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Classical oligopoly analysis has provided several insights

nevertheless some aspects seem to be unrealistic.
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Given the persistent economic scenario we assume the oligopolists
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The Model with Contingent

Workforce

Matsumoto, Merlone, Szidarovszky (2014) Oligopolies and Contingent Workforce November, 7th 2013 6 / 44



Contingent Workforce

Main features

N firms industry

identical product

xk firm k output

X =
∑N

k=1 xk

inverse demand function: p (X ) = A − BX

cost function: Ck (xk ) = ck + dkxk

The output adjustment cost at time period t

C̄k (xk , xk (t − 1)) =

{

0 if xk ≤ xk (t − 1)
γk (xk − xk (t − 1)) otherwise.

γk > 0,
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Contingent Workforce

The profit of firm k at time period t

Πk =







xk (A−Bxk−BXk )−(ck+dk xk ) if xk≤xk (t−1)

xk (A−Bxk−BXk )−(ck+dk xk )−γk (xk−xk (t−1)) otherwise,

where Xk =
∑

l 6=k xl is the output of the rest of the industry.

Some assumptions

A > dk

Lk maximum possible output level for firm k

0 < xk (t − 1) < Lk
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The possible shapes of the profit functions

If ∂Πk/∂xk ≤ 0 at xk = 0replacements

Lkxk (t − 1)

(i)
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The possible shapes of the profit functions

that is, if Xk ≥ A−dk

B

Lkxk (t − 1)

(i)

then the best response of firm k is

Rk (Xk , xk (t − 1)) = 0
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The possible shapes of the profit functions

that is, if A−dk
B − 2xk (t − 1) < Xk ≤ A−dk

B

Lkxk (t − 1)

(ii)

then the best response of firm k is

Rk (Xk , xk (t − 1)) =
A − dk − BXk

2B
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The possible shapes of the profit functions

If ∂−Πk/∂xk > 0 at xk = xk (t − 1) and ∂+Πk/∂xk ≤ 0 at xk = xk (t − 1)
replacements

Lkxk (t − 1)
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The possible shapes of the profit functions

that is, if A−dk−γk

B
− 2xk (t − 1) < Xk ≤ A−dk

B
− 2xk (t − 1)

Lkxk (t − 1)

(iii)

(iii)1

then the best response of firm k is

Rk (Xk , xk (t − 1)) = xk (t − 1)
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The possible shapes of the profit functions

If ∂−Πk/∂xk > 0 at xk = xk (t − 1), ∂+Πk/∂xk > 0 at xk = xk (t − 1),
and ∂Πk/∂xk ≤ 0 at xk = Lkreplacements

Lkxk (t − 1)

(iii) (iii)12
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The possible shapes of the profit functions

That is, if A−dk−γk
B − 2Lk < Xk ≤ A−dk−γk

B − 2xk (t − 1)

Lkxk (t − 1)

(iii) (iii)12

then the best response of firm k is

Rk (Xk , xk (t − 1)) =
A − BXk − dk − γk

2B
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The possible shapes of the profit functions

If ∂−Πk/∂xk > 0 at xk = xk (t − 1), ∂+Πk/∂xk > 0 at xk = xk (t − 1),
and ∂Πk/∂xk > 0 at xk = Lkreplacements

Lkxk (t − 1)

(iii)

(iii)22
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The possible shapes of the profit functions

That is, if Xk ≤ A−dk−γk

B
− 2Lk

Lkxk (t − 1)

(iii)

(iii)22

then the best response of firm k is

Rk (Xk , xk (t − 1)) = Lk
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Best response of firm k as function of the output of the

rest of the industry

Putting together

Rk (Xk , xk (t − 1)) =

=



























Lk if Xk ≤ A−dk−γk

B − 2Lk
A−BXk−dk−γk

2B if A−dk−γk
B − 2Lk < Xk ≤ A−dk−γk

B − 2xk (t − 1)

xk (t − 1) if A−dk−γk
B − 2xk (t − 1) < Xk ≤ A−dk

B − 2xk (t − 1)
A−dk−BXk

2B if A−dk
B − 2xk (t − 1) < Xk ≤ A−dk

B

0 if A−dk
B ≤ Xk
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Best response of firm k as function of the output of the

rest of the industry

Xk

Rk (Xk , xk (t − 1))

Lk

xk (t − 1)

0
A−dk −γk

B
− 2Lk

A−dk −γk
B

− 2xk (t − 1)
A−dk −

B
− 2xk (t − 1)

A−dk
B
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Dynamic extension and steady states

Discrete time dynamics

xk (t) = xk (t − 1) + Kk



Rk





∑

l 6=k

xl (t − 1) , xk (t − 1)



− xk (t − 1)





where Kk denote the speed of adjustment of firm k , k = 1,2, . . . ,N.

As usual

Kk = 0 =⇒ constant trajectories,

Kk = 1 =⇒ best response dynamics.
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Dynamic extension and steady states

Definition

A vector x̄ = (x̄k ) is a steady state of this system if and only if for all k ,

x̄k = Rk





∑

l 6=k

x̄l , x̄k





Given special forms and conditions of the best response functions, for

each component of the steady state we have three possibilities:

(i) x̄k = 0, if
A−dk−γk

B ≤ X̄k ;

(ii) 0 < x̄k < Lk , if
A−dk−γk

B − 2x̄k ≤ X̄k ≤ A−dk
B − 2x̄k ;

(iii) x̄k = Lk , if X̄k ≤ A−dk
B − 2Lk ,

(1)

where X̄k =
∑

k 6=l x̄l .
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Best response of firm k as function of the total output

of the industry

A−dk−γk
B

− Lk
A−dk−γk

B
A−dk

B
− Lk

A−dk
B

x̄k = Lk

where

X̄ on the horizontal axis with domain
[

0,
∑N

l=1 Ll

]

,

x̄k on the vertical axis,

the orizontal line is x̄k = Lk .
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Steady states

For each value of X̄ ,

x̄k is an interval
[

mk

(

X̄
)

,Mk

(

X̄
)]

eventually 0 or Lk

functions mk

(

X̄
)

and Mk

(

X̄
)

are nonincreasing and continuous

Define next

m
(

X̄
)

=
∑N

k=1 mk

(

X̄
)

M
(

X̄
)

=
∑N

k=1 Mk

(

X̄
)

We have

0 ≤ m (0) ,M (0) and m (L) ,M (L) ≤ L =
N
∑

k=1

Lk

Therefore there are unique values X̄ (1) and X̄ (2) from interval [0,L]
such that m

(

X̄ (1)
)

= X̄ (1) and M
(

X̄ (2)
)

= X̄ (2).
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Steady states

The set of all steady states can be described as follows. Let X̄ be an

arbitrary value from interval
[

X̄ (1), X̄ (2)
]

, then the corresponding

steady state coordinates form the set

S(X̄)={(x̄1,...,x̄N)|
∑N

k=1 x̄k=X̄ ,mk(X̄)≤x̄k≤Mk(X̄),k=1,2...,N}
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Example
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Example: symmetric duopoly

A = 20, B = 1, c1 = c2 = 0, d1 = d2 = γ1 = γ2 = 1 and L1 = L2 = 10

In this case

mk(X̄)=















10 if X̄ ≤ 8

18 − X̄ if 8 ≤ X̄ ≤ 18

0 if X̄ ≥ 18

Mk(X̄)=















10 if X̄ ≤ 9

19 − X̄ if 9 ≤ X̄ ≤ 19

0 if X̄ ≥ 19

k = 1,2
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Example: symmetric duopoly

By symmetry, m
(

X̄
)

= 2m1

(

X̄
)

and M
(

X̄
)

= 2M1

(

X̄
)

X̄

20

m
(

X̄
)

M
(

X̄
)

m
(

X̄
) M

(

X̄
)

X̄ (1)X̄ (2) 18 19
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Example: symmetric duopoly

General duopoly

(i) x̄k = 0, if
A−dk−γk

B
≤ x̄l ;

(ii) 0 < x̄k < Lk , if
A−dk−γk

B
− 2x̄k ≤ x̄l ≤

A−dk
B

− 2x̄k ;

(iii) x̄k = Lk , if x̄l ≤
A−dk

B
− 2Lk

with k = 1,2 and l 6= k .

In the case of the previous example

x̄k = 0, if 18 ≤ x̄l ;
0 < x̄k < 10, if 18 − 2x̄k ≤ x̄l ≤ 19 − 2x̄k ;
x̄k = 10, if x̄l ≤ −1
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Set of steady states for Example 1

It can be proved that all the steady states are internal

x1

x2

9 9.5

9
9.5

18 − 2x̄1 19 − 2x̄1

18−x̄1

219−x̄1
2

steady states
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Asymptotic behavior
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Asymptotic behavior

Nonempty simplex with usually infinitely many points −→ there is no

reason to examine analytically local or global asymptotical stability:

If x̄ is a steady state and the initial state of the system is selected in its

neighborhood as another steady state, then the trajectory will stay

there for all t > 0, so it does not converge back to x̄.

The asymptotic properties of the system are therefore examined by

using computer simulation.

semisymmetric case of N firms (N > 1)

p (X ) = 20 − 2X ,
cost functions:

◮ Ck (xk) = xk , for k = 1, 2, . . . ,N − 1)
◮ CN (xN) = 2xN , for N-th firm

γk = 1

Lk = 10

identical initial output quantities. for firms k = 1,2, . . . ,N − 1
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The case of N = 4

K

X1

X1

X2

K = 0.2: steady state A

K = 0.92: 2-cycle B1 − B2
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Basins with different values of parameter K

X1

X2

(a) K ≃ 0.8352941

X1

X2

(b) K ≃ 0.835295

X1

X2

(c) K ≃ 0.86

X1

X2

(d) K ≃ 1.0
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The case of N = 9

K

X1

K = 0.07: steady state A

K = 0.52: 2-cycle B1 − B2

X1

X2

K = 0.696: steady state C

K = 0.92: 2-cycle D1 − D2
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The case of N = 12

K

X1

K = 0.30, steady state: A

K = 0.40, 2-cycle: B1 − B2

K = 0.45, 4-cycle: C1 − C4

X1

X2

K = 0.66, chaotic trajectory

K = 0.72, 2-cycle: E1 − E2

K = 0.92, 4-cycle: F1 − F4
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Bifurcation diagrams with N = 13, 20

X1

X2

(a) N = 13

X1

X2

(b) N = 20
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Unemployment Insurance Systems
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Unemployment Insurance Systems

We assume that each firm k pays a certain proportion of the lost

wages to the unemployed workers:

with all the workers employed, each firm would be able to produce

the maximum amount Lk

the number of unemployed workers is proportional to the output

difference Lk − xk

the total amount of unemployed compensation is also proportional

to Lk − xk .

So the profit of firm k can be formulated as

Πk = xk (A − Bxk − BXk)− (ck + dkxk )− sk (Lk − xk ) .
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Unemployment Insurance Systems

Again semisymmetric case

firms 1,2, . . . ,N − 1

ck ≡ c, dk ≡ d , sk ≡ s, Lk ≡ L, Kk ≡ K

firm N

cN = c̄, dN = d̄ , sN = s̄, LN = L̄, KN = K̄

In this case the dynamic behavior of the firms can be described by the

two-dimensional system










x (t + 1) = x (t) + K
(

−1
2
(y (t) + (N − 2) x (t)) + A−d+s

2B
− x (t)

)

y (t + 1) = y (t) + K̄
(

−1
2 (N − 1) x (t) + A−d̄+s̄

2B − y (t)
)

by assuming interior best responses.

This model is equivalent to the well known semisymmetric linear

oligopoly model.
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Unemployment Insurance Systems

N = 2: the system is asymptotically stable

N = 3: 0 < K , K̄ ≤ 1 the system is asymptotically stable (if

K = K = 1, then the steady state is marginally stable)

N ≥ 4, the condition for asymptotical stability is

K <
16 − 8K̄

4N − K̄ (N + 1)
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Unemployment Insurance Systems

Stability region

K̄10

K

4
N

8
3N−1

since the system is linear the asymptotical stability is global
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Conclusion
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Conclusion

contingent workforce
◮ allows greater flexibility to the firms
◮ more complex dynamics for higher values of adjustment speeds
◮ may be unstable
◮ the dynamics becomes complex with increasing adjustment costs,

since the flexibility given by the contingent workforce is damped by

the searching and training costs

unemployment insurance system
◮ simpler dynamics
◮ no cycles

maybe relying too much on contingent workforce is not such a great

idea
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