
M. Pireddu

University of Milano-Bicocca
Dept. of Mathematics and Applications

e-mail: marina.pireddu@unimib.it

A financial market model
with endogenous fundamental

values through imitative behavior

Joint work with A. Naimzada



Contents:

1 Introduction 3

2 The model 8

3 Stability analysis 16

4 Numerical results and interpretation 22

5 Possible extensions 39

2



1. Introduction

3



We propose a financial market model with optimistic and pes-
simistic fundamentalists, that respectively overestimate and
underestimate the true unobserved fundamental value due to
belief biases.

4



We propose a financial market model with optimistic and pes-
simistic fundamentalists, that respectively overestimate and
underestimate the true unobserved fundamental value due to
belief biases.

This issue has already been considered e.g. in De Grauwe and
Rovira Kaltwasser (2012) and Naimzada and Pireddu (2014a).

4



We propose a financial market model with optimistic and pes-
simistic fundamentalists, that respectively overestimate and
underestimate the true unobserved fundamental value due to
belief biases.

This issue has already been considered e.g. in De Grauwe and
Rovira Kaltwasser (2012) and Naimzada and Pireddu (2014a).

In De Grauwe and Rovira Kaltwasser (2012) both the opti-
mistic and pessimistic belief biases and the perceived funda-
mental values are exogenously determined.

4



We propose a financial market model with optimistic and pes-
simistic fundamentalists, that respectively overestimate and
underestimate the true unobserved fundamental value due to
belief biases.

This issue has already been considered e.g. in De Grauwe and
Rovira Kaltwasser (2012) and Naimzada and Pireddu (2014a).

In De Grauwe and Rovira Kaltwasser (2012) both the opti-
mistic and pessimistic belief biases and the perceived funda-
mental values are exogenously determined.

“For simplicity we assume throughout the paper that Fopt = F ∗ + a and

Fpes = F ∗ − a, where a > 0 is the belief bias and F ∗ is the true unobserved

fundamental, both exogenously determined. A more attractive alter-

native would be to allow for time variation in both the fundamental

value of the exchange rate as well as in the beliefs about it.”

4



We propose a financial market model with optimistic and pes-
simistic fundamentalists, that respectively overestimate and
underestimate the true unobserved fundamental value due to
belief biases.

This issue has already been considered e.g. in De Grauwe and
Rovira Kaltwasser (2012) and Naimzada and Pireddu (2014a).

In De Grauwe and Rovira Kaltwasser (2012) both the opti-
mistic and pessimistic belief biases and the perceived funda-
mental values are exogenously determined.

“For simplicity we assume throughout the paper that Fopt = F ∗ + a and

Fpes = F ∗ − a, where a > 0 is the belief bias and F ∗ is the true unobserved

fundamental, both exogenously determined. A more attractive alter-

native would be to allow for time variation in both the fundamental

value of the exchange rate as well as in the beliefs about it.”
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so-called “Proportional Imitation Rules” in Schlag (1998):

• follow an imitative behavior, i.e., change actions only
through imitating others;

• imitate an individual that performed better with a proba-
bility that is proportional to how much better this individual
performed.

Our updating mechanism is similar to the switching mecha-
nism in Brock and Hommes (1997), used also by De Grauwe
and Rovira Kaltwasser (2012).
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Moreover, differently from the majority of the literature on the
topic (see e.g. De Grauwe and Rovira Kaltwasser, 2012) and
similarly to Naimzada and Pireddu (2014b), the stock price is
for us determined by a nonlinear Walrasian mechanism that
prevents divergence issues.
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Lengnick and Wohltmann (2010) assume that the fundamental
value of stocks is constant but allow for time variation in the
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Naimzada and Ricchiuti (2008, 2009) consider models with
heterogeneous fundamentalists, perceiving different exogenous
fundamental values, with switching mechanisms based on the
squared errors between fundamentals and prices.
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
X(t + 1) = f eβπX(t+1)

eβπX(t+1)+eβπY (t+1) + F eβπY (t+1)

eβπX(t+1)+eβπY (t+1)

Y (t + 1) = F eβπX(t+1)

eβπX(t+1)+eβπY (t+1) + f eβπY (t+1)

eβπX(t+1)+eβπY (t+1)

P (t + 1) = P (t) + γa2

(
a1+a2

a1e−(ωσX(X(t)−P (t))+(1−ω)σY (Y (t)−P (t)))+a2
− 1
) (1)
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πX < πY ⇒ X(t + 1)→ F, Y (t + 1)→ f.
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P (t + 1) = P (t) + γa2

(
a1+a2

a1e−(ωσX(X(t)−P (t))+(1−ω)σY (Y (t)−P (t)))+a2
− 1
) (1)

- γ > 0 is the market maker price adjustment parameter;

- a1 and a2 are two positive parameters bounding the price
variation;

- ω ∈ (0, 1) represents the fraction of the population composed
by pessimists.
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For simplicity, we assume that

f = F −∆ and f = F + ∆.
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For simplicity, we assume that

f = F −∆ and f = F + ∆.

In this manner ∆ ≥ 0 describes the maximum possible degree
of pessimism and optimism.

We may rewrite (1) as

X(t + 1) = F −∆
(

1
1+e−β(πX(t+1)−πY (t+1))

)
Y (t + 1) = F + ∆

(
1

1+eβ(πX(t+1)−πY (t+1))

)
P (t + 1) = P (t) + γa2

(
a1+a2

a1e−(ωσX(X(t)−P (t))+(1−ω)σY (Y (t)−P (t)))+a2
− 1
) (2)
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Proposition: System (2) has a unique steady state in

(X∗, Y ∗, P ∗) =

(
F − ∆

2
, F +

∆

2
, F − ∆(ωσX − (1− ω)σY )

2(ωσX + (1− ω)σY )

)
.
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The steady state values for X and Y are symmetric w.r.t. F
and lie at the middle points of the intervals in which they may
respectively vary.
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Proposition: System (2) has a unique steady state in

(X∗, Y ∗, P ∗) =

(
F − ∆

2
, F +

∆

2
, F − ∆(ωσX − (1− ω)σY )

2(ωσX + (1− ω)σY )

)
.

The steady state values for X and Y are symmetric w.r.t. F
and lie at the middle points of the intervals in which they may
respectively vary.

In particular, when ∆ = 0 we find X∗ = Y ∗ = P ∗ = F .

This is analogous to the context with a unique agent, which
uses F as fundamental value (no imitation).

For ∆ = 0 the system inherits the stability/instability of the
financial market.

Also when σX = σY and ω = 1
2, we find P ∗ = F, even if now

X∗ 6= F 6= Y ∗.
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Proposition: The variables X and Y satisfy the following con-
dition: Y (t) = X(t) + ∆, for all t ≥ 1.

15



Proposition: The variables X and Y satisfy the following con-
dition: Y (t) = X(t) + ∆, for all t ≥ 1.

For t ≥ 1, the dynamical system associated to (2) is equivalent
to that associated to the two-dimensional map

G = (G1, G2) : (f, F )× (0,+∞)→ R2,

(X,P ) 7→ (G1(X,P ), G2(X,P )),

defined as:

G1(X,P ) = F−

 ∆

1+e
−β

(
γa2

(
a1+a2

a1e
−(ωσX(X−P )+(1−ω)σY (X+∆−P ))+a2

−1

)
(σX(X−P )−σY (X+∆−P ))

)


G2(X,P ) = P + γa2

(
a1 + a2

a1e−(ωσX(X−P )+(1−ω)σY (X+∆−P )) + a2
− 1

)
,

i.e., the two systems generate the same trajectories.
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3. Stability analysis
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Map G has a unique fixed point in

(X∗, P ∗) =

(
F − ∆

2
, F − ∆(ωσX − (1− ω)σY )

2(ωσX + (1− ω)σY )

)
.
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Map G has a unique fixed point in

(X∗, P ∗) =

(
F − ∆

2
, F − ∆(ωσX − (1− ω)σY )

2(ωσX + (1− ω)σY )

)
.

The Jacobian matrix for G computed in correspondence to it
reads as

JG(X∗, P ∗) =

 ∆2βγ̃σXσY
4 −∆2βγ̃σXσY

4

γ̃(ωσX + (1− ω)σY ) 1− γ̃(ωσX + (1− ω)σY )

 ,
where we set γ̃ = γa1a2

a1+a2
.
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2
, F − ∆(ωσX − (1− ω)σY )

2(ωσX + (1− ω)σY )

)
.

The Jacobian matrix for G computed in correspondence to it
reads as

JG(X∗, P ∗) =

 ∆2βγ̃σXσY
4 −∆2βγ̃σXσY

4

γ̃(ωσX + (1− ω)σY ) 1− γ̃(ωσX + (1− ω)σY )

 ,
where we set γ̃ = γa1a2

a1+a2
.

We use the well-known Jury conditions (see Jury, 1964):

det(J) < 1, 1 + tr(J) + det(J) > 0, 1− tr(J) + det(J) > 0.
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In our framework, we have

det(J) =
β∆2γ̃σXσY

4
, tr(J) =

β∆2γ̃σXσY
4

+ 1− γ̃(ωσX + (1− ω)σY ).
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In our framework, we have

det(J) =
β∆2γ̃σXσY

4
, tr(J) =

β∆2γ̃σXσY
4

+ 1− γ̃(ωσX + (1− ω)σY ).

Stability conditions with respect to β (for ∆ 6= 0)

Jury conditions are fulfilled if:

2(γ̃(ωσX + (1− ω)σY )− 2)

γ̃σXσY∆2
< β <

4

γ̃σXσY∆2
.

Usually, in the literature, increasing β has just a destabilizing
effect, while for us it may also be stabilizing.
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Stability conditions with respect to ∆ 6= 0
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- γ̃(ωσX + (1− ω)σY ) ≥ 2 and√
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γ̃σXσY β
< ∆ <

2√
γ̃σXσY β

,
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Stability conditions with respect to ∆ 6= 0

Jury conditions are fulfilled if:

- γ̃(ωσX + (1− ω)σY ) ≥ 2 and√
2(γ̃(ωσX + (1− ω)σY )− 2)

γ̃σXσY β
< ∆ <

2√
γ̃σXσY β

,

or

- γ̃(ωσX + (1− ω)σY ) < 2 and

∆ <
2√

γ̃σXσY β
.
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When ∆ = 0, the dynamics are generated just by the financial
market and it is locally asymptotically stable if

γ̃ <
2

ωσX + (1− ω)σY
.
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2

ωσX + (1− ω)σY
.

Due to the nonlinearity of the Walrasian mechanism, differ-
ently from De Grauwe and Rovira Kaltwasser (2012), we do
not have divergence issues when the isolated financial market
is unstable.
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When ∆ = 0, the dynamics are generated just by the financial
market and it is locally asymptotically stable if

γ̃ <
2

ωσX + (1− ω)σY
.

Due to the nonlinearity of the Walrasian mechanism, differ-
ently from De Grauwe and Rovira Kaltwasser (2012), we do
not have divergence issues when the isolated financial market
is unstable.

The flip bifurcation opens for us a route to chaos, not to di-
vergence.
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We will focus on the case with σX = σY = 1.
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We will focus on the case with σX = σY = 1.

⇒ the stability conditions with respect to β read as

2(γ̃ − 2)

γ̃∆2
< β <

4

γ̃∆2
.

⇒ the stability conditions with respect to ∆ read as√
2(γ̃ − 2)

γ̃β
< ∆ <

2√
γ̃β
,

if γ̃ ≥ 2,

or as

∆ <
2√
γ̃β
,

if γ̃ < 2.

⇒ when ∆ = 0, the stability condition simply becomes γ̃ < 2.
21



4. Numerical results
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The role of β
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We now use β as bifurcation parameter, like in De Grauwe and
Rovira Kaltwasser (2012).
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Rovira Kaltwasser (2012).

First scenario: destabilizing role of β

Figure 1: The bifurcation diagram with respect to β ∈ [0, 20] forX in blue,
Y in red and P in green, for γ = F = 1, ∆ = 0.8, a1 = a2 = 1, ω = 0.5,
and the initial conditions X(0) = 0.25, Y (0) = 1.2 and P (0) = 3.
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Figure 1: The bifurcation diagram with respect to β ∈ [0, 20] forX in blue,
Y in red and P in green, for γ = F = 1, ∆ = 0.8, a1 = a2 = 1, ω = 0.5,
and the initial conditions X(0) = 0.25, Y (0) = 1.2 and P (0) = 3.

The threshold for the flip bifurcation is β = 2(γ̃−2)
γ̃∆2 = −9.375 < 0.
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We now use β as bifurcation parameter, like in De Grauwe and
Rovira Kaltwasser (2012).

First scenario: destabilizing role of β

Figure 1: The bifurcation diagram with respect to β ∈ [0, 20] forX in blue,
Y in red and P in green, for γ = F = 1, ∆ = 0.8, a1 = a2 = 1, ω = 0.5,
and the initial conditions X(0) = 0.25, Y (0) = 1.2 and P (0) = 3.

The threshold for the flip bifurcation is β = 2(γ̃−2)
γ̃∆2 = −9.375 < 0.

The Hopf bifurcation occurs for β = 4
γ̃∆2 = 12.5.
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Second scenario: mixed role of β
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Second scenario: mixed role of β

Figure 2: The bifurcation diagram with respect to β ∈ [0, 3.5] for X in
blue, Y in red and P in green, for γ = 5, F = 2, ∆ = 0.8, a1 = a2 = 1, ω =
0.5, and the initial conditions X(0) = 1.5, Y (0) = 2.5 and P (0) = 3.
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Figure 2: The bifurcation diagram with respect to β ∈ [0, 3.5] for X in
blue, Y in red and P in green, for γ = 5, F = 2, ∆ = 0.8, a1 = a2 = 1, ω =
0.5, and the initial conditions X(0) = 1.5, Y (0) = 2.5 and P (0) = 3.

The flip bifurcation occurs for β = 2(γ̃−2)
γ̃∆2 = 0.625.
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Second scenario: mixed role of β

Figure 2: The bifurcation diagram with respect to β ∈ [0, 3.5] for X in
blue, Y in red and P in green, for γ = 5, F = 2, ∆ = 0.8, a1 = a2 = 1, ω =
0.5, and the initial conditions X(0) = 1.5, Y (0) = 2.5 and P (0) = 3.

The flip bifurcation occurs for β = 2(γ̃−2)
γ̃∆2 = 0.625.

The Hopf bifurcation occurs for β = 4
γ̃∆2 = 2.5.
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With a1 6= a2, complex dynamics can occur also for small values
of β.
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With a1 6= a2, complex dynamics can occur also for small values
of β.

Figure 3: The bifurcation diagram with respect to β ∈ [0, 2.3]
for X in blue, Y in red and P in green, for γ = 4.31, F =
2, ∆ = 0.8, a1 = 2.6, a2 = 1, ω = 0.5, and the initial conditions X(0) =
1.6, Y (0) = 2.5 and P (0) = 3.
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Third scenario: no stabilization with β
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Third scenario: no stabilization with β

Figure 4: The bifurcation diagram with respect to β ∈ [0, 10] for X in
blue, Y in red and P in green, for γ = 4, F = 2, ∆ = 0.8, a1 = 3, a2 =
2, ω = 0.5, and the initial conditions X(0) = 1.3, Y (0) = 2.5 and P (0) = 2.
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Third scenario: no stabilization with β

Figure 4: The bifurcation diagram with respect to β ∈ [0, 10] for X in
blue, Y in red and P in green, for γ = 4, F = 2, ∆ = 0.8, a1 = 3, a2 =
2, ω = 0.5, and the initial conditions X(0) = 1.3, Y (0) = 2.5 and P (0) = 2.

The stability conditions would read as

1.823 ' 2(γ̃ − 2)

γ̃∆2
< β <

4

γ̃∆2
' 1.302.
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The role of ∆
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The role of ∆

First scenario: destabilizing role of ∆

28



The role of ∆

First scenario: destabilizing role of ∆

Figure 5: The bifurcation diagram with respect to ∆ ∈ [0, 1] for X in blue,
Y in red and P in green, for γ = F = 1, β = 10, a1 = a2 = 1, ω = 0.5, and
the initial conditions X(0) = 0.25, Y (0) = 1.2 and P (0) = 3.
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The role of ∆

First scenario: destabilizing role of ∆

Figure 5: The bifurcation diagram with respect to ∆ ∈ [0, 1] for X in blue,
Y in red and P in green, for γ = F = 1, β = 10, a1 = a2 = 1, ω = 0.5, and
the initial conditions X(0) = 0.25, Y (0) = 1.2 and P (0) = 3.

The threshold for the flip bifurcation would be
√

2(γ̃−2)
γ̃β =

√
−0.6.
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The role of ∆

First scenario: destabilizing role of ∆

Figure 5: The bifurcation diagram with respect to ∆ ∈ [0, 1] for X in blue,
Y in red and P in green, for γ = F = 1, β = 10, a1 = a2 = 1, ω = 0.5, and
the initial conditions X(0) = 0.25, Y (0) = 1.2 and P (0) = 3.

The threshold for the flip bifurcation would be
√

2(γ̃−2)
γ̃β =

√
−0.6.

The Hopf bifurcation occurs for ∆ = 2√
γ̃β
' 0.894.
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Second scenario: mixed role of ∆
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Second scenario: mixed role of ∆

Figure 6: The bifurcation diagram with respect to ∆ ∈ [0, 0.5] for X in
blue, Y in red and P in green, for γ = 4.5, F = 1.3, β = 10, a1 = a2 =
1, ω = 0.5, and the initial conditions X(0) = 1.1, Y (0) = 1.4 and P (0) = 3.
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Second scenario: mixed role of ∆

Figure 6: The bifurcation diagram with respect to ∆ ∈ [0, 0.5] for X in
blue, Y in red and P in green, for γ = 4.5, F = 1.3, β = 10, a1 = a2 =
1, ω = 0.5, and the initial conditions X(0) = 1.1, Y (0) = 1.4 and P (0) = 3.

The flip bifurcation occurs for ∆ =
√

2(γ̃−2)
γ̃β ' 0.149.
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Second scenario: mixed role of ∆

Figure 6: The bifurcation diagram with respect to ∆ ∈ [0, 0.5] for X in
blue, Y in red and P in green, for γ = 4.5, F = 1.3, β = 10, a1 = a2 =
1, ω = 0.5, and the initial conditions X(0) = 1.1, Y (0) = 1.4 and P (0) = 3.

The flip bifurcation occurs for ∆ =
√

2(γ̃−2)
γ̃β ' 0.149.

The Hopf bifurcation occurs for ∆ = 2√
γ̃β
' 0.421.
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With a1 6= a2, complex dynamics can occur also for small values
of ∆.
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With a1 6= a2, complex dynamics can occur also for small values
of ∆.

Figure 7: The bifurcation diagram with respect to ∆ ∈ [0, 1.684]
for X in blue, Y in red and P in green, for γ = 4.2, F =
3, β = 0.5, a1 = 3.3, a2 = 1, ω = 0.5, and the initial conditions X(0) =
1.6, Y (0) = 4.5 and P (0) = 3.
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Third scenario: no stabilization with ∆
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Third scenario: no stabilization with ∆

Figure 8: The bifurcation diagram with respect to ∆ ∈ [0, 3] for X in
blue, Y in red and P in green, for γ = 5.4, F = 4, β = 0.5, a1 = 3.3, a2 =
1, ω = 0.5, and the initial conditions X(0) = 1.6, Y (0) = 4.5 and P (0) = 3.
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Third scenario: no stabilization with ∆

Figure 8: The bifurcation diagram with respect to ∆ ∈ [0, 3] for X in
blue, Y in red and P in green, for γ = 5.4, F = 4, β = 0.5, a1 = 3.3, a2 =
1, ω = 0.5, and the initial conditions X(0) = 1.6, Y (0) = 4.5 and P (0) = 3.

The stability conditions would read as

1.438 '

√
2(γ̃ − 2)

γ̃β
< ∆ <

2√
γ̃β
' 1.389.
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Economic interpretation
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Figure 9: The time series for X in blue, Y in red and P in green, respec-
tively, for γ = 5.1, F = 2, β = 5.35, a1 = a2 = 1, ω = 0.5, ∆ = 0.8, and
the initial conditions X(0) = 1.5, Y (0) = 2.5 and P (0) = 2.1.

33



Figure 9: The time series for X in blue, Y in red and P in green, respec-
tively, for γ = 5.1, F = 2, β = 5.35, a1 = a2 = 1, ω = 0.5, ∆ = 0.8, and
the initial conditions X(0) = 1.5, Y (0) = 2.5 and P (0) = 2.1.

The dynamics of price:
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The dynamics of price:

Since σX = σY = 1 and ω = 0.5, then

ED(t) = 0.5(X(t)− P (t)) + 0.5(Y (t)− P (t)).
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The dynamics of price:

Since σX = σY = 1 and ω = 0.5, then

ED(t) = 0.5(X(t)− P (t)) + 0.5(Y (t)− P (t)).

For t = t̄ : P (t) > Y (t) > X(t)⇒ ED(t) < 0⇒ P (t + 1) < P (t).
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tively, for γ = 5.1, F = 2, β = 5.35, a1 = a2 = 1, ω = 0.5, ∆ = 0.8, and
the initial conditions X(0) = 1.5, Y (0) = 2.5 and P (0) = 2.1.

The dynamics of price:

Since σX = σY = 1 and ω = 0.5, then

ED(t) = 0.5(X(t)− P (t)) + 0.5(Y (t)− P (t)).

For t = t̄ : P (t) > Y (t) > X(t)⇒ ED(t) < 0⇒ P (t + 1) < P (t).

For t = ¯̄t : Y (t) > P (t) > X(t) and |Y (t) − P (t)| > |X(t) − P (t)| ⇒
ED(t) > 0⇒ P (t + 1) > P (t).
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Figure 10: The time series for X in blue, Y in red, P in green, and πX−πY
in pink, for γ = 5.1, F = 2, β = 5.35, a1 = a2 = 1, ω = 0.5, ∆ = 0.8, and
the initial conditions X(0) = 1.5, Y (0) = 2.5 and P (0) = 2.1.
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34



Figure 10: The time series for X in blue, Y in red, P in green, and πX−πY
in pink, for γ = 5.1, F = 2, β = 5.35, a1 = a2 = 1, ω = 0.5, ∆ = 0.8, and
the initial conditions X(0) = 1.5, Y (0) = 2.5 and P (0) = 2.1.

The dynamics of fundamental values:

σX = σY = 1 ⇒ πX(t+ 1)−πY (t+ 1) = (P (t+ 1)−P (t))(X(t)−Y (t)).

For t = t̄ : P (t + 1) < P (t) ⇒ πX(t + 1)− πY (t + 1) > 0 ⇒ more
pessimism ⇒ X(t + 1) < X(t) and Y (t + 1) < Y (t).

34



Figure 10: The time series for X in blue, Y in red, P in green, and πX−πY
in pink, for γ = 5.1, F = 2, β = 5.35, a1 = a2 = 1, ω = 0.5, ∆ = 0.8, and
the initial conditions X(0) = 1.5, Y (0) = 2.5 and P (0) = 2.1.

The dynamics of fundamental values:

σX = σY = 1 ⇒ πX(t+ 1)−πY (t+ 1) = (P (t+ 1)−P (t))(X(t)−Y (t)).

For t = t̄ : P (t + 1) < P (t) ⇒ πX(t + 1)− πY (t + 1) > 0 ⇒ more
pessimism ⇒ X(t + 1) < X(t) and Y (t + 1) < Y (t).

For t = ¯̄t : P (t + 1) > P (t) ⇒ πX(t + 1)− πY (t + 1) < 0 ⇒ more
optimism ⇒ X(t + 1) > X(t) and Y (t + 1) > Y (t).
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Some multistability phenomena
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Some multistability phenomena

Figure 11: The bifurcation diagram with respect to β ∈ [1.5, 3] for P
with γ = 5, F = 2, ∆ = 0.8, a1 = 2.6, a2 = 1, ω = 0.5, and the initial
conditions X(0) = 1.3, Y (0) = 2.5, and P (0) = 2 for the blue points,
P (0) = 3 for the red points, and P (0) = 2.1 for the green points, respectively.

35



Figure 12: The (X,P )-phase portrait for β = 1.6.
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Figure 12: The (X,P )-phase portrait for β = 1.6.

⇒ coexistence between the fixed point and a chaotic attractor
in two pieces.
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Figure 13: The (X,P )-phase portrait for β = 1.9.
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Figure 13: The (X,P )-phase portrait for β = 1.9.

⇒ coexistence between an invariant curve and a chaotic at-
tractor in two pieces.
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Figure 14: The (X,P )-phase portrait for β = 2.604.
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Figure 14: The (X,P )-phase portrait for β = 2.604.

⇒ coexistence among a period-7 cycle and two chaotic attrac-
tors.
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5. Possible extensions
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Endogenous switching mechanism

X(t + 1) = F −∆
(

1
1+e−β(πX(t+1)−πY (t+1))

)
Y (t + 1) = F + ∆

(
1

1+eβ(πX(t+1)−πY (t+1))

)
P (t + 1) = P (t) + γa2

(
a1+a2

a1e−(ω(t)σX(X(t)−P (t))+(1−ω(t))σY (Y (t)−P (t)))+a2
− 1
)

ω(t + 1) = 1
1+e−µ(πX(t+1)−πY (t+1))
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1+e−µ(πX(t+1)−πY (t+1))

Logit mechanism by Brock and Hommes (1997) (or a different
mechanism based on squared errors between fundamentals and
price, like in Naimzada and Ricchiuti 2008, 2009).
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(
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a1e−(ω(t)σX(X(t)−P (t))+(1−ω(t))σY (Y (t)−P (t)))+a2
− 1
)

ω(t + 1) = 1
1+e−µ(πX(t+1)−πY (t+1))

Logit mechanism by Brock and Hommes (1997) (or a different
mechanism based on squared errors between fundamentals and
price, like in Naimzada and Ricchiuti 2008, 2009).

β = 0 ⇒ X(t + 1) = F − ∆
2 , Y (t + 1) = F + ∆

2 .

Hence, with β = 0 we are in the framework by De Grauwe
and Rovira Kaltwasser (2012) with bias a = ∆

2 , except for our
nonlinear price adjustment mechanism.
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Figure 15: The bifurcation diagram with respect to µ ∈ [0, 3] forX in blue,
Y in red and P in green, for γ = 4, F = 2, β = 0, a1 = 2, a2 = 1, ∆ = 1,
and the initial conditions X(0) = 1.6, Y (0) = 2.8 and P (0) = 3.
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Figure 15: The bifurcation diagram with respect to µ ∈ [0, 3] forX in blue,
Y in red and P in green, for γ = 4, F = 2, β = 0, a1 = 2, a2 = 1, ∆ = 1,
and the initial conditions X(0) = 1.6, Y (0) = 2.8 and P (0) = 3.

β = 0 ⇒ X ≡ F − ∆
2 = 1.5, Y ≡ F + ∆

2 = 2.5.
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Figure 15: The bifurcation diagram with respect to µ ∈ [0, 3] forX in blue,
Y in red and P in green, for γ = 4, F = 2, β = 0, a1 = 2, a2 = 1, ∆ = 1,
and the initial conditions X(0) = 1.6, Y (0) = 2.8 and P (0) = 3.

β = 0 ⇒ X ≡ F − ∆
2 = 1.5, Y ≡ F + ∆

2 = 2.5.

For the price, a flip bifurcation occurs for µ ' 0.55 and a Hopf
bifurcation occurs for µ ' 1.4.
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β 6= 0⇒ we generalize the framework in De Grauwe and Rovira
Kaltwasser (2012) (except for the price equation).
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Kaltwasser (2012) (except for the price equation).

Figure 16: The bifurcation diagram with respect to µ ∈ [0, 3] forX in blue,
Y in red and P in green, for γ = 4, F = 2, β = 0.2, a1 = 2, a2 = 1, ∆ = 1,
and the initial conditions X(0) = 1.6, Y (0) = 2.8 and P (0) = 3.
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and the initial conditions X(0) = 1.6, Y (0) = 2.8 and P (0) = 3.

β 6= 0 ⇒ X(t) and Y (t) are no more constant.
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β 6= 0⇒ we generalize the framework in De Grauwe and Rovira
Kaltwasser (2012) (except for the price equation).

Figure 16: The bifurcation diagram with respect to µ ∈ [0, 3] forX in blue,
Y in red and P in green, for γ = 4, F = 2, β = 0.2, a1 = 2, a2 = 1, ∆ = 1,
and the initial conditions X(0) = 1.6, Y (0) = 2.8 and P (0) = 3.

β 6= 0 ⇒ X(t) and Y (t) are no more constant.

A flip bifurcation occurs for µ ' 0.3 and a Hopf bifurcation
occurs for µ ' 1.25.
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Another extension: consider (possibly) different degrees of op-
timism and pessimism for agents, i.e., ∆X 6= ∆Y ∈ [0, F ].
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A further extension: similarly to De Grauwe and Rovira Kalt-
wasser (2012), consider a third group of unbiased agents and
investigate their effect on the dynamics of the system
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Relaxing the symmetry condition
Another extension: consider (possibly) different degrees of op-
timism and pessimism for agents, i.e., ∆X 6= ∆Y ∈ [0, F ].

In this case for all t it holds that

Y (t+ 1) = X(t+ 1) + ∆X
1

1 + e−β(πX(t+1)−πY (t+1))
+ ∆Y

1

1 + eβ(πX(t+1)−πY (t+1))

⇒ three-dimensional dynamics.

Unbiased fundamentalists
A further extension: similarly to De Grauwe and Rovira Kalt-
wasser (2012), consider a third group of unbiased agents and
investigate their effect on the dynamics of the system
→ does the stability region become larger?
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