equation of neutral type

$$\varepsilon \dot{Y}(t) = \varphi(\dot{Y}(t-\delta)) - (1-\alpha)Y(t)$$

• Approximated version: second order nonlinear differential equation

$$\varepsilon\delta\ddot{Y}(t) + [\varepsilon + (1-a)\delta]\dot{Y}(t) - \varphi(\dot{Y}(t)) + (1-\alpha)Y(t) = 0$$

Phillips, A., "Stabilization Policy in a Closed Economy," *Economic Journal*, 64, 832-842, 1954

• Two delay macro dynamic model

$$C(t) = \alpha Y(t - \eta),$$

$$I(t) = \varphi(\dot{Y}(t - \delta)),$$

$$Y(t) = \int_0^t \frac{1}{\varepsilon} e^{-\frac{t - \tau}{\varepsilon}} E(\tau) d\tau$$

$$E(\tau) = C(\tau) + I(\tau)$$

where  $E(\tau) = C(\tau) + I(\tau)$ .

Phillips, A., "Stabilization Policy in a Closed Economy," *Economic Journal*, 64, 832-842, 1954

• Two delay macro dynamic model

$$C(t) = \alpha Y(t - \eta),$$
  

$$I(t) = \varphi(\dot{Y}(t - \delta)),$$
  

$$Y(t) = \int_0^t \frac{1}{\varepsilon} e^{-\frac{t - \tau}{\varepsilon}} E(\tau) d\tau$$

where  $E(\tau) = C(\tau) + I(\tau)$ .

• Differentiating the last equation with t yields a differential equation with two delays

$$\varepsilon \dot{Y}(t) = \varphi(\dot{Y}(t-\delta)) + Y(t) - \alpha Y(t-\eta) = 0$$

$$arepsilon\dot{Y}(t)+Y(t)-
u\dot{Y}(t-\delta)-lpha Y(t-\eta)=$$
0 with  $u=arphi'(0)$ 

-

$$arepsilon\dot{Y}(t)+Y(t)-
u\dot{Y}(t-\delta)-lpha Y(t-\eta)=0$$
 with  $u=arphi'(0)$ 

• Simplification

$$\dot{Y}(t) + aY(t) - b\dot{Y}(t-\delta) - cY(t-\eta) = 0$$
  
 $a = rac{1}{arepsilon}, \ b = rac{
u}{arepsilon} ext{ and } c = rac{lpha}{arepsilon}$ 

< /₽ > < E > <

$$arepsilon\dot{Y}(t)+Y(t)-
u\dot{Y}(t-\delta)-lpha Y(t-\eta)=0$$
 with  $u=arphi'(0)$ 

Simplification

$$\dot{Y}(t) + aY(t) - b\dot{Y}(t-\delta) - cY(t-\eta) = 0$$

$$a=rac{1}{arepsilon},\,\,b=rac{
u}{arepsilon}$$
 and  $c=rac{lpha}{arepsilon}$ 

• The corresponding characteristic equation is

$$\lambda + \mathbf{a} - \mathbf{b}\lambda \mathbf{e}^{-\delta\lambda} - \mathbf{c}\mathbf{e}^{-\eta\lambda} = \mathbf{0}.$$

$$arepsilon\dot{Y}(t)+Y(t)-
u\dot{Y}(t-\delta)-lpha Y(t-\eta)=$$
0 with  $u=arphi'(0)$ 

Simplification

$$\dot{Y}(t) + aY(t) - b\dot{Y}(t-\delta) - cY(t-\eta) = 0$$

$$a=rac{1}{arepsilon},\,\,b=rac{
u}{arepsilon}$$
 and  $c=rac{lpha}{arepsilon}$ 

• The corresponding characteristic equation is

$$\lambda + \mathbf{a} - \mathbf{b}\lambda \mathbf{e}^{-\delta\lambda} - \mathbf{c}\mathbf{e}^{-\eta\lambda} = \mathbf{0}.$$

• Assumption 1.  $\delta > \eta$ 

• Nondelay model:

$$\varepsilon \dot{Y}(t) - \varphi(\dot{Y}(t)) + (1-\alpha)Y(t) = 0$$

-

• • • • • • • • • • • •

• Nondelay model:

$$\varepsilon \dot{Y}(t) - \varphi(\dot{Y}(t)) + (1-\alpha)Y(t) = 0$$

• Linear version

$$\varepsilon \dot{Y}(t) - \nu \dot{Y}(t) + (1 - \alpha) Y(t) = 0$$

-

< /₽ > < E > <

• Nondelay model:

$$\varepsilon \dot{Y}(t) - \varphi(\dot{Y}(t)) + (1-\alpha)Y(t) = 0$$

• Linear version

$$\varepsilon \dot{Y}(t) - \nu \dot{Y}(t) + (1 - \alpha) Y(t) = 0$$

• Characteristic equation

$$(\varepsilon - \nu)\lambda + (1 - \alpha) = 0 \Longrightarrow \begin{cases} \varepsilon > \nu : \text{ locally stable} \\ \varepsilon < \nu : \text{ locally unstable} \end{cases}$$

• Nondelay model:

$$\varepsilon \dot{Y}(t) - \varphi(\dot{Y}(t)) + (1-\alpha)Y(t) = 0$$

Linear version

$$\varepsilon \dot{Y}(t) - \nu \dot{Y}(t) + (1 - \alpha) Y(t) = 0$$

• Characteristic equation

$$(\varepsilon - \nu)\lambda + (1 - \alpha) = 0 \Longrightarrow \begin{cases} \varepsilon > \nu : \text{ locally stable} \\ \varepsilon < \nu : \text{ locally unstable} \end{cases}$$

• Assumption 2.  $\varepsilon > \nu$ 

#### Theorem

Given Assumption 2, the zero solution of one-delay differential equation

$$\lambda + a - b\lambda e^{-\delta\lambda} - c e^{-\eta\lambda} = 0$$

with  $\delta = 0$ ,  $\eta = 0$  or  $\delta = \eta$  is locally asymptotically stable for all  $\eta > 0$ ,  $\delta > 0$  or  $\delta = \eta > 0$ .

$$(1-b)\lambda+a-ce^{-\eta\lambda}=0$$
 if  $\delta=0$  and  $\eta>0$ ,

$$\lambda + a - c - b\lambda e^{-\delta\lambda} = 0$$
 if  $\delta > 0$  and  $\eta = 0$ ,

$$\lambda + a - (b\lambda + c)e^{-\delta\lambda} = 0$$
 if  $\delta = \eta > 0$ .

・ロン ・聞と ・ ほと ・ ほと

• Characteristic equation with two delays

$$\lambda + a - b\lambda e^{-\delta\lambda} - ce^{-\eta\lambda} = 0$$
  
 $1 + a_1(\lambda)e^{-\delta\lambda} + a_2(\lambda)e^{-\eta\lambda} = 0$   
 $a_1(\lambda) = -\frac{b\lambda}{\lambda + a}$  and  $a_2(\lambda) = -\frac{c}{\lambda + a}$ 

Image: A math a math

• Characteristic equation with two delays

$$\lambda + a - b\lambda e^{-\delta\lambda} - ce^{-\eta\lambda} = 0$$
  
 $1 + a_1(\lambda)e^{-\delta\lambda} + a_2(\lambda)e^{-\eta\lambda} = 0$   
 $a_1(\lambda) = -\frac{b\lambda}{\lambda + a}$  and  $a_2(\lambda) = -\frac{c}{\lambda + a}$ 

• Suppose that  $\lambda = i\omega$ ,  $\omega > 0$ 

$$a_{1}(i\omega) = -\frac{b\omega^{2}}{a^{2} + \omega^{2}} - i\frac{ab\omega}{a^{2} + \omega^{2}}$$
$$a_{2}(i\omega) = -\frac{ac}{a^{2} + \omega^{2}} + i\frac{c\omega}{a^{2} + \omega^{2}}$$

3 1 4

#### • The absolute values

$$|\mathbf{a}_{1}(i\omega)| = \sqrt{\left(\frac{b\omega^{2}}{\mathbf{a}^{2} + \omega^{2}}\right)^{2} + \left(\frac{\mathbf{a}b\omega}{\mathbf{a}^{2} + \omega^{2}}\right)^{2}} = \frac{b\omega}{\sqrt{\mathbf{a}^{2} + \omega^{2}}}$$

$$|\mathbf{a}_{2}(i\omega)| = \sqrt{\left(\frac{\mathbf{a}\mathbf{c}}{\mathbf{a}^{2} + \omega^{2}}\right)^{2} + \left(\frac{\mathbf{c}\omega}{\mathbf{a}^{2} + \omega^{2}}\right)^{2}} = \frac{\mathbf{c}\omega}{\sqrt{\mathbf{a}^{2} + \omega^{2}}}$$

э

#### • The absolute values

$$|\mathbf{a}_{1}(i\omega)| = \sqrt{\left(\frac{b\omega^{2}}{\mathbf{a}^{2} + \omega^{2}}\right)^{2} + \left(\frac{\mathbf{a}b\omega}{\mathbf{a}^{2} + \omega^{2}}\right)^{2}} = \frac{b\omega}{\sqrt{\mathbf{a}^{2} + \omega^{2}}}$$

$$|\mathbf{a}_{2}(i\omega)| = \sqrt{\left(\frac{\mathbf{a}c}{\mathbf{a}^{2} + \omega^{2}}\right)^{2} + \left(\frac{c\omega}{\mathbf{a}^{2} + \omega^{2}}\right)^{2}} = \frac{c\omega}{\sqrt{\mathbf{a}^{2} + \omega^{2}}}$$

• The arguments

$$\arg \left[ \mathbf{a}_1(i\omega) \right] = \tan^{-1} \left( \frac{\mathbf{a}}{\omega} \right) + \pi$$
$$\arg \left[ \mathbf{a}_2(i\omega) \right] = \pi - \tan^{-1} \left( \frac{\omega}{\mathbf{a}} \right)$$

• 
$$1 + a_1(i\omega)e^{-\delta\lambda} + a_2(i\omega)e^{-\eta\lambda} = 0$$



 $1 \le |a_1(i\omega)| + |a_2(i\omega)|,$  $|a_1(i\omega)| \le 1 + |a_2(i\omega)|,$  $|a_2(i\omega)| \le 1 + |a_1(i\omega)|.$ 

• These three conditions to the following two conditions,

$$f(\omega) = (1-b^2)\omega^2 - 2bc\omega + a^2 - c^2 \leq 0$$

and

$$g(\omega) = (1-b^2)\omega^2 + 2bc\omega + a^2 - c^2 \ge 0$$

where  $f(\omega)$  and  $g(\omega)$  have the same discriminant,

$$D = 4[c^2 - a^2(1 - b^2)].$$

3 ×

• These three conditions to the following two conditions,

$$f(\omega) = (1-b^2)\omega^2 - 2bc\omega + a^2 - c^2 \leq 0$$

and

$$g(\omega) = (1-b^2)\omega^2 + 2bc\omega + a^2 - c^2 \ge 0$$

where  $f(\omega)$  and  $g(\omega)$  have the same discriminant,

$$D = 4[c^2 - a^2(1 - b^2)].$$

• Let  $\omega_1$  and  $\omega_2$  be solutions of  $f(\omega) = 0$  and let  $\omega_3$  and  $\omega_4$  be solutions of  $g(\omega) = 0$ .

• These three conditions to the following two conditions,

$$f(\omega)=(1-b^2)\omega^2-2bc\omega+a^2-c^2\leq 0$$

and

$$g(\omega) = (1-b^2)\omega^2 + 2bc\omega + a^2 - c^2 \ge 0$$

where  $f(\omega)$  and  $g(\omega)$  have the same discriminant,

$$D = 4[c^2 - a^2(1 - b^2)].$$

- Let ω<sub>1</sub> and ω<sub>2</sub> be solutions of f(ω) = 0 and let ω<sub>3</sub> and ω<sub>4</sub> be solutions of g(ω) = 0.
- It is confirmed that the two conditions,  $f(\omega) \leq 0$  and  $g(\omega) \geq 0$ , are satisfied when  $\omega$  is in interval  $[\omega_3, \omega_4]$ .

• The internal angels,  $\theta_1$  and  $\theta_2$ , of the triangle can be calculated by the law of cosine,

$$\begin{split} \theta_1(\omega) &= \cos^{-1}\left(\frac{a^2 + (1+b^2)\omega^2 - c^2}{2b\omega\sqrt{a^2 + \omega^2}}\right) \\ \theta_2(\omega) &= \cos^{-1}\left(\frac{a^2 + (1-b^2)\omega^2 + c^2}{2c\sqrt{a^2 + \omega^2}}\right) \end{split}$$

• The internal angels,  $\theta_1$  and  $\theta_2$ , of the triangle can be calculated by the law of cosine,

$$\begin{split} \theta_1(\omega) &= \cos^{-1}\left(\frac{a^2 + (1+b^2)\omega^2 - c^2}{2b\omega\sqrt{a^2 + \omega^2}}\right) \\ \theta_2(\omega) &= \cos^{-1}\left(\frac{a^2 + (1-b^2)\omega^2 + c^2}{2c\sqrt{a^2 + \omega^2}}\right) \end{split}$$

• Solving the following two equations for  $\delta$  and  $\eta$ 

$$\left\{\arg\left[a_{1}(i\omega)e^{-i\delta\omega}\right]+2m\pi\right\}\pm\theta_{1}(\omega)=\pi$$
$$\left\{\arg\left[a_{2}(i\omega)e^{-i\eta\omega}\right]+2n\pi\right\}\mp\theta_{2}(\omega)=\pi$$

Solutions are

$$\delta = \frac{1}{\omega} \left[ \tan^{-1} \left( \frac{a}{\omega} \right) + \pi + (2m - 1)\pi \pm \theta_1(\omega) \right]$$

and

$$\eta = \frac{1}{\omega} \left[ -\tan^{-1} \left( \frac{\omega}{a} \right) + \pi + (2n-1)\pi \mp \theta_2(\omega) \right]$$

3

・ロト ・ 日 ト ・ 田 ト ・

Solutions are

$$\delta = \frac{1}{\omega} \left[ \tan^{-1} \left( \frac{a}{\omega} \right) + \pi + (2m - 1)\pi \pm \theta_1(\omega) \right]$$

and

$$\eta = \frac{1}{\omega} \left[ -\tan^{-1} \left( \frac{\omega}{a} \right) + \pi + (2n-1)\pi \mp \theta_2(\omega) \right]$$

For any ω satisfying f(ω) ≤ 0 and g(ω) ≥ 0, we can find the pairs of (δ, η) constructing stability crossing curves for ω<sub>3</sub> ≤ ω ≤ ω<sub>4</sub>.

$$C_1(m, n) = \{\delta_1(\omega, m), \eta_1(\omega, n)\}$$

where

$$\delta_{1}(\omega, m) = \frac{1}{\omega} \left[ \tan^{-1} \left( \frac{a}{\omega} \right) + 2m\pi + \theta_{1}(\omega) \right]$$
$$\eta_{1}(\omega, n) = \frac{1}{\omega} \left[ -\tan^{-1} \left( \frac{\omega}{a} \right) + 2n\pi - \theta_{2}(\omega) \right]$$

For any ω satisfying f(ω) ≤ 0 and g(ω) ≥ 0, we can find the pairs of (δ, η) constructing stability crossing curves for ω<sub>3</sub> ≤ ω ≤ ω<sub>4</sub>.and

$$C_2(m, n) = \{\delta_2(\omega, m), \eta_2(\omega, n)\}$$

where

$$\delta_{2}(\omega, m) = \frac{1}{\omega} \left[ \tan^{-1} \left( \frac{a}{\omega} \right) + 2m\pi - \theta_{1}(\omega) \right]$$
$$\eta_{2}(\omega, n) = \frac{1}{\omega} \left[ -\tan^{-1} \left( \frac{\omega}{a} \right) + 2n\pi + \theta_{2}(\omega) \right]$$

with m, n = 0, 1, 2, ... Notice that m and n are selected to be nonnegative integers so that  $\delta > 0$  and  $\eta > 0$ .



19/09/14 16 / 20





19/09/14 17 / 2

• Stability switches with  $\eta = 2$ , m = 0, 1, ..., 8 and n = 1, 2, 3, 4



• Stability switching curves



The local stability condition of the equilibrium point of the non-delay model is shown.

- The local stability condition of the equilibrium point of the non-delay model is shown.
- Asymptotical stability of the three different one-delay models is shown

- The local stability condition of the equilibrium point of the non-delay model is shown.
- Asymptotical stability of the three different one-delay models is shown
- In the two-delay case, the stability switching curves are obtained on which stability is lost.

- The local stability condition of the equilibrium point of the non-delay model is shown.
- Asymptotical stability of the three different one-delay models is shown
- In the two-delay case, the stability switching curves are obtained on which stability is lost.
- stability loss and gain repeatedly occurs.