
Global properties of 1D
smooth DDS

Let us consider a dynamic model which is described by iterating

some process: the state of the system changes under the action

of some function T . The state x is assumed to be a scalar

variable, the state space is a set X ⊆ R, and T : X → X.

The discrete dynamical system (DDS) is represented by the stan-

dard notation

xn+1 = T (xn) or x0 = T (x)

The object of the theory of DDS is to understand

a) which kind of values will be obtained asymptotically, and this

depending on the initial value, or initial condition, x0, thus a

description in the state space, and

b) how things change when the parameters of the system are

varied, and this is a description in the parameter space, charac-

terizing the bifurcations which may occur.



A bifurcation occurs when the changes occurring in the phase

space cannot be obtained via a smooth transformations (the

phase space before/after are not topologically conjugated).

Local bifurcations are those which can be studied via an approx-

imation of the map (locally, in some fixed point or cycle).

Global bifurcations are those which cannot be studied by a Tay-

lor expansion in some point, and require global properties of the

map. Of this kind are the contact bifurcations between invari-

ant sets, which cause qualitative changes in the structure of the

basin, or in the structure of the attracting set, or both, and

homoclinic bifurcations.

As we have seen, the simplest notion of invarian set is that of

”fixed point”. We say that x∗ is a fixed point (or equilibrium
point) of the DDS if it satisfies

x∗ = T (x∗)

Then for nonlinear functions the stability/instability is a local

property, which may be investigated by the first order approxi-

mation of the function in the fixed point. We can summarize as



follows:

−1 < f 0(x∗) < 1 : locally stable fixed point

f 0(x∗) = +1 bifurcation

(fold, transcritical or pitchfork)

f 0(x∗) = −1 flip bifurcation

In the case of monotone increasing one dimensional functions

the only possible invariant sets are fixed points which may be

alternating: one stable, one unstable, the basins of attractions

of the stable fixed points are bounded by the unstable fixed points

or by infinity.

In the generic case of a decreasing one dimensional functions

the only possible invariant sets are one fixed point, and 2-cycles,

which may be alternating: one stable, one unstable.



In functions with generic shape cycles may occur. A k−cycle is
a sequence of k distinc points xi, i = 1, 2, ..., k visited iter-

atively by the map, and such that fk(xi) = xi for any point

xi. That is, stated in other words, each of the periodic points

is a fixed point of the map fk = f ◦ f ◦ ... ◦ f. The stabil-
ity/instability of a cycle is determined by the stability/instability

condition of a fixed point of the map fk and from the chain rule

we have, for each point xi of the cycle,

d

dx
(fk(x))|xi =

kQ
j=1

f 0(xj)

In the one-dimensional case we can see that once that the monotonic-

ity (i.e. the invertibility property) is lost, then very complicated

paths may occur, which may be predictable or not (although the

model is completely deterministic).



As a standard example let us consider the simple logistic map

(whose graph is a parabola):

f(x) = µx(1− x) , µ ∈ [3, 4]

which for µ > 3 has the origin as unstable fixed point and the

positive fixed point which may be stable or unstable, depending

on the slope (or eigenvalue) in that point.

Or, as an equivalent model, we may consider any function which

is obtained by using a change of variable with an homeomor-

phisms h (a continuous and invertible function).



We are so introducing the concept of Topological conjugacy : let

F = h ◦ f ◦ h−1

then the maps F and f are called topologically conjugated.

Topologically conjugated maps have the same dynamics: all

the trajectories can be put in one-to-one correspondence by the

homeomorphisms h. It is easy to see that via a linear homeomor-

phism we can transform the logistic function into the Myrber’s

map (from the name of the first author who studied in details

the bifurcations of these non-invertible one-dimensional maps,

still in 1965):

x0 = F (x) : F (x) = x2 − b



For b ∈ [0, 2] we have F : X → X, X = [q∗−1, q∗] where
q∗ is the repelling positive fixed point. At b = 0 the slope at

the stable fixed point p∗ is zero in Fig.a (also called superstable),
and then, increasing b, the slope from positive will become neg-

ative, reaching the value −1 and undergoing a flip bifurcation,
leading to the appearance of a stable cycle of period 2.



From the shape of the second iterate of the function we can

see that locally the fixed point of the map F 2 (2-cycle of F )

behaves as previously for the fixed point of the function F : the

stable 2-cycle becomes superstable and then the slope becomes

negative, reaching the value −1, and so on. By self-similarity
all the cycles of period 2n will be generated and become un-

stable leading, as n tends to infinity, to a critical bifurcation

value b = b1s (Feigenbaum point) after which the map has

a so-called chaotic behavior, because a set Λ invariant for the

map, i.e. F (Λ) = Λ, always exists on which the restriction is

chaotic. This is often represented in a bifurcation diagram which

shows the asymptotic behavior of a generic point of the interval

X = [q∗−1, q∗] as a function of the parameter b.



The bifurcation diagram is ”self-similar” as for any period (and

several boxes exist having the same period) we can repeat the

period-doubling route to chaos described above. As an example

the enlargement shows the ”box” associated with the period-3

cycle: a pair of these cycles appear by saddle node-bifurcation,

and the stable one, for the map F 3, will have the same bifurca-

tion structure.



We also note that although the dynamic behavior is unpredictable

when we are in a chaotic regime, some global properties can still

be very useful. For example the iterates of the critical point de-

termine cyclical intervals or one single interval inside which the

trajectories are confined, and such intervals are trapping: starting

in a different point of the interval X = [q∗−1, q∗] a trajectory
enters such absorbing interval from which it will never escape.



a ”final bifurcation” is known to occur at the bifurcation value

b = 2, when the preimage of the unstable fixed point be-

comes equal to the critical value, that is: the invariant interval

X = [q∗−1, q∗] becomes an invariant chaotic interval, and af-
ter, for b > 2, the generic trajectory will be divergent. However

a set which is invariant inside X still exists. It is a Cantor set

inside which the map F is chaotic.



Cantor set

A set Λ is a Cantor set if it is closed, totally disconnected and

perfect. The simplest example is the ”Middle-third Cantor set”:

start with a closed interval X and remove the open ”middle

third” of the interval. Next, from each of the two remaining

closed intervals, say I0 and I1, remove again the open ”middle

thirds”, and so on. After n iterations, we have 2n closed inter-

vals inside the two intervals I0 and I1.



It is quite clear the similarity of this construction with that of the

invariant set for the Myrberg’s map for any b > 2. Consider-

ing our unimodal map, for any point ξ belonging to the interval

X = [q∗−1, q∗] there are two distinct inverse functions:

F−10 (ξ) = −(b+ ξ)1/2 , F−11 (ξ) = +(b+ ξ)1/2

The set of points whose dynamics is bounded forever in the inter-

val X can be obtained removing from the interval all the points

which exit the interval after n iterations, for n = 1, 2, .....

Thus let us start with the two closed disjoint intervals

F−1(X) = F−10 (X) ∪ F−11 (X) = I0 ∪ I1



i.e. we have removed the points leaving X after one iteration.

Next we remove the points exiting after two iterations obtaining

four closed disjoint intervals

F−2(X) = I00 ∪ I01 ∪ I10 ∪ I11

defining in a natural way

F−1(I0) = F−10 (I0) ∪ F−11 (I0) = I00 ∪ I10

and

F−1(I1) = F−10 (I1) ∪ F−11 (I1) = I01 ∪ I11.

Note that if a point x belongs to I01 (or to I11) then F (x)

belongs to I1 (i.e. one iteration means dropping the first sym-

bol of the index). Continuing the elimination process we have

that F−n(X) consists of 2n disjoint closed intervals (satisfying
F−(n+1)(X) ⊂ F−n(X)), and in the limit we get

Λ = ∩∞n=0F−n(X) = lim
n→∞F−n(X).

The set Λ is closed (as intersection of closed intervals), invariant

by construction (as F−1(Λ) = F−1(∩∞n=0F−n(X)) =
∩∞n=0F−n(X) = Λ).



Let us consider b > 2 and such that |F 0(x)| > 1 for any

x ∈ I0∪I1 (the property holds for any b > 2, but the proof is

more complicated), then Λ cannot include any interval (because

F is expanding). Thus Λ is totally disconnected, and perfect by

construction, so that it is a Cantor set.

Moreover, by construction, to any element x ∈ Λ we can as-

sociate a symbolic sequence, called Itinerary, or address, of x :

Sx = (s0s1s2s3...) with si ∈ {0, 1}, i.e. Sx belongs to the
set of all one-sided infinite sequences of two symbols Σ2. Sx
comes from the symbols we put as indices to the intervals in the

construction process, and there exists a one-to-one correspon-

dence between the points x ∈ Λ and the elements Sx ∈ Σ2.

Also, from the construction process we have that if x belongs

to the interval Is0s1...sn then F (x) belongs to Is1...sn. Thus

the action of the function F on the points of Λ corresponds to

the application of the ”shift map σ” to the itinerary Sx in the

code space Σ2:

if x ∈ Λ has Sx = (s0s1s2s3...)

then

F (x) ∈ Λ has SF (x) = (s1s2s3...)

= σ(s0s1s2s3...) = σ(Sx)



Given a point x ∈ Λ how do we construct its itinerary Sx?

In the obvious way: we put s0 = 0 if x ∈ I0 or s0 = 1

if x ∈ I1, then we consider F (x) and we put s1 = 0 if

F (x) ∈ I0 or s1 = 1 if F (x) ∈ I1, and so on.

It follows that F is chaotic in Λ, because it is topologically

conjugated with the shift map, which is the prototype of the

chaotic map.

We recall that, following the definition of chaos given by De-

vaney, an invariant set is chaotic under the action of a map F

if

1) there exist infinitely many periodic orbits,

dense in the invariant set

2) there exist an aperiodic trajectory

dense in the invariant set

As a consequence of the above two conditions we have that the

sensitivity with respect to the initial conditions also exists (which

often is added as a third condition).

The shift map is chaotic in Σ2. Indeed, it is easy to see that

the two properties hold. Notice that each periodic sequence of



symbols of period k represents a periodic orbit with k distinct

points, and thus a so-called k−cycle. Since the elements of Σ2
can be put in one-to-one correspondence with the real numbers,

we have that the periodic sequences are dense in the space, thus

(1): the periodic orbits are dense in Λ. Also there are infinitely

many aperiodic sequences (i.e. trajectories) which are dense in

Λ thus (2) also is satified (it is enough to consider the binary

representation of an irrational number).

Note that the main property in the previous construction is the

existence of two disjoint intervals, I0 and I1, such that

Fk(I0) ⊃ I0 ∪ I1

Fk(I1) ⊃ I0 ∪ I1

for a suitable k, and indeed this propery is the key feature in any

dimension (i.e. for maps in Rm whith m ≥ 1), to prove the

existence of chaos. Also it is the basic feature in the theory of

IFS since the pioneering work by Barnsley.



Definition. An Iterated Function System (IFS) {D;H1, ...Hm}
is a collection ofm mappings Hi of a compact metric space D

into itself.

We can so define W = H1 ∪ ... ∪Hm. Denoting by si the

contractivity factor of Hi then the contractivity factor ofW is

s = max {s1, ...sm}, and for any point or set X ⊆ D we

define

W (X) = H1(X) ∪ ... ∪Hm(X).

The main property of this definition is given in the following

theorem:

Theorem (Barnsley 1988, p. 82). Let {D;H1, ...Hm} be
an IFS. If the Hi are contraction functions then there exists

a ”unique attractor” Λ such that Λ = W (Λ) and Λ =

limn→∞Wn(X) for any non-empty set X ⊆ D.

In the case previously described with the Myrberg’s map we have

D = X, H1 = F−10 , H2 = F−11 .



Example: the Sierpinski triangle is the unique attractor Λ of the

ITF {D;H1,H2,H3} . A subset of the Sierpinski triangle Λ∗
is the unique attractor of the RIFS {D;H1,H2,H3} with the
restriction that H1 is never applied twice consecutively.

Snap back repellers

A similar property (leading to the construction of an invariant set

on which the restriction of the map is chaotic) can be repeated

whenever we have an homoclinic trajectory to some fixed point

or cycle. A homoclinic trajectory is one which tends to some

invariant set in the forward process, and in the backward one.

For example, in the figures of the Myrberg’s map or logistic map



we can easily see homoclinic trajectories when the unstable fixed

point p∗ becomes homoclinic (also called snap back repeller,
after Marotto 78).



See also the following unimodal map f(x)

When an homoclinc orbit exists (and the fixed point is called

SBR) then an invariant chaotic set exists. In fact, it is possible

to find two intervals I0 and I1 such that f
k(I0) ⊃ I0 ∪ I1

and fk(I1) ⊃ I0 ∪ I1 for a suitable k (see also Gardini 1994,
Gardini and Tramontana 2009, 2010).

Let U be a neighborhood of the unstable fixed point p∗ in which
the map is expansive (|f 0(x)| > 1), and consider f−10 the

local inverse and f−11 the other one. Take a suitable number of

preimages following the homoclinic orbit, such that I1 = f−11 ◦
.... ◦ f−10 (U) ⊂ U and take the same number, say k, of local



preimages leading to I0 = f−10 ◦ .... ◦ f−10 (U) ⊂ U . Then

I0 is disjoint from I1 (as f
−1
0 (U) is disjoint from f−11 (U)),

and such that fk(I0) ⊃ I0 ∪ I1 and f
k(I1) ⊃ I0 ∪ I1, so

we are done.

A remarkable application of this homoclinic theorem in the eco-

nomic context occurs in the study of models formulated in the so

called “backward dynamics”. That is, as discrete models in the

form xt = F (xt+1), and the interest is in the behavior of the

forward values of the state variable (xt, xt+1, xt+2...). Two

well known examples are the overlapping generations (OLG)-

model (Grandmont and others) and the cash-in-advance model

(Michener and Ravikumar and others). No problem when the

function F (.) is invertible (as xt+1 = F−1(xt) is a stan-
dard dynamical system), while difficulties arise when F (.) has

not a unique inverse, and difficulties may also arise in the in-

terpretation of the models. Mathematically, this kind of models

have been investigated considering the inverse limit approach is

rather abstract (as it always considers infinitely many states all

together at once, without a real selection of the states step by

step), so we prefer to follow a different approach, which is based

on the theory of Iterated Function Systems. Whenever we have



some homoclinic cycle we can apply the theory of Dynamical

Systems and the theory of IFS to describe fractal ”attractors” in

the forward states of backward models.

Let us summarize some of the properties of the maps which are

topologically conjugated to the logistic map or Myrberg’s map

T : x0 = x2 − b, say T : X → X, X = [q−11 , q1] where

q1 is the fixed point always repelling for b ∈ [−1/4, 2]. The
absorbing interval is I = [T (xc), T 2(xc)] where xc is the

critical point.

On the x-axis, the repelling cycles and their preimages and limit

points have a fractal organization when b ≥ b1s where b1s
denotes the first Feigenbaum point, i.e. the limit point of the

first flip bifurcation sequence of the 2−cycle of T . For each
value of the parameter b, b ≥ b1s, the fractal structure of the

map singularities is completely identified from the box-within-

a-box bifurcation structure described in the years 1975 by Mira

(1987). Consider b (b ≥ b1s) such that the map has an at-

tracting k−cycle C, then for the map Tk this cycle gives k

attracting fixed points Pi, i = 1, ..., k, each of them with

an immediate basin B0(Pi), and a total non connected basin



B(Pi) = ∪n>0T−knd0(Pi). The total basins B(Pi) have
a fractal structure, and a strange repeller Λi belongs to the

boundary of ∪kn=1B(Pi). For the map T this is reflected in

a cyclical property, so that the basin B(C) is the union of the

k basins and its fronties is a strange repeller Λ, i.e. an invari-

ant set, T (Λ) = Λ, such that the restriction T : Λ → Λ

is chaotic (in the sense of Devaney, i.e. topological chaos with

positive topological entropy). This frontier (on which the map

is chaotic) if a set of zero measure in the interval X.

When the parameter b varies in the interval −1/4 ≤ b ≤ 2

sequences of ”boxes” occur, with the related bifurcations. Each

box of the first kind is opened by a fold bifurcation giving rise to a

pair of cycles, such a box of first kind closes when the cycle with

λ > 1 becomes critical for the first time (i.e. the first time that

a critical point merges in it, at its first homoclinic bifurcation).

Inside each box of first kind the cycle with λ < 1 starts an

infinite sequence of flip bifurcations, each of which opens a box

of second class which closes when it becomes critical for the first

time (i.e. at its first homoclinic bifurcation). Such sequences of

boxes have a fractal structure due to the self similar property. All



the boundaries of boxes of first or second class are bifurcation

values.

For any value of b almost all the points x of the interval ]q−11 , q1[

(i.e. apart from at most a set of points of zero Lebesgue mea-

sure) have the same asymptotic behavior, which sometimes is

called metric attractor A, due to this property, and indepen-

dently on its nature. This metric attractor A can only be one of

the following three typologies:

(1) a k−cycle (of any period k ≥ 1, either stable (|λ| < 1),

or neutral (|λ| = 1);
(2) a critical attractor (Acr) with Cantor like structure, of zero

Lebesgue measure;

(3) k−cyclic chaotic intervals, k ≥ 1.
In the case (1) the generic omega limit set ω(x) is equal to the

omega limit set of the critical point xc, and the trajectory of xc

tends to the k−cycle, stable or neutral Aλ, ω(xc) = Aλ. In

the case in which |λ| = 1 the cycle belongs to the frontier of

its basin (or better, stable set). In the case in which |λ| < 1



the cycle is an attractor of T . For b > b1s the frontier of the

basin of attraction is a strange repeller Λ, i.e. an invariant set,

T (Λ) = Λ such that the restriction T : Λ → Λ is chaotic

(in the sense of Devaney). This frontier (on which the map is

chaotic) is a set of zero measure in the interval X, and it is a

topological repellor, i.e. a repelling set in the definition given

above.

In the case (2) the generic omega limit set ω(x) is equal to

ω(xc) = Acr and xc ∈ Acr. In this case T : Acr → Acr

is chaotic, however Acr is not a topological attractor, that is,

an ”attractor of T” in the usual definition, but an ”attractor in

Milnor’ sense” and its stable set is the whole interval, so that we

can say that it is globally attracting in the interval.

We recall that an invariant set is an ”attractor in Milnor’ sense”

when its stable set has positive Lebesgue measure in the space

of the map.

In the case (3) the critical point xc is either periodic or preperi-

odic, merging into a repelling cycle (|λ| > 1), which is called a

critical periodic orbit, and at this parameter value a homoclinic



bifurcation of this cycle occurs. The critical periodic orbit be-

longs to the chaotic intervals A. In this case T : A → A is

chaotic, andA may be a topological attractor or an ”attractor in

Milnor’ sense” depending on the parameter value (for example,

at the closure of a box of second kind, it is a topological attrac-

tor, while at the closure of a box of first kind it is an attractor

in Milnor’s sense, but globally attracting in the open interval).

In all the cases (1), (2) and (3), the chaotic set is the closure of

all the repelling points in I .

Noticing that in (2) and (3) above the chaotic sets attracts all

the points of the interval, we may generically speak of ”chaotic

attractors”, but the chaotic set is of full measure only in the case

(3).

Let us define as

bp the set of parameter values in the interval [−1/4, 2] at which
the typology (1) occurs,

bcr and bch respectively the set of parameter values in the same

interval [−1/4, 2] at which the typology (2) and (3) respectively
occurs.



Then it is important to notice that the set bp consists of infinitely

many nontrivial intervals having a fractal structure in the inter-

val [−1/4, 2] and dense in it (i.e. Closure(bp) =[−1/4, 2]).
The set bcr is a completely disconnected set of zero Lebesgue

measure while the set bch is a completely disconnected set of

positive Lebesgue measure (for the proofs we refer to Thunberg

[2001] and references therein).

Thus the set of points in the parameter space [−1/4, 2] in which
we have chaotic attracting sets of full measure in X is a set of

positive Lebesgue measure.

At all the opening values of the boxes, the map is of typology (1),

while all the closure values are global (homoclinic) bifurcations

(belonging to the set bch), and the map is of typology (3).

Inside each box of first kind there exists a limit value of boxes

of second kind at which the the map is of typology (2) (the

so called Feigenbaum point). Particular bifurcation values of

b are those which are limit points of other bifurcation values

(for example boundaries of boxes of first class), such bifurcation

values belong to the set bch and the map is of typology (3). In

particular, when the critical point xc is periodic or preperiodic

the map is of typology (3).



Let us also recall the analytic solution of the Myrberg map at

b = 2, xn+1 = x2n − 2 (MGBC book WS96 pag.35). Given
an initial condition x0 the explicit solution is:

xn = 2cos(2n arccos(
x0
2
)) , if − 2 ≤ x0 ≤ 2

xn = 2cosh(2n cosh−1(x0
2
)) , if x0 > 2

it is topologically conjugated with the

L (Logistic) : xn+1 = 4xn(1− xn)

(via a linear homeomorphisms h(x) = αx+ β where α and

β can be easily found),



it is also topologically conjugated to the shift map σ in the space

of symbolic sequences Σ2:

σ : Σ2→ Σ2

to the

Q (Quadratic) : xn+1 = 2x
2
n − 1

and conjugated or semi conjugated to the following maps:

T (Tent) :

(
xn+1 = 2xn if 0 ≤ xn ≤ 1/2

xn+1 = 2− 2xn if 1/2 ≤ xn ≤ 1

B (Baker) : xn+1 =

(
2xn if 0 ≤ xn ≤ 1

2
2xn − 1 if 1

2 < xn ≤ 1

S (square) : θn+1 = 2θn mod 2π

θn+1 =

(
2θn if 0 ≤ θn ≤ π
2θn − 2π if π < θn < 2π



Generalizations

x0 = a(1− sin(x))





















Consider now a very simple map: a linear-fractional f :

f : x 7→ f(x) = µ+
k

x

with asymptotes x = 0 and f(x) = µ. The map f has two

fixed points

x1,2 = (µ± (µ2 + 4k)1/2)/2
which are real for

µ2 + 4k > 0

We are interested in the parameter range µ2+4k < 0 in which

the map f has no real fixed points.

The dynamics of the map f for such parameter range is described

in the following (SG09):



Proposition. Let |µ| < 2(|k|)1/2. Then considering
µ

2(|k|)1/2 = cos(πρ)

when ρ = m/n is rational, then any trajectory of the

map f is n-periodic with rational rotation number

m/n;

when ρ is irrational, then any trajectory of f is qua-

siperiodic and dense on the real line.

ρ = 2/7



Notice that the result holds for a generic linear-

fractional

g : y 7→ ay + b

cy + d

with bc− ad 6= 0, c 6= 0 in which, without loss of generality,
we consider c > 0,

in fact it is topologically conjugate to the map

f : x 7→ µ+
k

x
used above via the homeomorphism

h(x) = x/c1/2 − d/c

and

k = (bc− ad)/c , µ = (a+ d)/c1/2

Thus the result shown above holds: when the map g has no real

fixed points, and the dynamics of the points y ∈ R either are all

periodic, of the same period (which depends on the parameters),

or all are quasiperiodic, with a trajectory dense in R.

Clearly this nice result is due to the existence of a unique inverse.

As soon as the inverses are more, as we know, things may change.



x0 = (x2 − a)/x

x0 = (a− x2)/2x



x0 = x+
b

x2
− 2
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