Imitation Dynamics in Cournot Games with Heterogenous Players

Daan Lindeman Marius Ochea Univ. Amsterdam Univ. Amsterdam

MDEF, Urbino, 2014

Convergence to and stability of the Cournot-Nash equilibrium, in oligopoly games:

- "two is few, three is many": Theocharis (1960)
- **•** behavior adjustment process: Cournot adjustment, gradient dynamics
- non-monotonic inverse demand-cost structure: 'exotic' chaotic dynamics of Rand (1978) and Kopel (1996)
- expectations: naive, adaptive, fictitious play, rational

Cournot Equilibrium: Instability thresholds

- Cournot players only: $n < 3$ (Theocharis, 1960)
- Cournot vs. equilibrium (Nash) players: $n < 5$ (Hommes et. al. 2011, WP)
- Cournot vs. Rational with no information costs: always stable (Hommes et. al. 2011, WP)
- Cournot vs. Rational with info costs: various thresholds depending on magnitude of the costs and of the evolutionary pressure
- \bullet Imitation vs. equilibrium play: $n < 7$
- Imitation vs. Cournot vs. Rational: various thresholds function of the relative costs of the stable and unstable heuristics

 QQQ

Literature on Imitation

- **o** imitate-the-best and optimizers in Cournot oligopoly: stochastic stability, long-run distribution imitators better off (Schipper, 2009, JEDC)
- unbeatable imitation? Yes! if imitate-the-best not subjected to a money pump, i.e. game is not of Rock-Scissors-Paper variety (Duersch et. al., 2012, GEB)
- unconditional imitation (tit-for-tat variety), essentially unbeatable in class of potential games (Duersch et. al., 2014, IJGT)
- **e** experiments:
	- Huck et. al. (2002): process where participants mix between the Cournot adjustment heuristic an imitating the previous period's average quantity gives the best description of behaviour
	- Duersch et. al. (2009): Cournot duopoly, subjects earn on average higher profits when playing against "best-response" computers than against "imitate" computers

Cournot analysis

- \bullet homogeneous goods, Cournot oligopoly with *n* firms
- Inverse demand $P(Q)$: continuously diff. $P(Q) \geq 0$, $P'(Q) \leq 0$
- $Q = \sum_{i=1}^{n} q_i$, q_i is production of firm *i*
- cost function $C(q_i)$: twice continuously diff. $C(q_i) \geq 0$, $C'(q_i) \geq 0$
- \bullet first order condition of firm i:

$$
P(Q_{-i} + q_i) + q_i P'(Q_{-i} + q_i) - C'(q_i) = 0
$$

e second order condition:

$$
2P'(Q_{-i}+q_i)+q_iP''(Q_{-i}+q_i)-C''(q_i)\leq 0.
$$

• best response correspondence: $q_i = R(Q_{-i}), i = 1, n$

assume that a symmetric equilibrium $\bm{\mathsf{q}}^*$,aggregate output $\bm{\mathsf{Q}}^* = \bm{\mathsf{n}} \bm{\mathsf{q}}^*$

 QQ

Learning Rules: Introspection vs. Adaptation

- how does firm i learn to play q^\ast ?
- \bullet what does *i* believe about Q_{-i} at the time when the production decision has to be made?
- dynamical system: $q_i(t) = R(Q_{-i}^e(t)), i = 1, n$

$$
R'\left(Q_{-i}\right)=-\frac{P'\left(Q\right)+q_{i}P''\left(Q\right)}{2P'\left(Q\right)+q_{i}P''\left(Q\right)-C''\left(q_{i}\right)}.
$$

• rest points: existence, uniqueness, stability

つひひ

• Naive or "Cournot" play:

$$
q_{i,t+1} = R(Q_{-i,t}), i = 1,...n
$$

Unconditional imitation:

$$
q_{i,t+1}=\frac{Q_{-i,t}}{n-1}, i=1,...,n.
$$

Rational play:

$$
q_{i,t+1} = R(Q_{-i,t+1}), i = 1,...n
$$

 \leftarrow

Instability under Cournot dynamics

• Jacobian evaluated at steady state:

$$
\left(\begin{array}{ccccc} 0 & R'\left(Q_{-1}^*\right) & \cdots & R'\left(Q_{-1}^*\right) \\ R'\left(Q_{-2}^*\right) & 0 & & \vdots \\ \vdots & & \ddots & R'\left(Q_{-n}^*\right) \\ R'\left(Q_{-n}^*\right) & \cdots & R'\left(Q_{-n}^*\right) & 0 \end{array}\right)
$$

- $n-1$ eigenvalues equal to $-R'\left(\left(n-1\right)q^*\right)$, one e.v. $(n-1) R'((n-1) q^*)$
- local stability: $\zeta_n(q^*) \equiv (n-1) |R'((n-1) q^*)| < 1$
- typically, $\boldsymbol{\xi}_{n}\left(\boldsymbol{q}^{*}\right)$ increases in n and a threshold value $\hat{\boldsymbol{n}}$ of \boldsymbol{n} exists such that $\zeta_{\hat{n}}(q^*) \leq -1 < \zeta_{\hat{n}-1}(q^*)$.
- example, linear-linear: $R'\left(Q_{-i}\right) = -\frac{1}{2}$,CNE stable for $n = 2$, bounded oscilla[t](#page-6-0)[io](#page-7-0)[n](#page-0-0)s, f[or](#page-19-0) $n = 3$ $n = 3$, exploding fl[uc](#page-6-0)t[ua](#page-8-0)tion[s f](#page-0-0)or $n > 3$ $n > 3$ $n > 3$

 Ω

.

Jacobian evaluated at steady state:

$$
J|_{q^*} = \begin{pmatrix} 0 & \frac{1}{n-1} & \cdots & \frac{1}{n-1} \\ \frac{1}{n-1} & 0 & & \vdots \\ \vdots & & \ddots & \frac{1}{n-1} \\ \frac{1}{n-1} & \cdots & \frac{1}{n-1} & 0 \end{pmatrix}
$$

 $n-1$ eigenvalues equal to $-\frac{1}{n-1}$, one e.v. 1

 200

.

- study the aggregate behavior of a heterogeneous set of interacting quantity-setting heuristics
- consider a large population of firms from which in each period groups of *firms are sampled randomly and matched to play the one-shot* n-player Cournot game
- **•** assume that a fixed fraction $\eta \in [0, 1]$ of the population uses one heuristic, and a fraction $1 - \eta$ uses another
- after each one-shot Cournot game, the random matching procedure is repeated, leading to new combinations of the two types of firms

Imitation vs. Cournot play

$$
q_{t+1}^C = R((n-1)(\eta q_t^C + (1-\eta)q_t^I))
$$

\n
$$
q_{t+1}^I = \eta q_t^C + (1-\eta)q_t^I.
$$

Lemma

The Cournot-Nash equilibrium, where all firms produce the Cournot-Nash quantity (q^*,q^*) , is a locally stable fixed point for the model with exogenous fractions of Cournot and imitation firms if and only if $|1 - \eta + \eta (n-1)(R^{\prime\ast})| < 1.$

$$
\blacksquare \hbox{ linear-linear case: } n < \frac{4-\eta}{\eta}
$$

•
$$
\eta = 1
$$
 is stable if $n < 3$

•
$$
\eta = \frac{1}{2}
$$
 is stable if $n < 7$

 $\eta - \frac{1}{2}$ is stable if $\eta \rightarrow 0$, always stable

C

つへへ

- **•** fully rational player knows the number of non-rational firms and knows exactly what they will produce in period t, namely q_t
- assume they do not know the identity of the firms in its market when production decision is made:

$$
\max_{q_i} \Pi_R^e = E\left[P\left(Q_{-i} + q_i \right) q_i - C\left(q_i \right) \right].
$$

• Rational firm *i* chooses q_i to maximize:

$$
\sum_{k=0}^{n-1} {n-1 \choose k} \eta^k (1-\eta)^{n-1-k} [P((n-1-k)q_t^l + kq_t^R + q_{t,i})q_{t,i} - C(q_{t,i})]
$$

Let the solution to f.o.c be given by $q^R_t = H^R(q^I_t, \eta)$

$$
q_{t+1}^R = H^R(q_{t+1}^l, \eta) = H^R(\eta q_t^R + (1 - \eta)q_t^l, \eta)
$$

$$
q_{t+1}^l = \eta q_t^R + (1 - \eta)q_t^l.
$$

Lemma

The Cournot-Nash equilibrium, where all firms produce the Cournot-Nash quantity (\bm{q}^*,\bm{q}^*) , is a locally stable fixed point for the model with exogenous fractions of rational and imitation firms if and only if $|\eta H_q(q*, \eta) + 1 - \eta| < 1$

• linear-linear case:
$$
\lambda_2 = 1 - \eta - \frac{(n-1)(1-\eta)\eta}{2 + (n-1)\eta} < 1
$$
, always holds

- heuristics involve *information cost* $C_k \geq 0$, that may differ across heuristics
- Fitness of a heuristic is then given by the average profits generated in the game minus the information costs, $U_k = \prod_k - C_k$
- **•** fractions evolve according to an evolutionary dynamic

$$
\eta_{t+1} = K(U_{1,t} - U_{2,t}) = K(\Delta U_{1,t}).
$$

• The map $K : \mathbb{R} \to [0, 1]$ is a continuously differentiable, monotonically increasing function with $K(0)=\frac{1}{2}$

つへへ

Imitation vs. Cournot with heuristics switching

$$
q_{t+1}^{C} = R((n-1)(\eta q_t^{C} + (1 - \eta)q_t^{I}))
$$

\n
$$
q_{t+1}^{I} = \eta q_t^{C} + (1 - \eta)q_t^{I}.
$$

\n
$$
\eta_{t+1} = K(\Delta U_t)
$$

Lemma

The Cournot-Nash equilibrium $(q^*, q^*, \eta^* = K(-C))$ is a locally stable fixed point for the model with endogenous fractions of Cournot and imitators where all firms produce the Cournot-Nash quantity, firms if and only if $\eta^*R((n-1)q^*)(n-1) - \eta^* > -2$.

$$
\bullet\ \ \textsf{linear-linear case:}\ \ (q^*,q^*,\eta^*)\ \ \textsf{is stable when}\ \ n<\tfrac{4-\eta^*}{\eta^*}
$$

Imitation vs. Cournot: simulations

Imitation vs. Rational play with switching

$$
q_{t+1}^R = H^R(q_{t+1}^l, \eta) = H^R(\eta q_t^R + (1 - \eta)q_t^l, \eta)
$$

\n
$$
q_{t+1}^l = \eta q_t^R + (1 - \eta)q_t^l
$$

\n
$$
\eta_{t+1} = K(\Delta U_t)
$$

Lemma

The Cournot-Nash equilibrium $(q^*, q^*, \eta^* = K(-C))$ is a locally stable fixed point for the model with endogenous fractions of rational and imitation firms, where all firms produce the Cournot-Nash quantity, if and only if $|\eta^* H_q(q^*, \eta^*) + 1 - \eta^*| < 1$

linear-linear example: $(\bm{q}^*,\bm{q}^*,\eta^*)$ is stable for all \bm{n} regardless of $C!$

つへへ

Imitation vs. Cournot vs. Rational with switching

$$
q_{t+1}^{R} = H^{R}(q_{t+1}^{C}, q_{t+1}^{L}, \eta_{t+1}^{R}, \eta_{t+1}^{C})
$$

\n
$$
q_{t+1}^{C} = R((n-1)(\eta_{t}^{R} q_{t}^{R} + \eta_{t}^{C} q_{t}^{C} + (1 - \eta_{t}^{R} - \eta_{t}^{C})q_{t}^{L})
$$

\n
$$
q_{t+1}^{L} = \eta_{t}^{R} q_{t}^{R} + \eta_{t}^{C} q_{t}^{C} + (1 - \eta_{t}^{R} - \eta_{t}^{C})q_{t}^{L}
$$

\n
$$
\eta_{R,t+1} = K^{R}(\Delta U_{t}^{R}, \Delta U_{t}^{C})
$$

\n
$$
\eta_{C,t+1} = K^{C}(\Delta U_{t}^{R}, \Delta U_{t}^{C}).
$$

$$
\bullet \ (\ q^*, \eta^{R^*} = \frac{e^{\beta(C^C - C^R)}}{e^{\beta(C^C - C^R)} + 1 + e^{-\beta(C^I - C^C)}}, \eta^{C^*} = \frac{e^{\beta(C^I - C^C)}}{e^{\beta(C^I - C^R)} + e^{-\beta(C^I - C^C)} + 1})
$$

• Stability:

•
$$
C^R > 0
$$
, $C^I = C^C = 0$: $\lambda_1 = \lambda_2 = \lambda_3 = 0$ and

$$
\lambda_4(n, C^R \beta) = \frac{3e^{CR} \beta - ne^{CR} \beta}{n + 4e^{CR} \beta + 1}
$$

 δ instability threshold: $n < \psi(C^{R^*} \beta) = \frac{7e^{CR_{\beta}}+1}{e^{CR_{\beta}}-1}$ $e^{CR}\beta-1$

general C^1 , $C^C \neq 0$: stability depends on the relative costs of the stable heuristic(imitation) to costs of the unstable heuristic (Cournot)

Imitation vs. Cournot vs. Rational: simulations

Parameters: $n=19$, $a=17$, $b=1$, $c=1$, $\mathcal{C}^R=1$, $\mathcal{C}^C=0$, $\mathcal{C}^I=0$, $\beta=3$. Initial conditions: $\,q_0^R=0.3,\, q_0^C=0.1,\, q_0^I=0.25,\, \eta_0^R=\hbox{\small\it Q.5},\, \eta_0^C=\hbox{\small\it Q.2},$ 290

- **•** imitation: stabilizing role
- ecology of rules critical: cheaper stable (imitation) vs. cheaper unstable (best-reply) rule
- conditional imitation?: imitate-the-best (the better)
- • super(sub)modular games