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1 Introduction
The basic linear ‘cobweb’ model

• price dynamics in a market of a non-storable good with a production lag

• suppliers must form price expectations and undertake output decisions one
time period ahead (e.g. agricultural markets)

• linear demand and supply curves, naïve expectations (P et = Pt−1)

• explosive, constant, or damped oscillations according as to the slope of the
supply schedule is larger than, equal to, or smaller than the slope of the demand
schedule (in modulus)
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Nonlinear extensions / cyclical and complex price dynamics
Single market

• Chiarella (1988), Puu (1991), Day (1994), Hommes (1994, 1998): nonlin-
earities in demand and supply curves, adaptive expectations schemes (e.g.
P et = (1− α)P et−1 + αPt−1)

• Brock and Hommes (1997), Goeree and Hommes (2000), Branch (2002), Chiarella
and He (2003): linear demand and supply, producers switching among free
naïve or costly rational expectation formation rules

• Boussard (1996), Chiarella et al. (2006): boundedly rational heterogeneous
producers, endogenously varying second-moment beliefs, risk aversion

Multiple markets

• Hommes and van Eekelen (1996), Currie and Kubin (1995): interdependent
cobweb economies, linked from the side of demand (complements or substitutes
goods).
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This model: supply-side nonlinear interactions

• Two markets, X and Z

• N producers, WX and WZ = 1−WX : their proportions in each market

• Supply of a single producer, e.g. in market X: SX,t = (PX,t−1 − cX)/dX

• Supply curve, e.g. in market X becomes

SaX,t = NWXSX,t = NWX
PX,t−1 − cX

dX

• For fixed N , changes in the distribution of producers across markets result in
changes of the slope of SaX

• Such changes are produced endogenously in this model (which becomes a non-
linear model).



Interacting ‘cobweb’ markets

• When farmers reduce their production of rye because they expect a lower price,
they are likely to increase their production in another market, say, the wheat
market. In our framework producers may select between one of two markets

• The choice depends on how profitable the two markets have been in the recent
past and is updated over time

• As a consequence, the demand curves remain unchanged, while the position
of the supply curves may change over time endogenously, because the number
of producers in each market is time-varying (depending on realized profits).
This introduces nonlinearity into the model

• Impact on the local stability properties of the long-run equilibrium prices and
on the global dynamics



2 The model
• Two markets (goods) X and Z, fixed number of producers (N), WX,t, WZ,t =
1−WX,t, their proportions in markets X and Z (in period t)

• Linear demand curves (aX , aZ , bX , bZ > 0)

DX,t = (aX − PX,t)/bX ; DZ,t = (aZ − PZ,t)/bZ

• Linear supply of a single producer under naïve expectations, Et−1[Pt] = Pt−1
(cX , cZ ≥ 0, dX , dZ > 0)

SX,t = (PX,t−1 − cX)/dX ; SZ,t = (PZ,t−1 − cZ)/dZ

• An individual producer either supplies quantity SX,t of goodX, or SZ,t of good
Z; NWX,t SX,t, NWZ,t SZ,t, total supply in the two markets

• Market clearing occurs in every period implying that DX,t = NWX,tSX,t,
DZ,t = NWZ,tSZ,t



• Market clearing conditions yield the laws of motion of the two prices

PX,t = aX −
bX
dX
NWX,t(PX,t−1 − cX), PZ,t = aZ −

bZ
dZ
NWZ,t(PZ,t−1 − cZ)

Remarks

• Formally, time-varying quantities bXNWX,t, bZNWZ,t, replace ‘demand’ para-
meter b used above to illustrate the ‘textbook’ cobweb.

• Constant proportionsWX,t =WX ,WZ,t =WZ result in two independent first-
order linear difference equations. The unique fixed point, e.g. of market X
is

PX =
aXdX +NWXbXcX
dX +NWXbX

and it is Locally Asymptotically Stable (LAS) iff (NWXbX)/dX < 1

• Time varying fractions, dependent on past relative profitability, result in in-
terdependent markets



Time-varying proportions

• Bounded rational producers tend to select the market with the higher realized
profit (in the last period).

• WX,t and WZ,t determined via a discrete-choice model (see e.g. Brock and
Hommes 1997, 1998)

WX,t =
exp(f πX,t−1)

exp(f πX,t−1) + exp(f πZ,t−1)
; WZ,t = 1−WX,t

• πX,t−1, πZ,t−1 most recent realized profits, under quadratic cost functions of
the type C(St) = cSt + eS2t

πX,t−1 = (PX,t−1−cX)SX,t−1−eXS2X,t−1; πZ,t−1 = (PZ,t−1−cZ)SZ,t−1−eZS2Z,t−1

f ≥ 0: intensity of choice (sensitivity of the mass of producers to selecting the
most profitable market)



Cost parameters, ‘risk perception’ and supply curves

• Producers’ expectation of the profit in period t

πet := P et St − C(St) = (P et − c)St − eS2t

• The output choice of profit-maximizing producers

St =
P et − c
2e = argmaxπet

• The output choice of risk-averse producers, maximizing risk-adjusted expected
profit (γ constant absolute risk aversion parameter, σ2P,t price variance)

St =
P et − c
2e+ γσ2P,t

= argmax
{
πet −

γ
2S

2
t σ2P,t

}

• In general (under naïve expectations and constant variance σ2P )

St = (Pt−1 − c)/d

where d := 2e+ γσ2P > 2e (d = 2e for risk-neutral producers).



Summary of the general model
Market-clearing prices

PX,t = aX −
bX
dX
NWX,t(PX,t−1 − cX)

PZ,t = aZ −
bZ
dZ
NWZ,t(PZ,t−1 − cZ)

Proportions of producers in markets X and Z

WX,t =
exp(f πX,t−1)

exp(f πX,t−1) + exp(f πZ,t−1)
; WZ,t = 1−WX,t

Realized profits

πX,t−1 = (PX,t−1 − cX)SX,t−1 − eXS2X,t−1; πZ,t−1 = (PZ,t−1 − cZ)SZ,t−1 − eZS2Z,t−1

Quantities supplied

SX,t−1 = (PX,t−2 − cX)/dX ; SZ,t−1 = (PZ,t−2 − cZ)/dZ
A system of two nonlinear second-order difference equations



Dynamical system
Define

Ωt :=WX,t −WZ,t = tanh
[
f
2 (πX,t−1 − πZ,t−1)

]

with −1 < Ωt < 1, where Ωt → 1 ⇔ WX,t → 1 and Ωt →−1 ⇔ WZ,t → 1.
Note that

WX,t = (1 + Ωt)/2, WZ,t = (1−Ωt)/2.
We rewrite the model as a 4-D dynamical system in PX , PZ , SX , SZ :

PX,t =
aXdX − gX(1 + Ωt)(PX,t−1 − cX)

dX
, PZ,t =

aZdZ − gZ(1− Ωt)(PZ,t−1 − cZ)
dZ

SX,t =
PX,t−1 − cX

dX
, SZ,t =

PZ,t−1 − cZ
dZ

where gX := (NbX)/2, gZ := (NbZ)/2, and Ωt := Ω(PX,t−1, PZ,t−1, SX,t−1, SZ,t−1),
namely:

Ωt = tanh
{
f
2
[
(PX,t−1 − cX)SX,t−1 − eXS2X,t−1 − (PZ,t−1 − cZ)SZ,t−1 + eZS2Z,t−1

]}



3 Steady state

• Steady-state (s.s.) difference of proportions Ω is implicitly defined by

Ω = tanh
{
f
2

[
(dX − eX)(aX − cX)2[
dX + gX(1 + Ω)

]2 − (dZ − eZ)(aZ − cZ)
2

[
dZ + gZ(1−Ω)

]2

]}

where s.s. prices, quantities, profits are given, respectively, by

PX =
aXdX + gX(1 + Ω)cX
dX + gX(1 + Ω)

, PZ =
aZdZ + gZ(1−Ω)cZ
dZ + gZ(1− Ω)

SX =
PX − cX
dX

= aX − cX
dX + gX(1 + Ω)

, SZ =
PZ − cZ
dZ

= aZ − cZ
dZ + gZ(1− Ω)

πX= (dX−eX)S
2
X=

(dX − eX)(aX − cX)2[
dX + gX(1 + Ω)

]2 , πZ= (dZ−eZ)S
2
Z=
(dZ − eZ)(aZ − cZ)2[
dZ + gZ(1−Ω)

]2

• Uniqueness of the s.s. can be easily proven (though s.s. cannot be computed
explicitly), s.s. coordinates depend on f



Steady state: two ‘benchmark’ scenarios

(i) fixed-proportions model with the actual steady state proportions of the com-
plete model:

PX,t = aX −
bX
dX
NWX(PX,t−1 − cX), PZ,t = aZ −

bZ
dZ
NWZ(PZ,t−1 − cZ)

i.e.

PX,t =
aXdX − gX(1 + Ω)(PX,t−1 − cX)

dX
, PZ,t =

aZdZ − gZ(1−Ω)(PZ,t−1 − cZ)
dZ

The s.s. of the two isolated markets are LAS, respectively, iff
gX
dX
(1 + Ω) < 1, gZ

dZ
(1− Ω) < 1

(ii) fixed-proportions model corresponding to the case f = 0 (and therefore Ω = 0),
s.s. is LAS iff gX

dX
< 1, gZ

dZ
< 1



Remarkable steady state properties

• For the case of interacting markets (f > 0), Ω is positive (negative) iff the
s.s. profit differential of the two markets, considered in isolation, is positive
(negative), i.e. iff π0X − π0Z > 0 (π0X − π0Z < 0), where

π0X :=
(dX − eX)(aX − cX)2

(dX + gX)2
, π0Z :=

(dZ − eZ)(aZ − cZ)2

(dZ + gZ)2

The market that attracts the majority of producers, at the steady state solu-
tion, is the one that would be more profitable in the absence of interaction

• If π0X − π0Z > 0 (π0X − π0Z < 0), Ω is a strictly increasing (decreasing) function
of the switching intensity f , for f ranging from zero to infinity.



Remarkable steady state properties (continued)
Consider the difference of proportions

Ωt = Ω(PX,t−1, PZ,t−1, SX,t−1, SZ,t−1) = tanh
(
f
2 (πX,t−1 − πZ,t−1)

)

= tanh
{
f
2 [PX,t−1SX,t−1 − CX(SX,t−1)− PZ,t−1SZ,t−1 + CZ(SZ,t−1)]

}

The partial derivative with respect, e.g. to SX (and similarly for SZ)

∂Ω
∂SX

=
[
1− tanh2

(
f
2 (πX − πZ)

)]
[PX − C ′X(SX)]

Two useful steady state properties:

• 1− tanh2
(f
2 (πX − πZ)

)
= 1−Ω2 (from the definition of Ωt)

• PX − C ′X(SX) = (dX − 2eX)SX (from the f.o.c. of risk-adjusted profit maxi-
mization problem), PX −C ′X(SX) = 0 for risk-neutral producers



4 Two particular cases
• Further analytical results are hard to obtain and/or interpret in the general
case. We then consider two particular cases

• Case A: profit-maximizing (risk neutral) producers: eX =
dX
2 , eZ =

dZ
2 .

• Case B: symmetric markets, i.e. identical supply and demand parameters in
the two markets: aX = aZ := a, gX = gZ := g, cX = cZ := c, dX = dZ := d,
which implies Ω = 0.

• Focus on conditions for the s.s. to be LAS, compared with the case of absence
of interaction

• Focus on the range of possible long-run out-of-equilibrium dynamics



4.1 Case A: profit-maximizing producers
Model summary
We rewrite the model as a 4-D dynamical system in PX , PZ , SX , SZ :

PX,t = FX(PX,t−1, PZ,t−1, SX,t−1, SZ,t−1) :=
aXdX − gX(1 + Ωt)(PX,t−1 − cX)

dX
PZ,t = FZ(PX,t−1, PZ,t−1, SX,t−1, SZ,t−1) :=

aZdZ − gZ(1− Ωt)(PZ,t−1 − cZ)
dZ

SX,t = GX(PX,t−1) :=
PX,t−1 − cX

dX
SZ,t = GZ(PZ,t−1) :=

PZ,t−1 − cZ
dZ

where Ωt := Ω(PX,t−1, PZ,t−1, SX,t−1, SZ,t−1), namely:

Ωt = tanh
{
f
2

[
(PX,t−1 − cX)SX,t−1 −

dX
2 S

2
X,t−1 − (PZ,t−1 − cZ)SZ,t−1 +

dZ
2 S

2
Z,t−1

]}



Summary of analytical results about stability

• The Jacobian at the s.s. (denote it by J) can be rewritten as a function of the
steady state distribution of producers across markets, Ω

• J has a block triangular structure: J =
[
A 0
C 0

]
, where A, C, are two-

dimensional blocks while 0 denotes the two-dimensional null matrix.

• A null block occupies the upper right corner because FX and FZ depend on
SX and SZ only via Ωt, but

∂Ω
∂SX

and ∂Ω
∂SZ

include the factors PX − C ′X(SX)
and PZ − C ′Z(SZ), respectively, which vanish at the steady state.

• Two eigenvalues, say λ3, λ4, are zero (thus smaller than one in modulus), while
the remaining eigenvalues (λ1, λ2) are the ones of the 2−D block A, where

A =


 −

gX
dX

[
(1− Ω2)f2dXS

2
X + (1 + Ω)

]
(1−Ω2)f2gXSXSZ

(1−Ω2)f2gZSXSZ − gZ
dZ

[
(1− Ω2)f2dZS

2
Z + (1−Ω)

]





• λ1, λ2 are the solutions of the characteristic equation

P (λ) = λ2 − Tr(A)λ+Det(A) = 0

• Necessary and sufficient condition for both eigenvalues ofA to be smaller than
one in modulus (LAS steady state) is given by (see e.g. Medio and Lines, 2001)

P (1) = 1− Tr(A) +Det(A) > 0
P (−1) = 1 + Tr(A) +Det(A) > 0
P (0) = Det(A) < 1

which can be rewritten as a function of the parameters (and of Ω).

• Findings: [Tr(A)]2 − 4Det(A) > 0, eigenvalues are real (Neimark-Sacker bi-
furcation not possible); moreover Tr(A) < 0, Det(A) > 0, saddle-node bifur-
cation not possible.

• Stability can be lost only via Flip-bifurcation, when condition 1 + Tr(A) +
Det(A) > 0 is violated (and this occurs for f large enough)



Markets in isolation vs. interconnected markets

• Benchmark scenario (ii), f = 0 (and therefore Ω = 0), producers permanently
splitting evenly across markets. Stability conditions become

gX/dX < 1, gZ/dZ < 1

• Complete model, time-varying supply and interacting markets. A necessary
condition for the steady state to be LAS is

gX
dX
(1 + Ω) + f2gXS

2
X(1−Ω

2) ≤ 1, gZ
dZ
(1− Ω) + f2gZS

2
Z(1− Ω

2) ≤ 1

• Compare the complete model with benchmark scenario (ii): stability of the
(isolated) market with higher s.s. profit, is a necessary condition for the s.s.
of the coupled system to be LAS
Put differently, stability of the whole system of interacting markets requires
stability of at least one of the two ‘isolated’ markets (the one with higher s.s.
profit).



Markets in isolation vs. interconnected markets (continued)
A more intuitive and direct comparison is between the complete model and

• Benchmark scenario (i): fixed-fraction model corresponding to the actual s.s.
proportions of producers. Stable s.s. iff

gX
dX
(1 + Ω) < 1, gZ

dZ
(1−Ω) < 1

• Complete model, the necessary condition for the steady state stability

gX
dX
(1 + Ω) + f2gXS

2
X(1−Ω

2) ≤ 1, gZ
dZ
(1− Ω) + f2gZS

2
Z(1− Ω

2) ≤ 1

• Compare the complete model with benchmark scenario (i). Both markets
considered in isolation must be stable in order the steady state of the full
system to be LAS.

• More restrictive stability conditions, destabilizing effect of interactions



Markets in isolation vs. interconnected markets (continued)

• In the symmetric case, stability condition reduces to
g
d

(
1 + dfS2

)
< 1

where S = (a− c)/(d+ g) is the supply in equilibrium, or equivalently

f < fFlip ≡
d− g
gdS2

where fFlip is the Flip-bifurcation value for the intensity of choice

• If agents are allowed to select the most profitable market, this may have a
“destabilizing” effect on the equilibrium prices. In particular, in the symmetric
case the stability condition is more requiring than for independent symmetric
markets (g/d < 1)



Numerical example

• Parameters: aX = aZ = 20, cX = cZ = 0, dX = dZ = 10, gX = 1.5, gZ = 5,
f = 0.375.

• In case of no switching / no interactions (f = 0 =⇒ Ω = 0), the steady-state
profits of the independent markets would be π0X 	 15.123, π0Z 	 8.889.

• This implies Ω > 0 (i.e. WX > 50%) at the steady state of the complete model
for any f > 0, and Ω (as well as WX) increasing with f .

• Since gX/dX = 0.15, gZ/dZ = 0.5: in the case of no switching / no interactions
(f = 0 =⇒ Ω = 0), the steady states of the two independent markets would
both be globally asymptotically stable.

• However, the steady state of the system of interconnected markets is LAS only
for f < fFlip 	 0.093311, larger f brings about the familiar period-doubling
bifurcation sequence.
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4.2 Case B: symmetric markets
Steady state. In the symmetric case: aX = aZ = a, gX = gZ = g, cX = cZ = c,
dX = dZ = d, eX = eZ = e, the equilibrium is independent on f ; moreover Ω = 0
(producers split uniformly across markets) and

PX = PZ = P =
ad+ cg
d+ g

SX = SZ = S =
P − c
d = a− c

d+ g
Local stability. The characteristic polynomial of the Jacobian J can be factorized

as

P(λ) = λ
(g
d + λ

)[
λ2 +

(
gf S2 + gd

)
λ+ gf(d− 2e)S

2

d

]
=

λ
(g
d + λ

)
P1(λ)



• Eigenvalues: λ1 = 0, λ2 = −g/d, λ3 and λ4 are the roots of P1(λ).

• Condition for the steady state to be LAS is then given by
g
d < 1

P1(1) > 0 always true

P1(−1) > 0 i.e. g
d < uF :=

1
1 + 2efS2

P1(0) < 1 i.e. g
d < uNS :=

1
f(d− 2e)S2

• Stability condition is therefore: gd < min[uF , uNS].

• For f > 0, more strict stability condition than the case of a single market

• Stability can be lost either via Flip-bifurcation or via Neimark-Sacker bifurca-
tion

• Neimark-Sacker scenario is absent under the case of risk-neutral producers
(d→ 2e)
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Symmetric markets (a=20, b=6, c=2, d=8, e=1)
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Basin of the competing attractor

Basin of the period-2 orbit

Coexistence of attractors
f=0.64295
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Bifurcation diagrams

Parameters:
a=20, b=6, c=2, d=8, e=1, f=0.17
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Effect of symmetry breaking
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5 Summary of results
• The model sticks to the classical ‘cobweb’ as far as possible and introduces
supply-side interactions between two cobweb markets.

• Interacting markets may add to the cyclical behavior of commodity prices cap-
tured by the classical cobweb model, and become a further source of instability
and complexity

• Main findings

— (a) interactions destabilize otherwise locally (and globally) stable equi-
librium prices

— (b) endogenous dynamics and complex behavior may emerge, particularly
when agents react sensitive to profit differentials

— (c) different types of bifurcations associated to different assumptions
about risk attitudes / perceptions




