Self-Similar Measures in Multi-Sector Endogenous Growth Models

Davide La Torre∗ , Simone Marsiglio† and Fabio Privileggi‡

∗Dept. of Economics, Management and Quantitative Methods – Universit`a di Milano †School of Business – James Cook University, Cairns (QLD, Australia) ‡Dept. of Economics and Statistics "Cognetti de Martiis" – Universit`a di Torino

8 th Workshop "Dynamic Models in Economics and Finance" September, 18-20, 2014 – Urbino (Italy)

Introduction

- We analyze 2 types of stochastic discrete time multi-sector endogenous growth models:
- **1** a basic Lucas-Uzawa (1988) model and
- ² an extended three sector version as in La Torre and Marsiglio (2010)
- In both models we explicitly compute the optimal dynamics which, as the models may exhibit sustained growth, can diverge in the long-run
- Thus we focus on the dynamics of (different types of capital) ratio variables
- Through a log-transformation, they become linear Iterated Function Systems (IFS) converging to some self-similar invariant measure, possibly supported on a fractal set
- We determine parameters' configurations under which such measures turn out to be singular or, in some special cases, absolutely continuous.

The standard 2-sector Lucas-Uzawa model (1988)

$$
V(k_0, h_0, z_0) = \max_{\{c_t, u_t\}_{t=0}^{\infty}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \ln c_t
$$

s.t.
$$
\begin{cases} k_{t+1} = z_t k_t^{\alpha} (u_t h_t)^{1-\alpha} - c_t \\ h_{t+1} = b (1 - u_t) h_t \\ k_0 > 0, h_0 > 0, z_0 \in \{q, 1\} \text{ are given} \end{cases}
$$

- \bullet 0 < β < 1 rate of time preference
- \bullet c_t consumption
- \bullet k_t physical capital
- *h*t human capital
- **■** 0 < *α* < 1 physical capital share
- \bullet 0 $\lt u_t$ $\lt 1$ proportion of human capital employed in physical production
- $b > 0$ productivity coefficient of (linear) human capital production
- *z*t *iid* exogenous shock multiplicatively affecting final production, it takes on two values, $z_t \in \{q, 1\}$, $0 < q < 1$
- Educational choices are not affected by eventual shocks

Assumption

Only 2 shock values can occur with positive probability, $z_t \in \{q, 1\}$, ⁰ < *^q* < ¹*, each with (constant) probability p and* ¹ [−] *p, respectively*

- **Interpretation: at any time, given the realization of the random** shocks, the economy may be in 2 alternative situations:
- an economic crisis due to a supply shock, $z_t = q$, lowering physical productivity
- 2 a business-as-usual scenario with no shocks, $z_t = 1$, in which the whole economy evolves along its full capacity

Optimal dynamics computation

• Thanks to the log-Cobb-Douglas specification, we can apply the Verification principle to the Bellman equation and analytically obtain the value function $V(k, h, z)$ plus the optimal dynamics of control and state variables:

$$
c_t = (1 - \alpha \beta) (1 - \beta)^{1 - \alpha} z_t k_t^{\alpha} h_t^{1 - \alpha}
$$

\n
$$
u_t \equiv 1 - \beta \quad \forall t
$$

\n
$$
k_{t+1} = \alpha \beta (1 - \beta)^{1 - \alpha} z_t k_t^{\alpha} h_t^{1 - \alpha}
$$

\n
$$
h_{t+1} = b \beta h_t
$$

- Consumption is proportional to output; *i.e.*, the saving rate is \bullet constant (as in Solow, 1956)
- The share of human capital employed in final production is constant (as in Bethmann, 2007)
- k_t and h_t are diverging whenever $b > 1/\beta$
- **•** Hence, we take **physical to human capital ratio**,

$$
\chi_t = \frac{k_t}{h_t},
$$

which reduces the 2-dimensional system into a 1-dimensional dynamic that evolves over time according to:

$$
\chi_{t+1} = \sigma z_t \chi_t^{\alpha},
$$

with $\sigma = \frac{\alpha (1 - \beta)^{1 - \alpha}}{b}$

• The associated nonlinear IFS is defined by the two maps

$$
\begin{cases} f_0(\chi) = \sigma q \chi^{\alpha} & \text{with probability } p \\ f_1(\chi) = \sigma \chi^{\alpha} & \text{with probability } 1 - p \end{cases}
$$

- which eventually is being trapped into (a subset of) the compact interval $[\chi_0^*,\chi_1^*]$ $(\chi_0^*$ and χ_1^* are the fixed points of f_0 and $f_1)$
- \bullet If [\(1\)](#page-6-0) converges to an invariant measure supported over (a subset of) $[\chi_{0}^*,\chi_{1}^*]$, then we have a **stochastic balanced growth path (SBGP)** equilibrium, the stochastic equivalent of a typical equilibrium in deterministic endogenous growth theory

(1)

- Whenever $\alpha > q$ the IFS [\(1\)](#page-6-0) turns out to be **non-contractive**, as there exists a right neighborhood of the left fixed point χ_1^* on which $f_1' > 1$.
- In this case, the general theory on IFS establishing convergence to a unique invariant measure cannot be directly applied, as it is based on the assumption that the maps of the IFS are contractions
- However, the next Proposition establishes the existence of a unique invariant measure for [\(1\)](#page-6-0) indirectly.

Conjugate linear IFS

Proposition

The one-to-one logarithmic transformation $\chi_t \to \varphi_t$ *defined by:*

$$
\varphi_t = -\frac{1-\alpha}{\ln q} \ln \chi_t + 1 + \frac{\ln \sigma}{\ln q},
$$

defines a contractive linear IFS (a similitude*) equivalent to the original nonlinear dynamics* $\chi_{t+1} = \sigma z_t \chi_t^{\alpha}$, which is composed of two maps $w_0, w_1 : [0, 1] \rightarrow [0, 1]$ *(*0 *and* 1 *are the fixed points of* w_0 *and* w_1 *) given by:*

$$
\begin{cases}\nw_0(\varphi) = \alpha \varphi & \text{with probability } p \\
w_1(\varphi) = \alpha \varphi + (1 - \alpha) & \text{with probability } 1 - p.\n\end{cases}
$$
\n(2)

The IFS [\(2\)](#page-8-0) converges weakly to a unique self-similar *measure supported on an attractor which is either the interval* [0, 1] *when* 1/2 ≤ *α* ≤ 1 *or a Cantor set when* 0 < *α* < 1/2

- Apart from the constant $\sigma = \left[\alpha \left(1 \beta \right)^{1 \alpha} \right] / b$, our nonlinear—as well as linear—optimal dynamics turn out to be the same as those of the 1-sector stochastic optimal growth model in Mitra et al. (2003)
- The novelty here is that what converges to an invariant measure supported on a Cantor set is a transformation of the physical to human capital ratio (and not a transformation of physical capital)
- **•** Hence, we have shown that also an economy experiencing sustained growth can exhibit a long-run pattern related to some fractal attractor
- Specifically, the SBGP equilibrium has a fractal nature.

A nonlinear non-contractive IFS that converges to a unique invariant measure

The following Corollary establishes weak convergence of the nonlinear IFS to a unique invariant measure also when $\alpha > q$, that is, when it is *non-contractive*

Corollary

For any 0 < *α* < 1*,* 0 < *β* < 1*,* 0 < *q* < 1*,* 0 < *p* < 1*, and b* > 1/*β (the latter envisaging sustained growth), the nonlinear IFS [\(1\)](#page-6-0) weakly converges to a unique invariant measure supported either over the full* $\int \text{interval} \left[\chi_0^*, \chi_1^* \right]$ *or over some subset of it. In the latter case, whenever* $0 < \alpha < 1/2$ *the attractor of [\(1\)](#page-6-0) is a generalized topological Cantor set—i.e., totally disconnected and perfect—contained in* $[\chi_0^*, \chi_1^*]$

An example

Figure: the nonlinear maps f_0 and f_1 in [\(1\)](#page-6-0) when $\alpha = 1/3$, $q = 1/6$, $p = 2/3$, $\beta = 0.96$ and $b = 1.052 > 1/\beta$ (sustained growth). Such IFS is non-contractive, as the Lipschitz constant $\lambda_1 = f'_1(\chi_0^*) = \alpha/q = 2$ associated to f_1 is larger than 1; its attractor is a generalized topological Cantor set as $f_0(\chi_1^*) < f_1(\chi_0^*)$.

Singular vs. absolute continuous self-similar measures

Theorem (Peres & Solomyak, 1998; Mitra et al., 2003)

Let µ ∗ *be the self-similar measure associated to the IFS [\(2\)](#page-8-0),* $(\alpha \varphi, \alpha \varphi + (1 - \alpha)$; p , $(1 - p)$), on [0, 1].

- i) *If* $0 < \alpha < p^p (1-p)^{1-p}$, then μ^* is singular.
- ii) *If* $\alpha = p^p (1-p)^{1-p}$ and $p \neq 1/2$, then μ^* is singular.
- iii) *If α* = *p* = 1/2*, then µ* ∗ *is absolutely continuous—it is the uniform (Lebesgue) measure over* [0, 1]*.*
- iv) *If* 1/3 ≤ *p* ≤ 2/3*, then µ* ∗ *is absolutely continuous for Lebesgue a.e.* $p^p (1-p)^{1-p} < a < 1$ *.*
- v) *If* 0.156 < *p* < 1/3 *or* 2/3 < *p* < 0.844*, then µ* ∗ *is absolutely continuous for Lebesgue a.e.* $p^p (1-p)^{1-p} < \alpha < 0.649$ *, while, for any* $1 < \gamma \le 2$ *such* ${\left[p^{\gamma} + \left(1 - p \right)^{\gamma} \right]}^{1/(\gamma-1)} < 0.649, \ \mu^*$ has density in L^{γ} *for Lebesgue a.e.* $[p^{\gamma} + (1-p)^{\gamma}]^{1/(\gamma-1)} \le \alpha < 0.649$ *.*

The last result in a bifurcation diagram

Figure: *S*: singular measure; *H*: *a.e.* absolutely continuous measures with density in L^2 ; G: *a.e.* absolutely continuous measures with density in L^γ , with $1 < \gamma \leq 2$; *U*: unknown area.

- \bullet Now human capital is endogenously allocated across three sectors: 1) *physical capital*, 2) *human capital* and 3) *knowledge (technology)*.
- (Cobb-Douglas) final production uses all 3 factors, (Cobb-Douglas) knowledge production uses knowledge and human capital, while (linear) human capital uses only itself

A 3-Sector Model II

$$
V(k_0, h_0, a_0, z_0, \eta_0) = \max_{\{c_t, u_t, v_t\}_{t=0}^{\infty}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \ln c_t
$$

s.t.
$$
\begin{cases} k_{t+1} = z_t k_t^{\alpha} (u_t h_t)^{\gamma} a_t^{1-\alpha-\gamma} - c_t \\ h_{t+1} = b (1 - u_t - v_t) h_t \\ a_{t+1} = \eta_t (v_t h_t)^{\phi} a_t^{1-\phi} \\ k_0 > 0, h_0 > 0, a_0 > 0, z_0 \in \{q_1, q_2, 1\}, \ \eta_0 \in \{r, 1\} \text{ given} \end{cases}
$$

∞

- Everything as in previous model plus:
	- \bullet 0 $< \gamma < 1 \alpha$ human capital share in final production
	- \bullet 0 $< \phi < 1$ human capital share in knowldege production
	- \bullet 0 \lt ν_t \lt 1 proportion of human capital employed in knowledge production
	- *η*t another *iid* exogenous shock that multiplicatively affects only knowledge production—besides z_t affecting final production
- **•** Again educational choices are not affected by exogenous shocks

Uncertainty

There are 2 *iid* exogenous shocks, z_t and η_t , multiplicatively affecting respectively the production of the final good and that of knowledge

Assumption

Only 3 pairs of shock values can occur with positive probability, $(z_t, \eta_t) \in \{(q_1, r), (q_2, 1), (1, 1)\}$, with $0 < q_1 < q_2 < 1$ and $0 < r < 1$, *each with (constant) probability* p_0 *,* p_1 *,* p_2 *,* $0 < p_i < 1$ *for all i, respectively, with* $\sum_{i=0}^2 p_i = 1$

- Interpretation: at any time the economy may be in 3 situations:
- \bullet deep financial crisis with wide effects on the whole economy, involving both production and knowledge sectors: $(z_t, \eta_t) = (q_1, r)$
- 2 a sudden surge in raw materials' (oil) prices affecting only production sector but not that of knowledge: $(z_t, \eta_t) = (q_2, 1)$
- \bullet no shocks, the economy evolves along full capacity: $(z_t, \eta_t) = (1, 1)$

Optimal dynamics computation

• Thanks to the log-Cobb-Douglas specification, we can apply the Verification principle to the Bellman equation and analytically obtain the value function $V(k, h, z)$ plus the optimal dynamics of control and state variables:

$$
c_{t} = (1 - \alpha \beta) \overline{u}^{\gamma} z_{t} k_{t}^{\alpha} h_{t}^{\gamma} a_{t}^{1-\alpha-\gamma},
$$

\n
$$
u_{t} \equiv \frac{\gamma (1 - \beta) (1 - \beta + \beta \phi)}{\gamma (1 - \beta) + \beta \phi (1 - \alpha)} = \overline{u} \qquad \forall t
$$

\n
$$
v_{t} \equiv \frac{\beta \phi (1 - \alpha - \gamma) (1 - \beta)}{\gamma (1 - \beta) + \beta \phi (1 - \alpha)} = \overline{v} \qquad \forall t
$$

\n
$$
k_{t+1} = \alpha \beta \overline{u}^{\gamma} z_{t} k_{t}^{\alpha} h_{t}^{\gamma} a_{t}^{1-\alpha-\gamma}
$$

\n
$$
h_{t+1} = b (1 - \overline{u} - \overline{v}) h_{t}
$$

\n
$$
a_{t+1} = \overline{v}^{\phi} \eta_{t} h_{t}^{\phi} a_{t}^{1-\phi}
$$

Detrended dynamics

- k_t and h_t and a_t are diverging whenever $b > 1/(1 \overline{u} \overline{v})$
- Hence, we take the the physical to human capital and the knowledge to human capital ratio variables,

$$
\chi_t = \frac{k_t}{h_t} \quad \text{and} \quad \omega_t = \frac{a_t}{h_t},
$$

which reduces the 3-dimensional system into a 2-dimensional nonlinear dynamic that evolves over time according to:

$$
\begin{cases}\n\chi_{t+1} = \Delta z_t \chi_t^{\alpha} \omega_t^{1-\alpha-\gamma} \\
\omega_{t+1} = \Theta \eta_t \omega_t^{1-\phi} \\
\text{with } \Delta = \frac{\alpha \beta \overline{u}^{\gamma}}{b \left(1 - \overline{u} - \overline{v}\right)} \qquad \text{and} \qquad \Theta = \frac{\overline{v}^{\phi}}{b \left(1 - \overline{u} - \overline{v}\right)}\n\end{cases}
$$
\n(3)

If this system converges to an invariant measure supported over some compact set of \mathbb{R}^2 , then we have a SBGP equilibrium

Conjugate linear IFS I

Proposition

Assume that $\phi \neq 1-\alpha$ *and parameters* q_1 *,* q_2 *satisfy* $q_1 < q_2^2$ *if* $\phi < 1-\alpha$ σr $q_1 > q_2^2$ *if* $\phi > 1 - \alpha$ *, and let* $r = (q_1/q_2^2)^{\frac{1-\alpha-\phi}{1-\alpha-\gamma}}$. *Then, the one-to-one transformation* $(\chi_t, \omega_t) \rightarrow (\varphi_t, \psi_t)$ *defined by*

$$
\varphi_t = \rho_1 \ln \chi_t + \rho_2 \ln \omega_t + \rho_3
$$

$$
\psi_t = \rho_4 \ln \omega_t + \rho_5
$$

where

$$
\rho_1 = -\frac{1-\alpha}{2\ln q_2}, \ \rho_2 = \frac{(1-\alpha-\gamma)(1-\alpha)}{2(1-\alpha-\phi)\ln q_2}, \ \rho_3 = 1 + \frac{1}{2\ln q_2} \left(\ln \Delta - \frac{1-\alpha-\gamma}{1-\alpha-\phi} \ln \Theta \right),
$$

$$
\rho_4 = \frac{(1-\alpha-\gamma)\phi}{(1-\alpha-\phi)} \ln \left(\frac{q_2^2}{q_1} \right), \ \rho_5 = 1 + \frac{(1-\alpha-\gamma)}{(1-\alpha-\phi)} \ln \left(\frac{q_1}{q_2^2} \right) \ln \Theta,
$$

defines a contractive linear IFS which is equivalent to the nonlinear dynamics in [\(3\)](#page-18-0)

Proposition (... continued)

Such IFS is composed of the following 3 maps w_0 *,* w_1 *,* w_2 *:* $\mathbb{R}^2 \to \mathbb{R}^2$ *:*

$$
\begin{cases}\nw_0(\varphi, \psi) = (\alpha \varphi, (1 - \phi) \psi) & \text{with prob. } p_0 \\
w_1(\varphi, \psi) = (\alpha \varphi + (1 - \alpha) / 2, (1 - \phi) \psi + \phi) & \text{with prob. } p_1 \\
w_2(\varphi, \psi) = (\alpha \varphi + (1 - \alpha), (1 - \phi) \psi) & \text{with prob. } p_2\n\end{cases}
$$
\n(4)

and converges weakly to a unique self-similar measure supported on a generalized Sierpinski gasket *with vertices* (0, 0)*,* (1/2, 1) *and* (1, 0)

• Rewriting (4) as

$$
\begin{cases}\n\varphi_{t+1} = \alpha \varphi_t + \zeta_t \\
\psi_{t+1} = (1 - \phi) \psi_t + \vartheta_t,\n\end{cases}
$$

one can see that the random vector $(\zeta_t, \vartheta_t) \in \mathbb{R}^2$ taking the 3 values $(0, 0)$, $((1 - \alpha) / 2, \phi)$ and $(1 - \alpha, 0)$ corresponds to the 3 values (q_1, r) , $(q_2, 1)$ and $(1, 1)$ for the original random variables (z_t, η_t)

If the contraction mappings w_i in a IFS on \mathbb{R}^n are similitudes, *i.e.*, if there exist numbers $0 < \lambda_i < 1$ such that

$$
d(w_i(x), w_i(y)) = \lambda_i d(x, y), \quad \forall x, y \in X, \quad i = 0, ..., m-1,
$$

the attractor \mathcal{A}^* and the invariant measure μ^* of the IFS are said to be self-similar

- An IFS satisfies the open set condition (OSC) if there exists a nonempty open set *U* such that w_i (*U*) $\subset U$ for all $i = 0, \ldots, m - 1$ and w_i (*U*) $\cap w_i$ (*U*) = \varnothing for all $i \neq j$
- The OSC requires that the image sets of the attractor, $w_i\left(A^*\right)$, have only "*small overlap*" ("just touching")

Theorem (Ngai and Wang, 2005)

Let $(w; p)$ be an IFS on \mathbb{R}^n with maps $w_i : \mathbb{R}^n \to \mathbb{R}^n$ defined by $w_i(x) = \lambda_i Q_i x + \xi_i$, $i = 0, \ldots, m-1$, where $0 < \lambda_i < 1$, $\xi_i \in \mathbb{R}^n$ and Q_i *is an orthogonal n* \times *n matrix, and let p* = $(p_0, p_1, \ldots, p_{m-1})$ *be the associated probability weights. Denote by µ* ∗ *the self-similar invariant measure defined by* (*w*; *p*)

- i) If $\prod_{i=0}^{m-1} p_i^{p_i} \lambda_i^{-np_i} > 1$, then μ^* is singular
- ii) *If* $\prod_{i=0}^{m-1} p_i^{p_i} \lambda_i^{-np_i} = 1$ *but* $p_i \neq \lambda_i^n$ for some i, then μ^* is *singular*
- iii) *If* $p_i = \lambda_i^n$ for all $i = 0, ..., m-1$, then μ^* is absolutely *continuous if and only if the IFS* (*w*; *p*) *satisfies the open set condition (OSC). In this case µ* ∗ *is the uniform (n-dimensional Lebesgue) measure over the attractor* A^* ⊂ \mathbb{R}^n
- The (critical) assumption $\phi \neq 1 \alpha$ in our result establishing the one-to-one correpondence between the nonlinear dynamics in [\(3\)](#page-18-0) and the linear IFS [\(4\)](#page-20-0) implies that *the latter cannot be a similitude*
- This precludes the possibility of applying the Ngai and Wang (2005) Theorem to say something on singularity vs.absolute continuity of μ^*
- However, we believe that our result holds when $\phi = 1 \alpha$ as well, and we trust we'll find a way to prove it

A conjecture

- Hence, through a partial application of Ngai and Wang (2005) Theorem, we conjecture at least the following Proposition
- Let $p_2 = 1 p_0 p_1$ and define the (exponential of the) *entropy of the Bernoulli process* underlying the exogenous shocks in our model as

$$
E(p_0, p_1) = p_0^{p_0} p_1^{p_1} (1 - p_0 - p_1)^{1 - p_0 - p_1}
$$

Proposition

If $\phi = 1 - \alpha$, then the self-similar measure μ^* associated to our linear iFS *on the square* $\left[0,1\right]^2$ *is singular whenever* $0 < \alpha \leq \sqrt{E\left(p_0, p_1\right)}$

At any rate, nothing can be said on the possible absolute continuity of μ^* when $\sqrt{E\left(p_0,\, p_1\right)} < \alpha < 1$

An illustration of the last result

Figure: plot of the square root of of the entropy curve, $\sqrt{E(p_0, p_1)}$, on the unitary simplex. Any *α*-value on or below such curve characterizes an IFS that weakly converges to a singular self-similar measure supported on a generalized Sierpinski gasket with vertices $(0, 0)$, $(1/2, 1)$ and $(1, 0)$.

- We keep constant $\beta = 0.96$, $q_1 = 0.2$ and $q_2 = 0.6$, we set $\gamma = \phi$ and $b = 1/(1 - \overline{u} - \overline{v}) + 0.01$, so to have always sustained growth
- *γ* = *φ* implies that $r = q_1/q_2^2 \equiv 0.556$ and $q_1 = 0.2 < 0.36 = q_2^2$ holds, which implies that we must choose values for the key parameters *^α*, *^φ* satisfying *^φ* < ¹ [−] *^α*
- We decide to link parameter *φ* to our choice of parameter *α* according to

$$
\phi=1-\alpha-0.001,
$$

so that $\phi < 1 - \alpha$ holds, but at the same time we keep very close to the condition $\phi = 1 - \alpha$ required by the last Proposition

Example 1

Figure: (a) first 8 iterations of the linear IFS for (a) $\alpha = 0.5$, $\phi = 0.499$, and (b) its corresponding distorted nonlinear counterpart. $(\chi_0^*,\omega_0^*),\, (\chi_1^*,\omega_1^*)$ and (χ_2^*, ω_2^*) are the fixed points of the 3 maps of the nonlinear IFS. As $\alpha = 1/2 < \mathsf{min} \, \sqrt{E\left(p_{0}, p_{1}\right)} \cong 0.5806,\, \mu^{*}$ should be *singular*.

Example 2

Figure: (a) first 8 iterations of the linear IFS for (a) $\alpha = 0.4$, $\phi = 0.599$, and (b) its corresponding distorted nonlinear counterpart. Again *µ* ∗ should be *singular*, as clearly confirmed by the strong no-overlapping of the prefractals.

Example 3

Figure: (a) first 8 iterations of the linear IFS for (a) $\alpha = 1/\sqrt{3}$, $\phi = 0.4216$, and (b) its nonlinear counterpart. Again, as $\alpha = 1/\sqrt{3} \approx 0.5774 < \min \sqrt{E(p_0, p_1)}$ ∼= 0.5806, *µ* ∗ should be *singular*, although the degree of overlapping of the prefrectals would lead to believe that it may be absolutely continuous.