Alternative stabilization policies in a Keynes-Kaldor-Tobin model of business cycles

Hiroki MURAKAMI

Graduate School of Economics, University of Tokyo

September 19, 2014

- 4 回 2 - 4 □ 2 - 4 □

1. Introduction

< ロ > < 回 > < 回 > < 回 > < 回 > :

æ

Motivation 1

- Based upon Keynes' *General Theory* (1936), Kaldor (1940) formalized a nonlinear business cycle model by introducing the *S*-shaped investment function and
- analyzed the behaviors of aggregate income and stock of capital.
- However, changes in prices (and inflation-deflation expectations) are not taken into account.

Motivation 2

- On the other hand, Tobin (1975) proposed a disequilibrium Keynesian model and
- examine the behaviors of aggregate income, the price level and inflation-deflation expectations, but
- Tobin's model is a short-run model and variations in **capital stock** are not considered.

· < @ > < 문 > < 문 > · · 문

Motivation 3

- Both Kaldor (1940) and Tobin (1975) provided useful insights for understanding economic fluctuations.
- In this sense, it is worthwhile to integrate their perspectives for more complete analysis of economic fluctuations in the Keynesian world.

・ 回 と ・ ヨ と ・ ヨ と

Purpose of presentation

- The purpose of this paper is to formalize a Keynes-Kaldor-Tobin model by unifying the basic ideas of Kaldor (1940) and Tobin (1975) and
- investigate the stabilizing effects of monetary policies.
- The quantity policy and the interest rate policy (a la Taylor's (1993) rule) are separately examined.
- The result is that the interest rate policy can be more effective than the quantity policy

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

2. Keynes-Kaldor-Tobin model

- 4 回 2 - 4 □ 2 - 4 □

Model

• The model is as follows:

$$\frac{M}{p} = L(r, y, k), \tag{2.1}$$

$$\dot{\mathbf{y}} = \alpha [\mathbf{I}(\mathbf{r}, \mathbf{y}, \mathbf{k}, \pi^{\mathbf{e}}) - \mathbf{S}(\mathbf{r}, \mathbf{y}, \mathbf{k}, \pi^{\mathbf{e}})], \qquad (2.2)$$

$$\dot{k} = I(r, y, k, \pi^e), \qquad (2.3)$$

$$\frac{\dot{p}}{p} = H(y) + \pi^{e}, \qquad (2.4)$$

$$\dot{\pi}^e = \beta (\frac{\dot{p}}{p} - \pi^e) \tag{2.5}$$

 y: aggregate income, r: rate of interest, k: capital stock, p: price level, π^e: expected rate of inflation, M: money supply, α: speed of quantity adjustments, β: speed of expectation formations on inflation

Assumption: partial derivatives

Assumption

I, S, L and H are of C^2 with:

$$L_r < 0, L_y > 0, L_k \ge 0,$$
 (2.6)

$$I_r < 0, I_y > 0, I_k < 0, I_{\pi^e} > 0,$$
(2.7)

$$S_r \ge 0, S_y > 0, S_k \le 0, S_{\pi^e} \le 0,$$
 (2.8)
 $H_y > 0.$ (2.9)

• $L_k \ge 0$ reflects the positive wealth effect on money demand.

< □ > < @ > < 注 > < 注 > ... 注

Interest rate

• Eq. (2.1) is solved for
$$r$$
 as $(x = y, k)$:

$$r = R(y, k, p),$$

$$R_{x} = -\frac{L_{x}}{L_{r}}(R(y, k, p), y, k), R_{p} = -\frac{M}{pL_{r}}(R(y, k, p), y, k),$$
(2.10)
(2.11)

< □ > < □ > < □ > < □ > < □ > .

3

Model rewritten

• Substituting (2.10), the model can be rewritten as:

$$\dot{\mathbf{y}} = \alpha \mathbf{X}(\mathbf{y}, \mathbf{k}, \mathbf{p}, \pi^{\mathbf{e}}), \qquad (2.12)$$

$$\dot{k} = A(y, k, p, \pi^e), \qquad (2.13)$$

$$\frac{\dot{p}}{\rho} = H(y) + \pi^e, \qquad (2.14)$$

$$\dot{\pi}^e = \beta H(y) \tag{2.15}$$

• X and A are defined as:

 $\begin{aligned} X(y,k,p,\pi^{e}) &\equiv I(R(y,k,p),y,k,\pi^{e}) - S(R(y,k,p),y,k,\pi^{e}), \\ A(y,k,p,\pi^{e}) &\equiv I(R(y,k,p),y,k,\pi^{e}). \end{aligned}$

• X is the excess demand function and A is the capital accumulation function.

Assumption: existence and uniqueness of equilibrium

Assumption

There uniquely exists an equilibrium $(y^*, k^*, p^*, 0) \in \mathbb{R}^3_{++} \times \mathbb{R}$.

(ロ) (同) (E) (E) (E)

Characteristic equation

 The characteristic equation associated with the Jacobian matrix is:

$$\lambda^{4} + a_{1}\lambda^{3} + a_{2}\lambda^{2} + a_{3}\lambda + a_{4} = 0, \qquad (2.16)$$

• *a*₁-*a*₄ are given by:

$$\begin{aligned} a_{1} &\equiv -(\alpha X_{y}^{*} + A_{k}^{*}), \\ a_{2} &\equiv \alpha (X_{y}^{*} A_{k}^{*} - X_{k}^{*} A_{y}^{*} - X_{p}^{*} H_{y}^{*} p^{*} - \beta X_{\pi^{e}}^{*} H_{y}^{*}), \\ a_{3} &\equiv \alpha [(X_{p}^{*} A_{k}^{*} - X_{k}^{*} A_{p}^{*}) p^{*} - \beta (X_{k}^{*} A_{\pi^{e}}^{*} - X_{\pi^{e}}^{*} A_{k}^{*} + X_{p}^{*} p^{*})] H_{y}^{*}, \\ a_{4} &\equiv \alpha \beta (X_{p}^{*} A_{k}^{*} - X_{k}^{*} A_{p}^{*}) H_{y}^{*} p^{*} > 0, \end{aligned}$$

| 4 回 2 4 U = 2 4 U =

Proposition 2.3: existence of periodic orbits

Proposition

Under the assumption of Proposition 2.2 and if α and the absolute value of X_p^* are sufficiently small, there exists a positive β^* such that at least one periodic orbit exists for β sufficiently close to β^* .

- This proposition implies that the equilibrium gets more likely to lose stability as the speed of inflation-deflation expectation formations β becomes greater.
- Processes of inflation-deflation expectation formations work as a destabilizing factor.

・ロト ・回ト ・ヨト ・ヨト

3. Alternative policies and economic stability in the Keynes-Kaldor-Tobin model

(4回) (1日) (日)

3

Quantity policy Interest rate policy

3.1 Quantity policy

Hiroki MURAKAMI Alternative stabilization policies in a Keynes-Kaldor-Tobin mod

イロン 不同と 不同と 不同と

æ

Quantity policy Interest rate policy

Model modified

• The model is modified as:

$$m = L(r, y, k), \tag{3.1}$$

$$\dot{\mathbf{y}} = \alpha [\mathbf{I}(\mathbf{r}, \mathbf{y}, \mathbf{k}, \pi^{e}) - \mathbf{S}(\mathbf{r}, \mathbf{y}, \mathbf{k}, \pi^{e})], \qquad (3.2)$$

$$\dot{k} = I(r, y, k, \pi^e), \qquad (3.3)$$

$$\frac{\dot{p}}{p} = H(y) + \pi^{e}, \qquad (3.4)$$

$$\dot{\pi}^e = \beta (\frac{\dot{p}}{p} - \pi^e), \qquad (3.5)$$

$$\frac{\dot{M}}{M} = \gamma(y^* - y), \qquad (3.6)$$

- $m \equiv M/p$, y^* : natural-rate income, γ : policy parameter.
- Eq. (3.6) represents the counter-cyclical policy through changes in the supply of money.

Quantity policy Interest rate policy

Model rewritten

• Eliminating r by solving (3.1), the model is re-formalized as:

$$\dot{\mathbf{y}} = \alpha \mathbf{X}(\mathbf{y}, \mathbf{k}, \mathbf{m}, \pi^{\mathbf{e}}), \tag{3.7}$$

$$\dot{k} = A(y, k, m, \pi^e), \qquad (3.8)$$

$$\frac{m}{m} = -[H(y) + \gamma(y - y^*) + \pi^e],$$
 (3.9)

$$\dot{\pi}^e = \beta H(y), \tag{3.10}$$

• X and A are defined as:

$$X(y, k, m, \pi^{e}) \equiv I(R(y, k, m), y, k, \pi^{e}) - S(R(y, k, m), y, k, \pi^{e}),$$
(3.11)

$$A(y, k, m, \pi^{e}) \equiv I(R(y, k, m), y, k, \pi^{e}).$$
(3.12)

• X is the excess demand function and A is the capital accumulation function.

Quantity policy Interest rate policy

Assumption: partial derivatives

Assumption

 $X, A and H are of C^2$ with:

$$X_k < 0, X_m > 0, X_{\pi^e} > 0,$$
 (3.13)

$$A_y > 0, A_k < 0, A_m > 0, A_{\pi^e} > 0,$$
 (3.14)

$$H_y > 0,$$
 (3.15)

$$X_y A_k > X_k A_y, X_k A_m > X_m A_k.$$
(3.16)

• The validity of the condition of $X_k A_m > X_m A_k$ can be confirmed by:

$$X_{k}A_{m}-X_{m}A_{k}=(I_{r}R_{k}+I_{k})(S_{r}R_{m}+S_{m})-I_{r}R_{m}(S_{r}R_{k}+S_{k})>0,$$

• This condition is fulfilled if S_r is sufficiently small.

Quantity policy Interest rate policy

Assumption: existence and uniqueness of equilibrium

Assumption

There uniquely exists an equilibrium $(y^*, k^*, m^*, 0) \in \mathbb{R}^3_{++} \times \mathbb{R}$.

• This assumption is introduced for the sake of simplicity only.

(ロ) (同) (E) (E) (E)

Characteristic equation

• The characteristic equation associated with the Jacobian matrix is calculated as:

$$\lambda^{4} + b_{1}\lambda^{3} + b_{2}\lambda^{2} + b_{3}\lambda + b_{4} = 0, \qquad (3.17)$$

• b_1 - b_4 are given by:

$$\begin{split} b_1 &\equiv -(\alpha X_y^* + A_k^*), \\ b_2 &\equiv \alpha (X_y^* A_k^* - X_k^* A_y^* + X_m^* H_y^* m^* - \beta X_{\pi^e}^* H_y^* + \gamma X_m^* m^*), \\ b_3 &\equiv \alpha \{ [(X_k^* A_m^* - X_m^* A_k^*) m^* - \beta (X_k^* A_{\pi^e}^* - X_{\pi^e}^* A_k^* - X_m^* m^*)] H_y^* \\ &+ \gamma (X_k^* A_m^* - X_m^* A_k^*) m^* \}, \\ b_4 &\equiv \alpha \beta (X_k^* A_m^* - X_m^* A_k^*) H_y^* m^* > 0, \end{split}$$

(4回) (1日) (日)

Proposition 3.1: existence of periodic orbits

Proposition

If α, β and H_y^* are not so large, there exists a positive γ^* such that at least one periodic orbit exists, for γ sufficiently close to γ^* .

- Proposition 3.1 implies that under some reasonable assumptions, the smallness of γ destabilizes the model. and that
- the quantity policy may have a **negative influence** on economic stability in that **persistent economic fluctuations** are yielded, if γ is not large enough.
- Inadequate quantity policies can generate a persistent economic fluctuation (periodic orbit).

(ロ) (同) (E) (E) (E)

Quantity policy Interest rate policy

3.2 Interest rate policy

イロト イヨト イヨト イヨト

Quantity policy Interest rate policy

Model revised

 To examine the effects of the interest rate policy, the model is revised as:

$$\dot{\mathbf{y}} = \alpha [I(\mathbf{y}, \mathbf{k}, \rho^{\mathbf{e}}) - S(\mathbf{y}, \mathbf{k}, \rho^{\mathbf{e}})], \qquad (3.18)$$

$$\dot{k} = I(y, k, \rho^e), \tag{3.19}$$

$$\dot{\pi}^e = \beta H(y), \tag{3.20}$$

$$\dot{r} = \delta(y - y^*), \tag{3.21}$$

- $\rho^e \equiv r \pi^e$: real rate of interest, δ : **policy parameter**.
- Eq. (3.21) is an expression of the feedback policy through changes in the rate of interest.
- It is a feedback policy conducted in response to output gap (a la Taylor's rule).

(ロ) (同) (E) (E) (E)

Quantity policy Interest rate policy

Model rewritten

• Noting that $\rho^e \equiv r - \pi^e$, the model can be written as:

$$\dot{\mathbf{y}} = \alpha [\mathbf{I}(\mathbf{y}, \mathbf{k}, \rho^{\mathbf{e}}) - \mathbf{S}(\mathbf{y}, \mathbf{k}, \rho^{\mathbf{e}})], \qquad (3.22)$$

$$\dot{k} = I(y, k, \rho^e), \tag{3.23}$$

$$\dot{\rho}^e = \delta(y - y^*) - \beta H(y). \tag{3.24}$$

イロン イヨン イヨン イヨン

3

Quantity policy Interest rate policy

Assumptions: partial derivatives

Assumption

I, S and H are of C^2 for every $(y, k, \rho^e) \in \mathbb{R}^2_{++} \times \mathbb{R}$ with:

- $I_{y} > 0, I_{k} < 0, I_{\rho^{e}} < 0, \tag{3.25}$
- $S_y > 0, S_k \le 0, S_{\rho^e} \ge 0,$ (3.26)

$$H_y > 0, \qquad (3.27)$$

$$I_{y}S_{k} > I_{k}S_{y}, I_{k}S_{\rho^{e}} < I_{\rho^{e}}S_{k}$$
 (3.28)

Assumption

There uniquely exists an equilibrium (y^*, k^*, ρ^{e*}) .

Quantity policy Interest rate policy

Characteristic equation

• The characteristic equation is calculated as follows:

$$\lambda^{3} + d_{1}\lambda^{2} + d_{2}\lambda + d_{3} = 0, \qquad (3.29)$$

• d_1 - d_3 are given by:

$$d_{1} \equiv -[\alpha(I_{y}^{*} - S_{y}^{*}) + I_{k}^{*}],$$

$$d_{2} \equiv \alpha[I_{y}^{*}S_{k}^{*} - I_{k}^{*}S_{y}^{*} - (\delta - \beta H_{y}^{*})(I_{\rho^{e}}^{*} - S_{\rho^{e}}^{*})],$$

$$d_{3} \equiv \alpha(I_{\rho^{e}}^{*}S_{k}^{*} - I_{k}^{*}S_{\rho^{e}}^{*})(\delta - \beta H_{y}^{*}).$$

- - 4 回 ト - 4 回 ト

Quantity policy Interest rate policy

Local asymptotic stability

• The necessary and sufficient condition for local asymptotic stability of the equilibrium:

$$\alpha(I_y^* - S_y^*) + I_k^* < 0, \tag{3.30}$$

$$\delta > \beta H_y^*, \tag{3.31}$$

$$\begin{aligned} & [\alpha(I_{y}^{*}-S_{y}^{*})(I_{\rho^{e}}^{*}-S_{\rho^{e}}^{*})+(I_{k}^{*}-S_{k}^{*})I_{\rho^{e}}^{*}](\delta-\beta H_{y}^{*}) \\ &> [\alpha(I_{y}^{*}-S_{y}^{*})+I_{k}^{*}](I_{y}^{*}S_{k}^{*}-I_{k}^{*}S_{y}^{*}). \end{aligned}$$
(3.32)

• Conditions (3.30)-(3.32) are satisfied if $I_y^* < S_y^*$ and $\delta > \beta H_y^*$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Quantity policy Interest rate policy

Assumption for stability

Assumption $I_y^* < S_y^* \tag{3.33}$

• This is the so-called Keynesian stability condition.

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

Proposition 3.2: condition for stability

Proposition

If δ is large enough to satisfy:

$$\delta > \beta H_y^*, \tag{3.34}$$

then the unique equilibrium (y^*, k^*, ρ^{e*}) is locally asymptotically stable.

- Proposition 3.2 implies that if the policy parameter δ is sufficiently large, the local stability can be achieved, i.e., that
- The economy can be **stabilized** when the monetary authority takes a **strong attitude** towards economic fluctuations.

Denial of a periodic orbit generated by a Hopf bifurcation

- In the case of the interest rate policy, a periodic orbit cannot be yielded by way of a Hopf bifurcation.
- For a Hopf bifurcation to arise, we must have:

$$I_{y}^{*}S_{k}^{*} - I_{k}^{*}S_{y}^{*} > (\delta - \beta H_{y}^{*})(I_{\rho^{e}}^{*} - S_{\rho^{e}}^{*}), \qquad (3.35)$$

$$\begin{aligned} &[\alpha(I_{y}^{*}-S_{y}^{*})(I_{\rho^{e}}^{*}-S_{\rho^{e}}^{*})+(I_{k}^{*}-S_{k}^{*})I_{\rho^{e}}^{*}](\delta-\beta H_{y}^{*}) \quad (3.36) \\ &= [\alpha(I_{y}^{*}-S_{y}^{*})+I_{k}^{*}](I_{y}^{*}S_{k}^{*}-I_{k}^{*}S_{y}^{*}). \end{aligned}$$

• By (3.35) and (3.36), we obtain the following expression:

$$\frac{(I_y^* S_k^* - I_k^* S_y^*)(I_k^* S_{\rho^e}^* - I_{\rho^e}^* S_k^*)}{\alpha(I_y^* - S_y^*)(I_{\rho^e}^* - S_{\rho^e}^*) + (I_k^* - S_k^*)I_{\rho^e}^*} > 0.$$
(3.37)

• Condition (3.37) contradicts Assumptions made so far.

・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusion: quantity policy vs. interest rate policy

- Our analysis implies that the interest rate policy can be more effective than the quantity policy in that
- inadequate quantity policies can give rise to a persistent business cycle (by way of a Hopf bifurcation), but
- interest rate policies cannot yield a persistent economic fluctuation (by way of a Hopf bifurcation).

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Quantity policy Interest rate policy

References

- Chiarella, C., Flaschel, P., Gong, G., Semmler, W., 2003. Nonlinear Phillips curves, complex dynamics and monetary policy in a Keynesian macro model. Chaos, Solitions and Fractals 18, 613-634.
- Kaldor, N., 1940. A model of the trade cycle. Economic Journal 50 (192), 78-92.
- Keynes, J. M., 1936. The General Theory of Employment, Interest and Money. Macmillan, London.
- Murakami, H., 2014. Keynesian systems with rigidity and flexibility of prices and inflation-deflation expectations. Structural Change and Economic Dynamics 30, 68-85.
- Tobin, J., 1975. Keynesian models of recession and depression. American Economic Review 65 (2), 195-202.

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Thank you for listening to my presentation !!

<ロ> (日) (日) (日) (日) (日)