Introduction 000000	CDA	The model	The strategies	Results	Conclusion	(Evolution strategies)

The simplicity of optimal trading in order book markets MDEF - Urbino

Paolo Pellizzari (with Dan Ladley)

Dipartimento di Economia Ca' Foscari - Venezia

18 September 2014

< □ > < @ > < E > < E > ł

500

< □ > < @ > < E > < E > ł 500

< □ > < @ > < E > < E > ł 500

Introduction	CDA	The model	The strategies	Results	Conclusion	(Evolution strategies)
Intro						

- A trader's execution strategy has a large effect on profits but identifying an optimal strategy is complex.
- Law of *many* prices: it is believed that in Continuous Double Auctions (CDA) information has a role.
- Information resolves the clash: Should I stay or should I go?
 - Trade now (certain execution but low gain)
 - 2 Delayed trade (uncertain but higher gain)
- This is potentially of huge importance: algorithmic trading, 60 to 73% of orders are machine generated and 45% are left on the market for less than 1 second (source: SEC).

Introduction	CDA	The model	The strategies	Results	Conclusion	(Evolution strategies)
00000		00	00	0000000	0000	

Research question

I do not have any research question

• but have a research claim:

Trading is simple and you should disregard nearly all the information available on the book.

• (Under some restrictive assumptions) most of the information is irrelevant at the time of submission.

• This supports the following facts

- The book is only dynamically complete, Bouchaud et al. (2009), as opposed to statically complete;
- Trading may be less cognitively complex than we thought (simple linear strategies are as good as complex Markov Perfect Equilibrium strategies).
- Speed is better than depth (of reasoning).

Introduction	CDA	The model	The strategies	Results	Conclusion	(Evolution strategies)
00000		00	00	000000000	00	

Research question

- I do not have any research question
- but have a research claim:

Trading is simple and you should disregard nearly all the information available on the book.

• (Under some restrictive assumptions) most of the information is irrelevant at the time of submission.

• This supports the following facts

- The book is only dynamically complete, Bouchaud et al. (2009), as opposed to statically complete;
- Trading may be less cognitively complex than we thought (simple linear strategies are as good as complex Markov Perfect Equilibrium strategies).
- Speed is better than depth (of reasoning).

Sac

・ コ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Introduction	CDA	The model	The strategies	Results	Conclusion	(Evolution strategies)
00000		00	00	0000000	0000	

Research question

- I do not have any research question
- but have a research claim:

Trading is simple and you should disregard nearly all the information available on the book.

- (Under some restrictive assumptions) most of the information is irrelevant at the time of submission.
- This supports the following facts
 - The book is only dynamically complete, Bouchaud et al. (2009), as opposed to statically complete;
 - Trading may be less cognitively complex than we thought (simple linear strategies are as good as complex Markov Perfect Equilibrium strategies).
 - Speed is better than depth (of reasoning).

Continuos Double Auction

Continuos Double Auction

- Agents place orders on separate buying and selling books
- Bids (asks) are sorted in decreasing (increasing) order according to price-time priority.
- Orders are canceled only when a counterpart is found (after execution) or with a smal exogenous probability P_c (unexecuted).

Continuos Double Auction

Continuos Double Auction

- Agents place orders on separate buying and selling books
- Bids (asks) are sorted in decreasing (increasing) order according to price-time priority.
- Orders are canceled only when a counterpart is found (after execution) or with a smal exogenous probability P_c (unexecuted).

Continuos Double Auction

Continuos Double Auction

- Agents place orders on separate buying and selling books
- Bids (asks) are sorted in decreasing (increasing) order according to price-time priority.
- Orders are canceled only when a counterpart is found (after execution) or with a smal exogenous probability P_c (unexecuted).

Continuos Double Auction

Continuos Double Auction

- Agents place orders on separate buying and selling books
- Bids (asks) are sorted in decreasing (increasing) order according to price-time priority.
- Orders are canceled only when a counterpart is found (after execution) or with a smal exogenous probability P_c (unexecuted).

naa

Continuos Double Auction

Continuos Double Auction

- Agents place orders on separate buying and selling books
- Bids (asks) are sorted in decreasing (increasing) order according to price-time priority.
- Orders are canceled only when a counterpart is found (after execution) or with a smal exogenous probability P_c (unexecuted).

naa

Continuos Double Auction

Continuos Double Auction

- Agents place orders on separate buying and selling books
- Bids (asks) are sorted in decreasing (increasing) order according to price-time priority.
- Orders are canceled only when a counterpart is found (after execution) or with a smal exogenous probability P_c (unexecuted).

Continuos Double Auction

Continuos Double Auction

- Agents place orders on separate buying and selling books
- Bids (asks) are sorted in decreasing (increasing) order according to price-time priority.
- Orders are canceled only when a counterpart is found (after execution) or with a smal exogenous probability P_c (unexecuted).

Introduction	CDA	The model ●○	The strategies	Results 0000000000	Conclusion	(Evolution strategies)
The model						
Book / I	ouyers	5				

The book is

 $\textbf{\textit{S}}_{t} = \{0 \leq ... \leq \textbf{\textit{b}}_{3t} \leq \textbf{\textit{b}}_{2t} \leq \textbf{\textit{b}}_{1t} < \textbf{\textit{a}}_{1t} \leq \textbf{\textit{a}}_{2t} \leq \textbf{\textit{a}}_{3t} \leq ... \},$

- The highest bid b_1 and lowest ask a_1 are referred as best bid and best ask, respectively. The spread is $a_1 b_1$.
- Single unit order when entering the market.
- Buyer: the bidding function (or strategy) is

$$B_{it} = f_i(a_{1t}, b_{1t}, I_{it})$$

- The submission of B_{it} changes the book and
 - If $B_{it} \ge a_{1t}$: marketable order, the *i*-th agents gains $v_i a_{1t}$. The best ask is updated.
 - If instead $B_{it} < a_{1t}$, the new order is inserted in the book (for possible future trades).
 - 3 if $b_{1t} < B_{1t} < a_{1t}$: the order is price improving.

Introduction	CDA	The model ○●	The strategies	Results	Conclusion	(Evolution strategies)
The model						
Book /	seller	s				

• Seller: the asking function (or strategy) is

$$A_{jt}=g_j(a_{1t},b_{1t},J_{jt}),$$

- The submission of A_{it} changes the book and
 - If $A_{it} \le b_{1t}$: marketable order, the *j*-th agents gains $b_{1t} c_j$. The best bid is updated.
 - If instead A_{jt} > b_{1t}, the new order is inserted in the book (for possible future trades).
 - If $b_{1t} < A_{jt} < a_{1t}$: the order is price improving.
- Symmetry: all costs $c_i \in C$, exactly as all values $v_i \in V$.

Bid/ask to be submitted by traders at time t are given by

$$B_{it} = f_i(a_{1t}, b_{1t}, l_i) = \min(\overline{B}, \alpha_i a_{1t} + \beta_i b_{1t} + \gamma_i), \quad (1)$$

for buyers and

$$A_{jt} = g_j(a_{1t}, b_{1t}, J_j) = \max(\overline{A}, \delta_i a_{1t} + \phi_i b_{1t} + \eta_i), \qquad (2)$$

for sellers, where $\alpha_i, \beta_i, \gamma_i, \delta_j, \phi_j, \eta_j$ are real constant to be determined and $I_i = J_j = \emptyset, \forall i, j$. Observe that no execution probability is estimated.

Sac

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

Introduction	CDA	The model	The strategies	Results	Conclusion	(Evolution strategies)
000000		00	0.	0000000	0000	
MPE strategies						

Markov Perfect Equilibrium Strategies

- Information level *I*: number of consecutive quotes on the bid and ask side.
- Beliefs on the probabilities of order execution are explicitly calculated for each state of the market.
- Such an assignment P of probabilities is consistent and

$$f_i: V^{2l} \longrightarrow V, \quad (b_1, ..., b_l, a_1, ..., a_l) \mapsto B_{it},$$

where the bid B_{it} maximises

 $P(B_{it}|S_t)pay_{it}$.

 Probabilities are iteratively found as outlined in Pakes and McGuire (2001).

Introduction	CDA	The model	The strategies	Results	Conclusion	(Evolution strategies)
000000		00	00	•000000000	0	

Results: parameters

Variable	Description	Value
V	Buyer valuations	$\{0.05, 0.10,, 0.90, 0.95\}$
С	Seller Valuations	$\{0.05, 0.10,, 0.90, 0.95\}$
P_c	Probability of cancellation	0.01
\overline{B}	Maximum Bid	1.0
Ā	Minimum Ask	0.0
P_R	Prob. random order	0.01
X	Convergence period	1,000,000
Т	Optimisation period	1,000,000,000

(Evolution strategies)

Summary statistics

Model	/ = 1	<i>l</i> = 2	<i>l</i> = 3	Linear
Best bid	0.466	0.465	0.464	0.472
Best ask	0.534	0.534	0.536	0.524
Spread	0.068	0.069	0.071	0.051
Quantity at best bid	2.39	2.40	2.32	-
Quantity at best ask	2.42	2.44	2.40	-

< ロ ト < 回 ト < 三 ト < 三 ト</p>

 Introduction
 CDA
 The model
 The strategies
 Results
 Conclusion
 (Evolution)

 000000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

Summary statistics

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction CDA The model The strategies Results Conclusion (E

Summary statistics

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	CDA	The model	The strategies	Results ○○○○●○○○	Conclusion	(Evolution strategie
Quotes						

		0.45-0.55	0.40-0.60	0.35-0.65	
	0.45-0.55	0.50	0.69	0.74	
Linear	0.40-0.60	0.68	0.89	0.95	
	0.35-0.65	0.72	0.94	0.99	
	0.45-0.55	0.61	0.79	0.80	
/ = 1	0.40-0.60	0.78	0.97	0.98	
	0.35-0.65	0.80	0.98	1.00	
	0.45-0.55	0.62	0.79	0.81	
<i>l</i> = 2	0.40-0.60	0.78	0.95	0.97	
	0.35-0.65	0.81	0.97	0.99	
	0.45-0.55	0.62	0.78	0.81	
<i>l</i> = 3	0.40-0.60	0.77	0.94	0.96	an
	0.35-0.65	0.80	0.96	0.99	
					Ø
			< E		E> E >

Introduction	CDA	The model	The strategies	Results	Conclusion	(Evolution strategie
000000		00	00	00000000	0000	

Quotes

		0.45 0.55	0.40-0.60	0.35-0.65	
	0.45-0.55	0.50	0.69	0.74	\mathbb{N}
Linear	0.40-0.60	0.68	0.89	0.95	
	0.35-0.65	0.72	0.94	0.99	
	0.45-0.55	0.61	0.79	0.80	
<i>l</i> = 1	0.40-0.60	0.78	0.97	0.98	
	0.35-0.65	0.80	0.98	1.00	
	0.45-0.55	0.62	0.79	0.81	
<i>l</i> = 2	0.40-0.60	0.78	0.95	0.97	
	0.35-0.65	0.81	0.97	0.99	
	0.45-0.55	0.62	0.78	0.81	
<i>l</i> = 3	0.40-0.60	0.77	0.94	0.96	ala
	0.35-0.65	0.80	0.96	0.99	
					V Castle

Introduction	CDA	The model	The strategies	Results	Conclusion	(Evolution strategi
000000		00	00	000000000	0000	

Equilibrium states

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ・ つへぐ

Introduction	CDA	The model	The strategies	Results	Conclusion	(Evolution strategies)
000000		00	00	000000	0000	

Seeing strategies

Orders' aggressiveness

Model	/ = 1	<i>l</i> = 2	/ = 3	Linear
Market Orders	0.233	0.233	0.233	0.257
Price Improving LO	0.108	0.104	0.109	0.181
LO at Best quotes	0.162	0.167	0.161	\bigcirc
LO Behind Best Quote	0.497	0.496	0.498	0.563

Introduction	CDA	The model	The strategies	Results	Conclusion	(Evolution strategies)
000000		00	00	0000000	000	

Seeing strategies

Orders' aggressiveness

Model	/ = 1	<i>l</i> = 2	<i>l</i> = 3	Linear
Market Orders	0.233	0.233	0.233	0.257
Price Improving LO	0.108	0.104	0.109	0.181
LO at Best quotes	0.162	0.167	0.161	-
LO Behind Best Quote	0.497	0.496	0.498	0.563

Introduction	CDA	The model	The strategies	Results	Conclusion	(Evolution strategies)
000000		00	00	0000000	000	

Seeing strategies

Orders' aggressiveness

Model	/ = 1	<i>l</i> = 2	/ = 3	Linear
Market Orders	0.233	0.233	0.233	0.257
Price Improving LO	0.108	0.104	0.109	0.181
LO at Best quotes	0.162	0.167	0.161	-
LO Behind Best Quote	0.497	0.496	0.498	• 0.563

000000 00	00	0000000000	
Conclusion			

- We have used two models of order book markets to investigate the importance of information and strategic sophistication.
- Market and traders' behaviour differed little across levels of information.
- The crucial piece of information are the best quotes: the book may be dynamically complete even when quotes far from the best ones add little information or don't convey useful trading signals.

Introduction	CDA	The model	The strategies	Results	Conclusion	(Evolution strategies)
Conclu	ision	(2)				

- In equilibrium only a relatively small number of order book states occurr.
- Hence, the possible situations that traders must develop optimal responses for are small in number. Traders strategies may therefore be relatively simple and easily learnt.
- Markov strategies and linear approximations are similar: optimal trading may be achieved by a simple functional form, further easing the cognitive burden placed on traders

Introduction	CDA	The model	The strategies	Results	Conclusion	(Evolution strategies)
Conclu	sion	(2)				

- In equilibrium only a relatively small number of order book states occurr.
- Hence, the possible situations that traders must develop optimal responses for are small in number. Traders strategies may therefore be relatively simple and easily learnt.
- Markov strategies and linear approximations are similar: optimal trading may be achieved by a simple functional form, further easing the cognitive burden placed on traders.

One more thing ($v_i = 0.55$)

500

Introduction	CDA	The model	The strategies	Results	Conclusion	(Evolution strategies)
Thank	you					

paolop@unive.it
http://virgo.unive.it/paolop/
The memorie also an IDEAC on CODN

The paper is also on IDEAS or SSRN

Evolution strategies - ES

Each population independently maximizes the gain from trade over $\tau = 200$ of sessions, given the behavior of the other populations:

$$\max_{\alpha,\beta,\gamma} \sum_{t=0}^{\tau} \pi_t(\alpha,\beta,\gamma | \text{Other types}).$$

- Set g = 0 and initialize the population $\mathcal{P}^{(0)}$ with $y_m^{(0)} = (\alpha_m^{(0)}, \beta_m^{(0)}, \gamma_m^{(0)}, A_m^{(0)}, B_m^{(0)}, C_m^{(0)}), m = 1, ..., \lambda;$
- 2 Repeat
 - sample without replacement n + n agents and trade;
 - **2** cumulate profit $F_m^{(g)}$ for τ sessions;
 - select the best μ agents out of λ according to F^(g)_m. Let the selected agents form the population Q^(g);

Sac

s-mutation, y-mutation.

Evolution strategies - ES, II

for $I = 1, \ldots, \lambda$ do

sample with replacement one agent
 (α_k, β_k, γ_k, A_k, B_k, C_k) ∈ Q^(g), k ∈ {1,...,μ}
 let

let the new individuals $(\alpha_l^{(g+1)}, \beta_l^{(g+1)}, \gamma_l^{(g+1)}, A_l^{(g+1)}, B_l^{(g+1)}, C_l^{(g+1)}), l = 1, \dots, \lambda$ form the population $\mathcal{P}^{(g+1)}$. q = q + 1 Introduction CDA T

The model

The strategies

Results Conclusion

(Evolution strategies)

Gauging convergence

