Examples and applications of one-dimensional discrete dynamical systems in economic, social and ecological systems

Fabio Lamantia
University of Calabria
June 2010

Overview

- One-Sector Growth (OSG)
- the basic OSG model
- One-Sector Optimal Growth
- OSG with pollution
- from OSG to natural resources
- Dynamics of exploited renewable resources
- Constant harvesting
- Constant effort
- Constant effort with depensation
- Overlapping Generation Models (OGM)
- Cobwebs
- adaptive expectations
- linear and nonlinear cobwebs
- Binary Choice models

One Sector Growth

Basic version (Solow-Swan)

Main Assumptions:

(1) $Y=F(K, L)$ production function, K capital and L labour
(2) F is an homogeneous function of degree 1 ;
(3) $S=s Y$, total savings proportional to outputs (s constant marginal savings rate)
(9) $L(t+1)=L(t)(1+n)$, population with constant growth rate n
(6) $K(t+1)=S(t)+K(t)-\delta K(t), \delta$ obsolescence of capital

One Sector Growth

Basic version (Solow-Swan)

Main Assumptions:

(1) $Y=F(K, L)$ production function, K capital and L labour
(2) F is an homogeneous function of degree 1 ;
(3) $S=s Y$, total savings proportional to outputs (s constant marginal savings rate)
(9) $L(t+1)=L(t)(1+n)$, population with constant growth rate n
(3) $K(t+1)=S(t)+K(t)-\delta K(t), \delta$ obsolescence of capital

The model:

- By 2.: $\frac{F(K, L)}{L}=F\left(\frac{K}{L}, \frac{L}{L}\right)=f(k)$, per capita production of k (per capita capital)
- Rewrite 5.: $K(t+1)=s L(t) f(k(t))+K(t)(1-\delta)$
- Dividing by $L(t+1)$ in 4 . we get a one-dimensional map for state variable k :

$$
\left(\frac{K(t+1)}{L(t+1)}=\right) k(t+1)=G(k(t))=\frac{s f(k(t))}{(1+n)}+\frac{(1-\delta)}{(1+n)} k(t)
$$

One Sector Growth

Basic version (Solow-Swan)

Main Assumptions:

(1) $Y=F(K, L)$ production function, K capital and L labour
(2) F is an homogeneous function of degree 1 ;
(3) $S=s Y$, total savings proportional to outputs (s constant marginal savings rate)
(9) $L(t+1)=L(t)(1+n)$, population with constant growth rate n
(3) $K(t+1)=S(t)+K(t)-\delta K(t), \delta$ obsolescence of capital

The model:

- By 2.: $\frac{F(K, L)}{L}=F\left(\frac{K}{L}, \frac{L}{L}\right)=f(k)$, per capita production of k (per capita capital)
- Rewrite 5.: $K(t+1)=s L(t) f(k(t))+K(t)(1-\delta)$
- Dividing by $L(t+1)$ in 4 . we get a one-dimensional map for state variable k :

$$
\left(\frac{K(t+1)}{L(t+1)}=\right) k(t+1)=G(k(t))=\frac{s f(k(t))}{(1+n)}+\frac{(1-\delta)}{(1+n)} k(t)
$$

One Sector Growth

Basic version (Solow-Swan)

Example

Assume Cobb-Douglas production function with $F(K, L)=K^{\alpha} L^{1-\alpha}, \alpha \in(0,1)$

One Sector Growth

Basic version (Solow-Swan)

Example

Assume Cobb-Douglas production function with $F(K, L)=K^{\alpha} L^{1-\alpha}, \alpha \in(0,1)$

One Sector Growth

Basic version (Solow-Swan)

Example

Assume Cobb-Douglas production function with $F(K, L)=K^{\alpha} L^{1-\alpha}, \alpha \in(0,1)$

- $\frac{F(K, L)}{L}=K^{\alpha} L^{-\alpha}=\left(\frac{K}{L}\right)^{\alpha}=k^{\alpha}=f(k)$

One Sector Growth

Basic version (Solow-Swan)

Example

Assume Cobb-Douglas production function with $F(K, L)=K^{\alpha} L^{1-\alpha}, \alpha \in(0,1)$

- $\frac{F(K, L)}{L}=K^{\alpha} L^{-\alpha}=\left(\frac{K}{L}\right)^{\alpha}=k^{\alpha}=f(k)$

One Sector Growth

Basic version (Solow-Swan)

Example

Assume Cobb-Douglas production function with $F(K, L)=K^{\alpha} L^{1-\alpha}, \alpha \in(0,1)$

- $\frac{F(K, L)}{L}=K^{\alpha} L^{-\alpha}=\left(\frac{K}{L}\right)^{\alpha}=k^{\alpha}=f(k)$
- The one-sector growth model is expressed by

$$
k(t+1)=G(k(t))=\frac{s k(t)^{\alpha}}{(1+n)}+\frac{(1-\delta)}{(1+n)} k(t)
$$

One Sector Growth

Basic version (Solow-Swan)

Example

Assume Cobb-Douglas production function with $F(K, L)=K^{\alpha} L^{1-\alpha}, \alpha \in(0,1)$

- $\frac{F(K, L)}{L}=K^{\alpha} L^{-\alpha}=\left(\frac{K}{L}\right)^{\alpha}=k^{\alpha}=f(k)$
- The one-sector growth model is expressed by

$$
k(t+1)=G(k(t))=\frac{s k(t)^{\alpha}}{(1+n)}+\frac{(1-\delta)}{(1+n)} k(t)
$$

One Sector Growth

Basic version (Solow-Swan)

Example

Assume Cobb-Douglas production function with $F(K, L)=K^{\alpha} L^{1-\alpha}, \alpha \in(0,1)$

- $\frac{F(K, L)}{L}=K^{\alpha} L^{-\alpha}=\left(\frac{K}{L}\right)^{\alpha}=k^{\alpha}=f(k)$
- The one-sector growth model is expressed by

$$
k(t+1)=G(k(t))=\frac{s k(t)^{\alpha}}{(1+n)}+\frac{(1-\delta)}{(1+n)} k(t)
$$

- A steady state solves $k^{*}=G\left(k^{*}\right)$;

One Sector Growth

Basic version (Solow-Swan)

Example

Assume Cobb-Douglas production function with $F(K, L)=K^{\alpha} L^{1-\alpha}, \alpha \in(0,1)$

- $\frac{F(K, L)}{L}=K^{\alpha} L^{-\alpha}=\left(\frac{K}{L}\right)^{\alpha}=k^{\alpha}=f(k)$
- The one-sector growth model is expressed by

$$
k(t+1)=G(k(t))=\frac{s k(t)^{\alpha}}{(1+n)}+\frac{(1-\delta)}{(1+n)} k(t)
$$

- A steady state solves $k^{*}=G\left(k^{*}\right)$;

One Sector Growth

Basic version (Solow-Swan)

Example

Assume Cobb-Douglas production function with
$F(K, L)=K^{\alpha} L^{1-\alpha}, \alpha \in(0,1)$

- $\frac{F(K, L)}{L}=K^{\alpha} L^{-\alpha}=\left(\frac{K}{L}\right)^{\alpha}=k^{\alpha}=f(k)$
- The one-sector growth model is expressed by

$$
k(t+1)=G(k(t))=\frac{s k(t)^{\alpha}}{(1+n)}+\frac{(1-\delta)}{(1+n)} k(t)
$$

- A steady state solves $k^{*}=G\left(k^{*}\right)$;

Solution

$k_{1}^{*}=0$ and $k_{2}^{*}=\left(\frac{s}{n+\delta}\right)^{\frac{1}{1-\alpha}}$

One Sector Growth

Basic version (Solow-Swan)

Example

Assume Cobb-Douglas production function with
$F(K, L)=K^{\alpha} L^{1-\alpha}, \alpha \in(0,1)$

- $\frac{F(K, L)}{L}=K^{\alpha} L^{-\alpha}=\left(\frac{K}{L}\right)^{\alpha}=k^{\alpha}=f(k)$
- The one-sector growth model is expressed by

$$
k(t+1)=G(k(t))=\frac{s k(t)^{\alpha}}{(1+n)}+\frac{(1-\delta)}{(1+n)} k(t)
$$

- A steady state solves $k^{*}=G\left(k^{*}\right)$;

Solution

$k_{1}^{*}=0$ and $k_{2}^{*}=\left(\frac{s}{n+\delta}\right)^{\frac{1}{1-\alpha}}$

One Sector Growth

Basic version (Solow-Swan)

Problem

Show analytically that k_{1}^{*} is a repelling fixed point and k_{2}^{*} is asymptotically stable

One Sector Optimal Growth

An example (Stockey-Lucas, 1989)

Problem

Given the capital stock $k(0)=k_{0}$, find consumption plans $c(0), c(1), \ldots$ such that

$$
\begin{aligned}
v\left(k_{0}\right) & =\sup \sum_{t=0}^{+\infty} \beta^{t}[u(c(t))] \\
\text { s.t. } k(t+1) & =f(k(t))-c(t)
\end{aligned}
$$

with $\beta \in(0,1)$. By the constraint, we get $c(t)=f(k(t))-k(t+1)$ and so the problem can be restated as

$$
\begin{aligned}
& v\left(k_{0}\right)=\sup \sum_{t=0}^{+\infty} \beta^{t} u\{[f(k(t))-k(t+1)]\} \\
& \text { s.t. } 0 \leq k(t+1) \leq f(k(t))
\end{aligned}
$$

One Sector Optimal Growth

An example (see Stockey-Lucas, 1989 for details)

- Take $u(x)=\log x$ and $f(k)=k^{\alpha}, 1>\alpha>0$ (Cobb-Douglas with $\delta=1$)

Solution

Bellman equation is

$$
v(x)=\sup _{0 \leq y \leq x^{\alpha}}\left[\log \left(x^{\alpha}-y\right)+\beta v(y)\right]
$$

Try a solution of the type $v(x)=A+B \log x$ and solve for A and B. By first order condition for maximization, we get $y=\frac{B \beta}{1+B \beta} x^{\alpha}$, which satisfies the constraint. After some algebra, we get

$$
\begin{aligned}
A & =\frac{1}{1-\beta}\left[\log (1-\alpha \beta)+\frac{\alpha \beta}{1-\alpha \beta} \log (\alpha \beta)\right] \\
B & =\frac{\alpha}{1-\alpha \beta}
\end{aligned}
$$

One Sector Optimal Growth

- Substituing the definition of B into the first order condition we have the map

$$
k(t+1)=G(k(t+1))=\alpha \beta k(t)^{\alpha}
$$

- Turnpike property: optimal capital stock converge to the fixed point k^{*}
- Mathematically, the map is identical with the one in the Solow-Swan example where it is postulated that saving propensity is a constant part of income.
- Boldrin and Montrucchio, 1986 provide a constructive method to find an optimal growth model with a given optimal policy function!

One Sector Growth

Introducing pollution - Day 1982

Example

Assume $f(k)=A k^{\alpha}(m-k)^{\gamma}, k \leq m ; A, \alpha, \gamma \geq 0$, . Pollution is increased as a consequence of production, and resources have to be invested to reduce pollution, as reflected by the term $(m-k)^{\gamma}$.

One Sector Growth

Introducing pollution - Day 1982

Example

Assume $f(k)=A k^{\alpha}(m-k)^{\gamma}, k \leq m ; A, \alpha, \gamma \geq 0$, . Pollution is increased as a consequence of production, and resources have to be invested to reduce pollution, as reflected by the term $(m-k)^{\gamma}$.

- The dynamic equation for individual capital can be written

$$
k(t+1)=\frac{s A k(t)^{\alpha}(m-k)^{\gamma}}{(1+n)}+\frac{(1-\delta)}{(1+n)} k(t)
$$

One Sector Growth

Introducing pollution - Day 1982

Example

Assume $f(k)=A k^{\alpha}(m-k)^{\gamma}, k \leq m ; A, \alpha, \gamma \geq 0$, . Pollution is increased as a consequence of production, and resources have to be invested to reduce pollution, as reflected by the term $(m-k)^{\gamma}$.

- The dynamic equation for individual capital can be written

$$
k(t+1)=\frac{s A k(t)^{\alpha}(m-k)^{\gamma}}{(1+n)}+\frac{(1-\delta)}{(1+n)} k(t)
$$

One Sector Growth

Introducing pollution - Day 1982

Example

Assume $f(k)=A k^{\alpha}(m-k)^{\gamma}, k \leq m ; A, \alpha, \gamma \geq 0$, . Pollution is increased as a consequence of production, and resources have to be invested to reduce pollution, as reflected by the term $(m-k)^{\gamma}$.

- The dynamic equation for individual capital can be written

$$
k(t+1)=\frac{s A k(t)^{\alpha}(m-k)^{\gamma}}{(1+n)}+\frac{(1-\delta)}{(1+n)} k(t)
$$

- Depending on parameters, it is possible to show that this model generates chaotic dynamic

One Sector Growth

Introducing pollution - Day 1982

Example

Assume $f(k)=A k^{\alpha}(m-k)^{\gamma}, k \leq m ; A, \alpha, \gamma \geq 0$, . Pollution is increased as a consequence of production, and resources have to be invested to reduce pollution, as reflected by the term $(m-k)^{\gamma}$.

- The dynamic equation for individual capital can be written

$$
k(t+1)=\frac{s A k(t)^{\alpha}(m-k)^{\gamma}}{(1+n)}+\frac{(1-\delta)}{(1+n)} k(t)
$$

- Depending on parameters, it is possible to show that this model generates chaotic dynamic

One Sector Growth

Introducing pollution - Day 1982

Example

Assume $f(k)=A k^{\alpha}(m-k)^{\gamma}, k \leq m ; A, \alpha, \gamma \geq 0$, . Pollution is increased as a consequence of production, and resources have to be invested to reduce pollution, as reflected by the term $(m-k)^{\gamma}$.

- The dynamic equation for individual capital can be written

$$
k(t+1)=\frac{s A k(t)^{\alpha}(m-k)^{\gamma}}{(1+n)}+\frac{(1-\delta)}{(1+n)} k(t)
$$

- Depending on parameters, it is possible to show that this model generates chaotic dynamic

Solution

Take $\alpha=m=\gamma=\delta=1$, the model reduces to $k(t+1)=\frac{s A}{(1+n)} k(t)(1-k(t))$. By letting $\frac{s A}{(1+n)}=$ a we get the standard logistic equation $k(t+1)=a k(t)(1-k(t))$

One Sector Growth

Dynamics of exploited renewable resources

- Take the previous example by Day, 1982 and assume $\delta \geq 1$ to obtain $k(t+1)=r k(t)(1-k(t))-q E k(t)$, where $\frac{(1-\delta)}{(1+n)}=-q E \leq 0$.

One Sector Growth

Dynamics of exploited renewable resources

- Take the previous example by Day, 1982 and assume $\delta \geq 1$ to obtain $k(t+1)=r k(t)(1-k(t))-q E k(t)$, where $\frac{(1-\delta)}{(1+n)}=-q E \leq 0$.
- We can interpret $k(t)$ as a natural resource (e.g. a fish population) at time t, r is a growth parameter, E is harvesting effort and q is the catchability coefficient

One Sector Growth

Dynamics of exploited renewable resources

- Take the previous example by Day, 1982 and assume $\delta \geq 1$ to obtain $k(t+1)=r k(t)(1-k(t))-q E k(t)$, where $\frac{(1-\delta)}{(1+n)}=-q E \leq 0$.
- We can interpret $k(t)$ as a natural resource (e.g. a fish population) at time t, r is a growth parameter, E is harvesting effort and q is the catchability coefficient
- When $E=0$, the fish population follows a logistic growth

One Sector Growth

Dynamics of exploited renewable resources

- Take the previous example by Day, 1982 and assume $\delta \geq 1$ to obtain $k(t+1)=r k(t)(1-k(t))-q E k(t)$, where $\frac{(1-\delta)}{(1+n)}=-q E \leq 0$.
- We can interpret $k(t)$ as a natural resource (e.g. a fish population) at time t, r is a growth parameter, E is harvesting effort and q is the catchability coefficient
- When $E=0$, the fish population follows a logistic growth
- When $q E>0$, the harvesting $H=q E k$ is proportional to the present biomass (Schaefer catch equation, see Clark, 1990)

Dynamics of exploited renewable resources

Logistic Growth of unharvested population

$$
B(t+1)=G(B(t))=B(t)[1+R(B(t))]
$$

- $B(t)$ biomass at time t

Dynamics of exploited renewable resources

Logistic Growth of unharvested population

$$
B(t+1)=G(B(t))=B(t)[1+R(B(t))]
$$

- $B(t)$ biomass at time t
- $R(B)$ specific growth rate

Dynamics of exploited renewable resources

Logistic Growth of unharvested population

$$
B(t+1)=G(B(t))=B(t)[1+R(B(t))]
$$

- $B(t)$ biomass at time t
- $R(B)$ specific growth rate

Dynamics of exploited renewable resources

Logistic Growth of unharvested population

$$
B(t+1)=G(B(t))=B(t)[1+R(B(t))]
$$

- $B(t)$ biomass at time t
- $R(B)$ specific growth rate
- With $R(B)=r-s B \Rightarrow G(B)=B[1+r-s B]$ (logistic equation); $K=r / s$ is the natural carrying capacity

Dynamics of exploited renewable resources

Logistic Growth of unharvested population

$$
B(t+1)=G(B(t))=B(t)[1+R(B(t))]
$$

- $B(t)$ biomass at time t
- $R(B)$ specific growth rate
- With $R(B)=r-s B \Rightarrow G(B)=B[1+r-s B]$ (logistic equation); $K=r / s$ is the natural carrying capacity

Dynamics of exploited renewable resources

Logistic Growth of unharvested population

$$
B(t+1)=G(B(t))=B(t)[1+R(B(t))]
$$

- $B(t)$ biomass at time t
- $R(B)$ specific growth rate
- With $R(B)=r-s B \Rightarrow G(B)=B[1+r-s B]$ (logistic equation); $K=r / s$ is the natural carrying capacity

Dynamics of exploited renewable resources

Logistic Growth of unharvested population

$$
B(t+1)=G(B(t))=B(t)[1+R(B(t))]
$$

- $B(t)$ biomass at time t
- $R(B)$ specific growth rate
- With $R(B)=r-s B \Rightarrow G(B)=B[1+r-s B]$ (logistic equation); $K=r / s$ is the natural carrying capacity

Dynamics of exploited renewable resources

Constant harvesting

$$
B(t+1)=G(B(t))=B(t)[1+r-s B]-H(t)
$$

- $H(t)$ biomass harvested at time t

Dynamics of exploited renewable resources

Constant harvesting

$$
B(t+1)=G(B(t))=B(t)[1+r-s B]-H(t)
$$

- $H(t)$ biomass harvested at time t

Definition

Constant harvesting $H(t)=h$ (constant)

Dynamics of exploited renewable resources

Constant harvesting

$$
B(t+1)=G(B(t))=B(t)[1+r-s B]-H(t)
$$

- $H(t)$ biomass harvested at time t

Definition

Constant harvesting $H(t)=h$ (constant)

- Two positive equilibria for $h<\frac{r^{2}}{4 s}$

$$
X_{h}=\frac{r-\sqrt{r^{2}-4 h s}}{2 s} \text { and } K_{h}=\frac{r+\sqrt{r^{2}-4 h s}}{2 s}
$$

Dynamics of exploited renewable resources

Constant harvesting

$$
B(t+1)=G(B(t))=B(t)[1+r-s B]-H(t)
$$

- $H(t)$ biomass harvested at time t

Definition

Constant harvesting $H(t)=h$ (constant)

- Two positive equilibria for $h<\frac{r^{2}}{4 s}$

$$
X_{h}=\frac{r-\sqrt{r^{2}-4 h s}}{2 s} \text { and } K_{h}=\frac{r+\sqrt{r^{2}-4 h s}}{2 s}
$$

Dynamics of exploited renewable resources

Constant harvesting

$$
B(t+1)=G(B(t))=B(t)[1+r-s B]-H(t)
$$

- $H(t)$ biomass harvested at time t

Definition

Constant harvesting $H(t)=h$ (constant)

- Two positive equilibria for $h<\frac{r^{2}}{4 s}$

$$
X_{h}=\frac{r-\sqrt{r^{2}-4 h s}}{2 s} \text { and } K_{h}=\frac{r+\sqrt{r^{2}-4 h s}}{2 s}
$$

- X_{h} is a survival threshold for biomass and K_{h} is the modified carrying capacity

Dynamics of exploited renewable resources

Constant harvesting - Fold Bifurcation

Dynamics of exploited renewable resources

Constant harvesting - Fold Bifurcation

Dynamics of exploited renewable resources

Constant effort

Definition

Schaefer catch equation $H(t)=q E B(t)$, where E is harvesting effort and q is the catchability coefficient

$$
B(t+1)=B(t)[1+r-q E-s B(t)]
$$

Dynamics of exploited renewable resources

Constant effort

Definition

Schaefer catch equation $H(t)=q E B(t)$, where E is harvesting effort and q is the catchability coefficient

$$
B(t+1)=B(t)[1+r-q E-s B(t)]
$$

Two equilibria: $B_{0}=0$ (extinction) and $K_{E}=\frac{r-q E}{s}$ (modified carrying capacity)

Dynamics of exploited renewable resources

Increasing fishing effort and transcritical bifurcation

Dynamics of exploited renewable resources
 Constant effort and MSY (Maximum Substainable Yield)

Dynamics of exploited renewable resources

Growth with depensation

Actual biological populations might exhibit depensation (unimodal growth rate)

Dynamics of exploited renewable resources

Growth with depensation

Dynamics of exploited renewable resources

Growth with depensation

Dynamics of exploited renewable resources

Growth with depensation

The system exhibits hysteresis effects

Overlapping generation models

Basic Example

At each time period, only two agents operate in the economy, one old and one young. When young (e.g. time t), an agent solves the problem

$$
\begin{aligned}
& \max _{c_{0}(t), c_{1}(t+1)} u\left(c_{0}(t), c_{1}(t+1)\right) \\
& \text { s.t. }\left\{\begin{array}{c}
c_{1}(t+1)=w_{1}+\left(1+i_{t}\right)\left[w_{0}-c_{0}(t)\right] \quad \text { (budget constraint) } \\
c_{0}(t) \geq 0 ; c_{1}(t+1) \geq 0 \text { (non-negativity constraint) }
\end{array}\right.
\end{aligned}
$$

Overlapping generation models

Basic Example

At each time period, only two agents operate in the economy, one old and one young. When young (e.g. time t), an agent solves the problem

$$
\begin{aligned}
& \max _{c_{0}(t), c_{1}(t+1)} u\left(c_{0}(t), c_{1}(t+1)\right) \\
& \text { s.t. }\left\{\begin{array}{c}
c_{1}(t+1)=w_{1}+\left(1+i_{t}\right)\left[w_{0}-c_{0}(t)\right] \quad \text { (budget constraint) } \\
c_{0}(t) \geq 0 ; c_{1}(t+1) \geq 0 \text { (non-negativity constraint) }
\end{array}\right.
\end{aligned}
$$

where:

- $c_{0}(t)$ consumption of the young agent at time t

Overlapping generation models

Basic Example

At each time period, only two agents operate in the economy, one old and one young. When young (e.g. time t), an agent solves the problem

$$
\begin{aligned}
& \max _{c_{0}(t), c_{1}(t+1)} u\left(c_{0}(t), c_{1}(t+1)\right) \\
& \text { s.t. }\left\{\begin{array}{c}
c_{1}(t+1)=w_{1}+\left(1+i_{t}\right)\left[w_{0}-c_{0}(t)\right] \quad \text { (budget constraint) } \\
c_{0}(t) \geq 0 ; c_{1}(t+1) \geq 0 \text { (non-negativity constraint) }
\end{array}\right.
\end{aligned}
$$

where:

- $c_{0}(t)$ consumption of the young agent at time t
- $c_{1}(t+1)$ consumption of the same agent when old (at time $t+1$)

Overlapping generation models

Basic Example

At each time period, only two agents operate in the economy, one old and one young. When young (e.g. time t), an agent solves the problem

$$
\begin{aligned}
& \max _{c_{0}(t), c_{1}(t+1)} u\left(c_{0}(t), c_{1}(t+1)\right) \\
& \text { s.t. }\left\{\begin{array}{c}
c_{1}(t+1)=w_{1}+\left(1+i_{t}\right)\left[w_{0}-c_{0}(t)\right] \quad \text { (budget constraint) } \\
c_{0}(t) \geq 0 ; c_{1}(t+1) \geq 0 \text { (non-negativity constraint) }
\end{array}\right.
\end{aligned}
$$

where:

- $c_{0}(t)$ consumption of the young agent at time t
- $c_{1}(t+1)$ consumption of the same agent when old (at time $t+1$)
- w_{0}, w_{1} wages when, respectively, young and old (constants)

Overlapping generation models

Basic Example

At each time period, only two agents operate in the economy, one old and one young. When young (e.g. time t), an agent solves the problem

$$
\begin{aligned}
& \max _{c_{0}(t), c_{1}(t+1)} u\left(c_{0}(t), c_{1}(t+1)\right) \\
& \text { s.t. }\left\{\begin{array}{c}
c_{1}(t+1)=w_{1}+\left(1+i_{t}\right)\left[w_{0}-c_{0}(t)\right] \quad \text { (budget constraint) } \\
c_{0}(t) \geq 0 ; c_{1}(t+1) \geq 0 \text { (non-negativity constraint) }
\end{array}\right.
\end{aligned}
$$

where:

- $c_{0}(t)$ consumption of the young agent at time t
- $c_{1}(t+1)$ consumption of the same agent when old (at time $t+1$)
- w_{0}, w_{1} wages when, respectively, young and old (constants)
- i_{t} periodic interest rate at time t

Overlapping generation models

Basic Example

At each time period, only two agents operate in the economy, one old and one young. When young (e.g. time t), an agent solves the problem

$$
\begin{aligned}
& \max _{c_{0}(t), c_{1}(t+1)} u\left(c_{0}(t), c_{1}(t+1)\right) \\
& \text { s.t. }\left\{\begin{array}{c}
c_{1}(t+1)=w_{1}+\left(1+i_{t}\right)\left[w_{0}-c_{0}(t)\right] \quad \text { (budget constraint) } \\
c_{0}(t) \geq 0 ; c_{1}(t+1) \geq 0 \text { (non-negativity constraint) }
\end{array}\right.
\end{aligned}
$$

where:

- $c_{0}(t)$ consumption of the young agent at time t
- $c_{1}(t+1)$ consumption of the same agent when old (at time $t+1$)
- w_{0}, w_{1} wages when, respectively, young and old (constants)
- i_{t} periodic interest rate at time t

Overlapping generation models

Basic Example

At each time period, only two agents operate in the economy, one old and one young. When young (e.g. time t), an agent solves the problem

$$
\begin{aligned}
& \max _{c_{0}(t), c_{1}(t+1)} u\left(c_{0}(t), c_{1}(t+1)\right) \\
& \text { s.t. }\left\{\begin{array}{c}
c_{1}(t+1)=w_{1}+\left(1+i_{t}\right)\left[w_{0}-c_{0}(t)\right] \quad \text { (budget constraint) } \\
c_{0}(t) \geq 0 ; c_{1}(t+1) \geq 0 \text { (non-negativity constraint) }
\end{array}\right.
\end{aligned}
$$

where:

- $c_{0}(t)$ consumption of the young agent at time t
- $c_{1}(t+1)$ consumption of the same agent when old (at time $t+1$)
- w_{0}, w_{1} wages when, respectively, young and old (constants)
- i_{t} periodic interest rate at time t

Moreover, in equilibrium of the market,

$$
\begin{equation*}
c_{0}(t)+c_{1}(t)=w_{0}+w_{1} \tag{1}
\end{equation*}
$$

where $c_{1}(t)$ is the consumption of the old agent at time t.

Overlapping generation models

Basic Example

At each time period, only two agents operate in the economy, one old and one young. When young (e.g. time t), an agent solves the problem

$$
\begin{aligned}
& \max _{c_{0}(t), c_{1}(t+1)} u\left(c_{0}(t), c_{1}(t+1)\right) \\
& \text { s.t. }\left\{\begin{array}{c}
c_{1}(t+1)=w_{1}+\left(1+i_{t}\right)\left[w_{0}-c_{0}(t)\right] \quad \text { (budget constraint) } \\
c_{0}(t) \geq 0 ; c_{1}(t+1) \geq 0 \text { (non-negativity constraint) }
\end{array}\right.
\end{aligned}
$$

where:

- $c_{0}(t)$ consumption of the young agent at time t
- $c_{1}(t+1)$ consumption of the same agent when old (at time $t+1$)
- w_{0}, w_{1} wages when, respectively, young and old (constants)
- i_{t} periodic interest rate at time t

Moreover, in equilibrium of the market,

$$
\begin{equation*}
c_{0}(t)+c_{1}(t)=w_{0}+w_{1} \tag{1}
\end{equation*}
$$

where $c_{1}(t)$ is the consumption of the old agent at time t.

- Inserting the budget constraint in the objective function we get the optimality condition

$$
\begin{equation*}
\frac{\partial u\left(c_{0}(t), c_{1}(t+1)\right)}{\partial c_{0}(t)}-\left(1+i_{t}\right) \frac{\partial u\left(c_{0}(t), c_{1}(t+1)\right)}{\partial c_{1}(t+1)}=0 \tag{2}
\end{equation*}
$$

- Inserting the budget constraint in the objective function we get the optimality condition

$$
\begin{equation*}
\frac{\partial u\left(c_{0}(t), c_{1}(t+1)\right)}{\partial c_{0}(t)}-\left(1+i_{t}\right) \frac{\partial u\left(c_{0}(t), c_{1}(t+1)\right)}{\partial c_{1}(t+1)}=0 \tag{2}
\end{equation*}
$$

- By the budget constraint,

$$
\begin{aligned}
F\left(c_{0}(t), c_{1}(t+1)\right)= & \frac{\partial u\left(c_{0}(t), c_{1}(t+1)\right)}{\partial c_{0}(t)}+ \\
& +\frac{w_{1}-c_{1}(t+1)}{w_{0}-c_{0}(t)} \frac{\partial u\left(c_{0}(t), c_{1}(t+1)\right)}{\partial c_{1}(t+1)}=0
\end{aligned}
$$

which implicitly defines the relationship between $c_{0}(t)$ and $c_{1}(t+1)$.

- Inserting the budget constraint in the objective function we get the optimality condition

$$
\begin{equation*}
\frac{\partial u\left(c_{0}(t), c_{1}(t+1)\right)}{\partial c_{0}(t)}-\left(1+i_{t}\right) \frac{\partial u\left(c_{0}(t), c_{1}(t+1)\right)}{\partial c_{1}(t+1)}=0 \tag{2}
\end{equation*}
$$

- By the budget constraint,

$$
\begin{aligned}
F\left(c_{0}(t), c_{1}(t+1)\right)= & \frac{\partial u\left(c_{0}(t), c_{1}(t+1)\right)}{\partial c_{0}(t)}+ \\
& +\frac{w_{1}-c_{1}(t+1)}{w_{0}-c_{0}(t)} \frac{\partial u\left(c_{0}(t), c_{1}(t+1)\right)}{\partial c_{1}(t+1)}=0
\end{aligned}
$$

which implicitly defines the relationship between $c_{0}(t)$ and $c_{1}(t+1)$.

- Suppose we can write $c_{1}(t+1)=G\left(c_{0}(t)\right)$.
- Inserting the budget constraint in the objective function we get the optimality condition

$$
\begin{equation*}
\frac{\partial u\left(c_{0}(t), c_{1}(t+1)\right)}{\partial c_{0}(t)}-\left(1+i_{t}\right) \frac{\partial u\left(c_{0}(t), c_{1}(t+1)\right)}{\partial c_{1}(t+1)}=0 \tag{2}
\end{equation*}
$$

- By the budget constraint,

$$
\begin{aligned}
F\left(c_{0}(t), c_{1}(t+1)\right)= & \frac{\partial u\left(c_{0}(t), c_{1}(t+1)\right)}{\partial c_{0}(t)}+ \\
& +\frac{w_{1}-c_{1}(t+1)}{w_{0}-c_{0}(t)} \frac{\partial u\left(c_{0}(t), c_{1}(t+1)\right)}{\partial c_{1}(t+1)}=0
\end{aligned}
$$

which implicitly defines the relationship between $c_{0}(t)$ and $c_{1}(t+1)$.

- Suppose we can write $c_{1}(t+1)=G\left(c_{0}(t)\right)$.
- Writing the condition of market equilibrium (1) as $c_{0}(t+1)+c_{1}(t+1)=w_{0}+w_{1}$, we obtain the unidimensional map

$$
c_{0}(t+1)=w_{0}+w_{1}-G\left(c_{0}(t)\right)
$$

Overlapping generation models

Logistic equation

Example (see Gandolfo 1997)

$u\left(c_{0}(t), c_{1}(t+1)\right)=u\left(c_{0}, c_{1}\right)=a c_{0}-\frac{b}{2} c_{0}^{2}+c_{1}$, where $c_{0} \in\left[0, \frac{a}{b}\right]$, $w_{0}=0 ; w_{1}=\widehat{w}>\frac{a}{b}$. Condition (2) is

$$
a-b c_{0}-\frac{\widehat{w}-c_{1}}{c_{0}}=0 \Longleftrightarrow c_{1}(t+1)-\widehat{w}=-c_{0}(t)\left[a-b c_{0}(t)\right]
$$

and by $(1), c_{0}(t+1)+c_{1}(t+1)=\widehat{w}$,

$$
c_{0}(t+1)=c_{0}(t)\left[a-b c_{0}(t)\right]
$$

by letting $c_{0}(t)=\frac{a}{b} x(t)$, we have the standard logistic map

$$
x(t+1)=a x(t)[1-x(t)]
$$

Overlapping generation models

OLG and the environment

- OLG models are a general framework for elaborating more complex models.

Overlapping generation models

OLG and the environment

- OLG models are a general framework for elaborating more complex models.
- For instance, Zhang, 1999 extends the paper by John and Pecchenino to model within an OLG framework, the quality of the environment.

Overlapping generation models

OLG and the environment

- OLG models are a general framework for elaborating more complex models.
- For instance, Zhang, 1999 extends the paper by John and Pecchenino to model within an OLG framework, the quality of the environment.
- Agents derive utility from consumption and from environment and can decide savings for later consumption and investments in environmental improvement.

Overlapping generation models
 OLG and the environment

- OLG models are a general framework for elaborating more complex models.
- For instance, Zhang, 1999 extends the paper by John and Pecchenino to model within an OLG framework, the quality of the environment.
- Agents derive utility from consumption and from environment and can decide savings for later consumption and investments in environmental improvement.
- Consumption depletes the environment

Overlapping generation models

OLG and the environment

- OLG models are a general framework for elaborating more complex models.
- For instance, Zhang, 1999 extends the paper by John and Pecchenino to model within an OLG framework, the quality of the environment.
- Agents derive utility from consumption and from environment and can decide savings for later consumption and investments in environmental improvement.
- Consumption depletes the environment
- Zhang derives an unimodal map, for which chaos a là Li-Yorke emerges (3-cycle).

Cobwebs

Adaptive expectations

(1) $q^{d}(t)=D(p(t))$ [Demand for goods $q^{d}(t)$ at time t is function of current price $p(t)$]

Cobwebs

Adaptive expectations

(1) $q^{d}(t)=D(p(t))$ [Demand for goods $q^{d}(t)$ at time t is function of current price $p(t)$]
(2) $q^{s}(t)=S(\widehat{p}(t))$ [Supply for goods $q^{s}(t)$ at time t is function of expected price $\widehat{p}(t)]$

Cobwebs

Adaptive expectations

(1) $q^{d}(t)=D(p(t))$ [Demand for goods $q^{d}(t)$ at time t is function of current price $p(t)$]
(2) $q^{s}(t)=S(\hat{p}(t))$ [Supply for goods $q^{s}(t)$ at time t is function of expected price $\widehat{p}(t)]$
(3) $q^{d}(t)=q^{s}(t)$ [Market clearing: demand equals supply at each time t]

Cobwebs

Adaptive expectations

(1) $q^{d}(t)=D(p(t))$ [Demand for goods $q^{d}(t)$ at time t is function of current price $p(t)$]
(2) $q^{S}(t)=S(\hat{p}(t))$ [Supply for goods $q^{S}(t)$ at time t is function of expected price $\widehat{p}(t)]$
(3) $q^{d}(t)=q^{s}(t)$ [Market clearing: demand equals supply at each time t]
(9) $\widehat{p}(t)=\widehat{p}(t-1)+w[p(t-1)-\widehat{p}(t-1)], w \in[0,1]$ [Expectation formation for producers]

Cobwebs

Adaptive expectations

(1) $q^{d}(t)=D(p(t))$ [Demand for goods $q^{d}(t)$ at time t is function of current price $p(t)$]
(2) $q^{S}(t)=S(\hat{p}(t))$ [Supply for goods $q^{S}(t)$ at time t is function of expected price $\widehat{p}(t)]$
(3) $q^{d}(t)=q^{s}(t)$ [Market clearing: demand equals supply at each time $\left.t\right]$
(1) $\widehat{p}(t)=\widehat{p}(t-1)+w[p(t-1)-\widehat{p}(t-1)], w \in[0,1][$ Expectation formation for producers]

Cobwebs

Adaptive expectations

(1) $q^{d}(t)=D(p(t))$ [Demand for goods $q^{d}(t)$ at time t is function of current price $p(t)$]
(2) $q^{S}(t)=S(\hat{p}(t))$ [Supply for goods $q^{S}(t)$ at time t is function of expected price $\widehat{p}(t)]$
(3) $q^{d}(t)=q^{s}(t)$ [Market clearing: demand equals supply at each time t]
(9) $\hat{p}(t)=\widehat{p}(t-1)+w[p(t-1)-\widehat{p}(t-1)], w \in[0,1]$ [Expectation formation for producers]

- The Expectation mechanism (adaptive expectations) states that if actual price $p(t-1)$ is smaller [larger] than previous expected price $\widehat{p}(t-1)$, then the new expected price is decreased [increased], see Nerlove, 1995.

Cobwebs

Adaptive expectations

(1) $q^{d}(t)=D(p(t))$ [Demand for goods $q^{d}(t)$ at time t is function of current price $p(t)$]
(2) $q^{S}(t)=S(\hat{p}(t))$ [Supply for goods $q^{S}(t)$ at time t is function of expected price $\widehat{p}(t)]$
(3) $q^{d}(t)=q^{s}(t)$ [Market clearing: demand equals supply at each time t]
(1) $\hat{p}(t)=\widehat{p}(t-1)+w[p(t-1)-\widehat{p}(t-1)], w \in[0,1]$ [Expectation formation for producers]

- The Expectation mechanism (adaptive expectations) states that if actual price $p(t-1)$ is smaller [larger] than previous expected price $\widehat{p}(t-1)$, then the new expected price is decreased [increased], see Nerlove, 1995.

Cobwebs

Adaptive expectations

(1) $q^{d}(t)=D(p(t))$ [Demand for goods $q^{d}(t)$ at time t is function of current price $p(t)$]
(2) $q^{S}(t)=S(\hat{p}(t))$ [Supply for goods $q^{S}(t)$ at time t is function of expected price $\widehat{p}(t)]$
(3) $q^{d}(t)=q^{s}(t)$ [Market clearing: demand equals supply at each time t]
(1) $\widehat{p}(t)=\widehat{p}(t-1)+w[p(t-1)-\widehat{p}(t-1)], w \in[0,1]$ [Expectation formation for producers]

- The Expectation mechanism (adaptive expectations) states that if actual price $p(t-1)$ is smaller [larger] than previous expected price $\widehat{p}(t-1)$, then the new expected price is decreased [increased], see Nerlove, 1995.
- By 4., an equilibrium in expected price is also an equilibrium in actual price

Cobwebs

Adaptive expectations

(1) $q^{d}(t)=D(p(t))$ [Demand for goods $q^{d}(t)$ at time t is function of current price $p(t)$]
(2) $q^{S}(t)=S(\hat{p}(t))$ [Supply for goods $q^{S}(t)$ at time t is function of expected price $\widehat{p}(t)]$
(3) $q^{d}(t)=q^{s}(t)$ [Market clearing: demand equals supply at each time t]
(1) $\widehat{p}(t)=\widehat{p}(t-1)+w[p(t-1)-\widehat{p}(t-1)], w \in[0,1]$ [Expectation formation for producers]

- The Expectation mechanism (adaptive expectations) states that if actual price $p(t-1)$ is smaller [larger] than previous expected price $\widehat{p}(t-1)$, then the new expected price is decreased [increased], see Nerlove, 1995.
- By 4., an equilibrium in expected price is also an equilibrium in actual price

Cobwebs

Adaptive expectations

(1) $q^{d}(t)=D(p(t))$ [Demand for goods $q^{d}(t)$ at time t is function of current price $p(t)$]
(2) $q^{S}(t)=S(\hat{p}(t))$ [Supply for goods $q^{S}(t)$ at time t is function of expected price $\widehat{p}(t)]$
(3) $q^{d}(t)=q^{s}(t)$ [Market clearing: demand equals supply at each time t]
(1) $\widehat{p}(t)=\widehat{p}(t-1)+w[p(t-1)-\widehat{p}(t-1)], w \in[0,1]$ [Expectation formation for producers]

- The Expectation mechanism (adaptive expectations) states that if actual price $p(t-1)$ is smaller [larger] than previous expected price $\widehat{p}(t-1)$, then the new expected price is decreased [increased], see Nerlove, 1995.
- By 4., an equilibrium in expected price is also an equilibrium in actual price
- In the following, we try to understand what happens when the initial price is out-of-equilibrium.

Cobwebs

Adaptive expectations

(1) $q^{d}(t)=D(p(t))$ [Demand for goods $q^{d}(t)$ at time t is function of current price $p(t)$]
(2) $q^{S}(t)=S(\hat{p}(t))$ [Supply for goods $q^{S}(t)$ at time t is function of expected price $\widehat{p}(t)]$
(3) $q^{d}(t)=q^{s}(t)$ [Market clearing: demand equals supply at each time t]
(1) $\widehat{p}(t)=\widehat{p}(t-1)+w[p(t-1)-\widehat{p}(t-1)], w \in[0,1]$ [Expectation formation for producers]

- The Expectation mechanism (adaptive expectations) states that if actual price $p(t-1)$ is smaller [larger] than previous expected price $\widehat{p}(t-1)$, then the new expected price is decreased [increased], see Nerlove, 1995.
- By 4., an equilibrium in expected price is also an equilibrium in actual price
- In the following, we try to understand what happens when the initial price is out-of-equilibrium.

Cobwebs

Adaptive expectations

(1) $q^{d}(t)=D(p(t))$ [Demand for goods $q^{d}(t)$ at time t is function of current price $p(t)$]
(2) $q^{S}(t)=S(\hat{p}(t))$ [Supply for goods $q^{S}(t)$ at time t is function of expected price $\widehat{p}(t)]$
(3) $q^{d}(t)=q^{s}(t)$ [Market clearing: demand equals supply at each time t]
(1) $\widehat{p}(t)=\widehat{p}(t-1)+w[p(t-1)-\widehat{p}(t-1)], w \in[0,1]$ [Expectation formation for producers]

- The Expectation mechanism (adaptive expectations) states that if actual price $p(t-1)$ is smaller [larger] than previous expected price $\widehat{p}(t-1)$, then the new expected price is decreased [increased], see Nerlove, 1995.
- By 4., an equilibrium in expected price is also an equilibrium in actual price
- In the following, we try to understand what happens when the initial price is out-of-equilibrium.

Cobwebs

Adaptive expectations

(1) If $w=1$, then $\widehat{p}(t)=p(t-1)$, expected price equals previous price (naive expectations), Ezekiel, 1938.

Cobwebs

Adaptive expectations

(1) If $w=1$, then $\widehat{p}(t)=p(t-1)$, expected price equals previous price (naive expectations), Ezekiel, 1938.
(2) By market clearing, $D(p(t))=S(\widehat{p}(t))$, and, assuming D invertible,

$$
\begin{equation*}
p(t)=D^{-1}[S(\widehat{p}(t))] \tag{3}
\end{equation*}
$$

Cobwebs

Adaptive expectations

(1) If $w=1$, then $\widehat{p}(t)=p(t-1)$, expected price equals previous price (naive expectations), Ezekiel, 1938.
(2) By market clearing, $D(p(t))=S(\widehat{p}(t))$, and, assuming D invertible,

$$
\begin{equation*}
p(t)=D^{-1}[S(\widehat{p}(t))] \tag{3}
\end{equation*}
$$

(3) The cobweb model with adaptive expectation can be written as

$$
\widehat{p}(t)=\widehat{p}(t-1)+w\left[D^{-1}[S(\widehat{p}(t-1))]-\widehat{p}(t-1)\right]
$$

Cobwebs

Adaptive expectations

(1) If $w=1$, then $\widehat{p}(t)=p(t-1)$, expected price equals previous price (naive expectations), Ezekiel, 1938.
(2) By market clearing, $D(p(t))=S(\widehat{p}(t))$, and, assuming D invertible,

$$
\begin{equation*}
p(t)=D^{-1}[S(\widehat{p}(t))] \tag{3}
\end{equation*}
$$

(3) The cobweb model with adaptive expectation can be written as

$$
\widehat{p}(t)=\widehat{p}(t-1)+w\left[D^{-1}[S(\widehat{p}(t-1))]-\widehat{p}(t-1)\right]
$$

(9) By (3), we can compute actual prices from expected ones.

Cobwebs

Linear cobweb

Example

$$
D(p)=a-b p \text { and } S(\widehat{p})=-m+s \widehat{p}, a, b, m, s>0
$$

$$
\widehat{p}(t)=w \frac{a+m}{b}+\left[1-w-\frac{s w}{b}\right] \widehat{p}(t-1)
$$

is a linear difference equation of the first order. The equilibrium (expected and actual) price is

$$
p^{*}=\frac{a+m}{b+s}>0
$$

Assuming $w>0, p^{*}$ is stable $\Longleftrightarrow-1<1-w-\frac{s w}{b}<1$,
$\Longleftrightarrow w\left(1+\frac{s}{b}\right)<2 \Longleftrightarrow\left\{\begin{array}{c}b>s \\ b \leq s \text { and } w \in\left[0, \frac{2 b}{b+s}\right)\end{array}\right.$. At
$w\left(1+\frac{s}{b}\right)=2$, fluctuations remain of constant magnitude (2-cycle). For $w\left(1+\frac{s}{b}\right)>2$, fluctuations increase in magnitude with each period.

Cobwebs

Nonlinear cobwebs (Hommes, 1994)

Hommes, 1994 maintains D linear but changes S to a nonlinear function such that:
(1) When p is low, S increases slowly because of start-up costs

Cobwebs

Nonlinear cobwebs (Hommes, 1994)

Hommes, 1994 maintains D linear but changes S to a nonlinear function such that:
(1) When p is low, S increases slowly because of start-up costs
(2) When p is high, S increases slowly because of capacity constraints

Cobwebs

Nonlinear cobwebs (Hommes, 1994)

Hommes, 1994 maintains D linear but changes S to a nonlinear function such that:
(1) When p is low, S increases slowly because of start-up costs
(2) When p is high, S increases slowly because of capacity constraints

Cobwebs

Nonlinear cobwebs (Hommes, 1994)

Hommes, 1994 maintains D linear but changes S to a nonlinear function such that:
(1) When p is low, S increases slowly because of start-up costs
(2) When p is high, S increases slowly because of capacity constraints

A simple way to translate mathematically these conditions is

Cobwebs

Nonlinear cobwebs (Hommes, 1994)

Hommes, 1994 maintains D linear but changes S to a nonlinear function such that:
(1) When p is low, S increases slowly because of start-up costs
(2) When p is high, S increases slowly because of capacity constraints

A simple way to translate mathematically these conditions is
(1) S^{\prime} is increasing for $p<\bar{p}$

Cobwebs

Nonlinear cobwebs (Hommes, 1994)

Hommes, 1994 maintains D linear but changes S to a nonlinear function such that:
(1) When p is low, S increases slowly because of start-up costs
(2) When p is high, S increases slowly because of capacity constraints

A simple way to translate mathematically these conditions is
(1) S^{\prime} is increasing for $p<\bar{p}$
(2) S^{\prime} is decreasing for $p>\bar{p}$

Cobwebs

Nonlinear cobwebs (Hommes, 1994)

Hommes, 1994 maintains D linear but changes S to a nonlinear function such that:
(1) When p is low, S increases slowly because of start-up costs
(2) When p is high, S increases slowly because of capacity constraints

A simple way to translate mathematically these conditions is
(1) S^{\prime} is increasing for $p<\bar{p}$
(2) S^{\prime} is decreasing for $p>\bar{p}$
(3) $S^{\prime} \rightarrow 0$ as $p \rightarrow \infty$

Cobwebs

Nonlinear cobwebs (Hommes, 1994)

- Take as a prototype Supply
$S_{\lambda}(\widehat{p})=\arctan (\lambda \widehat{p})$,
where λ regulates the maximum slope of Supply [through a change of coordinates the inflection point \bar{p} is at 0]
- Bimodal map

Cobwebs

Nonlinear cobwebs (Hommes, 1994)

- Take as a prototype Supply
$S_{\lambda}(\widehat{p})=\arctan (\lambda \widehat{p})$,
where λ regulates the maximum slope of Supply [through a change of coordinates the inflection point \bar{p} is at 0]
- Bimodal map

Cobwebs

- Take as a prototype Supply
$S_{\lambda}(\widehat{p})=\arctan (\lambda \widehat{p})$,
where λ regulates the maximum slope of Supply [through a change of coordinates the inflection point \bar{p} is at 0]
- Bimodal map

Cobwebs

Nonlinear cobwebs (Hommes, 1994)

- Take as a prototype Supply
$S_{\lambda}(\widehat{p})=\arctan (\lambda \widehat{p})$,
where λ regulates the maximum slope of Supply [through a change of coordinates the inflection point \bar{p} is at 0]

- Bimodal map

Cobwebs

Nonlinear cobwebs (Hommes, 1994)
Hommes, 1994 shows the route to chaos through period-doubling bifurcations and back to a fixed point through period-halving bifurcations as a is increased; similar results hold as w varies.

Cobwebs

Nonlinear cobwebs (Hommes, 1994)
Hommes, 1994 shows the route to chaos through period-doubling bifurcations and back to a fixed point through period-halving bifurcations as a is increased; similar results hold as w varies.

Binary Choices

Basic ideas, Schelling, 1973

- Each agent of a large population makes a binary decision (A or B)
- Denote by $x \in[0,1]$ the fraction of players that choose strategy A.
- Payoffs are continuous functions of $x, A(x):[0,1] \rightarrow \mathbb{R}$, $B(x):[0,1] \rightarrow \mathbb{R}$ where $A(x)$ and $B(x)$ represent the payoff associated to strategies A and B, respectively.
- Since binary choices are considered, when fraction x is playing A, then fraction $1-x$ is playing B.
- x will increase whenever $A(x)>B(x)$ whereas it will decrease when the opposite inequality holds.

Binary Choices

- Each agent of a large population makes a binary decision (A or B)
- Denote by $x \in[0,1]$ the fraction of players that choose strategy A.
- Payoffs are continuous functions of $x, A(x):[0,1] \rightarrow \mathbb{R}$, $B(x):[0,1] \rightarrow \mathbb{R}$ where $A(x)$ and $B(x)$ represent the payoff associated to strategies A and B, respectively.
- Since binary choices are considered, when fraction x is playing A, then fraction $1-x$ is playing B.
- x will increase whenever $A(x)>B(x)$ whereas it will decrease when the opposite inequality holds.

Binary Choices

Basic ideas, Schelling, 1973

- Each agent of a large population makes a binary decision (A or B)
- Denote by $x \in[0,1]$ the fraction of players that choose strategy A.
- Payoffs are continuous functions of $x, A(x):[0,1] \rightarrow \mathbb{R}$, $B(x):[0,1] \rightarrow \mathbb{R}$ where $A(x)$ and $B(x)$ represent the payoff associated to strategies A and B, respectively.
- Since binary choices are considered, when fraction x is playing A, then fraction $1-x$ is playing B.
- x will increase whenever $A(x)>B(x)$ whereas it will decrease when the opposite inequality holds.

Binary Choices

Basic ideas, Schelling, 1973

- Each agent of a large population makes a binary decision (A or B)
- Denote by $x \in[0,1]$ the fraction of players that choose strategy A.
- Payoffs are continuous functions of $x, A(x):[0,1] \rightarrow \mathbb{R}$, $B(x):[0,1] \rightarrow \mathbb{R}$ where $A(x)$ and $B(x)$ represent the payoff associated to strategies A and B, respectively.
- Since binary choices are considered, when fraction x is playing A, then fraction $1-x$ is playing B.
- x will increase whenever $A(x)>B(x)$ whereas it will decrease when the opposite inequality holds.

Binary Choices

Basic ideas, Schelling, 1973

- Each agent of a large population makes a binary decision (A or B)
- Denote by $x \in[0,1]$ the fraction of players that choose strategy A.
- Payoffs are continuous functions of $x, A(x):[0,1] \rightarrow \mathbb{R}$, $B(x):[0,1] \rightarrow \mathbb{R}$ where $A(x)$ and $B(x)$ represent the payoff associated to strategies A and B, respectively.
- Since binary choices are considered, when fraction x is playing A, then fraction $1-x$ is playing B.
- x will increase whenever $A(x)>B(x)$ whereas it will decrease when the opposite inequality holds.

Binary Choices

Basic ideas, Schelling, 1973

- Should I wear the helmet or not during the hockey match?
- It depends if the other guys do or not.
- Should I carry a weapon or going unarmed?
- It depends on what other guys do (apply to nations)
- Should I take the car or the train ?
- Should I invest in R\&D or not? (consider spillover effects)
- Join or not? (switch watches to daylight saving time or stay on standard time)
- Should I dress elegant or not at the annual meeting of my society?
- Should I get annual flu vaccination or not ?
- Should I spray the insecticide in my garden or not?
- Should I go to vote for my favourite party or not?

Binary Choices

An economic example

- Population of N firms, each with two strategies available:
- S_{1} : invest in R\&D with payoff A
- S_{2} : just spillovers with payoff B
- Let $x=n / N \in[0,1]$ be the fraction of players that choose strategy $S_{1},(1-x)$ choose S_{2} :
- $x=0$: all choose S_{2} (just spill)
- $x=1$: all choose S_{1} (invest in R\&D)
- Payoffs are functions $A(x)$ and $B(x)$ defined in $[0,1]$

$$
A(x)=(a+b) x-c ; B(x)=b x
$$

Binary Choices

An economic example

- Population of N firms, each with two strategies available:
- S_{1} : invest in R\&D with payoff A
- S_{2} : just spillovers with payoff B
- Let $x=n / N \in[0,1]$ be the fraction of players that choose strategy $S_{1},(1-x)$ choose S_{2} :
- $x=0$: all choose S_{2} (just spill)
- $x=1$: all choose S_{1} (invest in R\&D)
- Payoffs are functions $A(x)$ and $B(x)$ defined in $[0,1]$

$$
A(x)=(a+b) x-c ; B(x)=b x
$$

Binary Choices

An economic example

- Population of N firms, each with two strategies available:
- S_{1} : invest in R\&D with payoff A
- S_{2} : just spillovers with payoff B
- Let $x=n / N \in[0,1]$ be the fraction of players that choose strategy $S_{1},(1-x)$ choose S_{2} :
- $x=0$: all choose S_{2} (just spill)
- $x=1$: all choose S_{1} (invest in R\&D)
- Payoffs are functions $A(x)$ and $B(x)$ defined in $[0,1]$

$$
A(x)=(a+b) x-c ; B(x)=b x
$$

Binary Choices

An economic example

- Population of N firms, each with two strategies available:
- S_{1} : invest in R\&D with payoff A
- S_{2} : just spillovers with payoff B
- Let $x=n / N \in[0,1]$ be the fraction of players that choose strategy $S_{1},(1-x)$ choose S_{2} :
- $x=0$: all choose S_{2} (just spill)
- $x=1$: all choose S_{1} (invest in R\&D)
- Payoffs are functions $A(x)$ and $B(x)$ defined in $[0,1]$

$$
A(x)=(a+b) x-c ; B(x)=b x
$$

Binary Choices

An economic example

- Population of N firms, each with two strategies available:
- S_{1} : invest in R\&D with payoff A
- S_{2} : just spillovers with payoff B
- Let $x=n / N \in[0,1]$ be the fraction of players that choose strategy $S_{1},(1-x)$ choose S_{2} :
- $x=0$: all choose S_{2} (just spill)
- $x=1$: all choose S_{1} (invest in R\&D)
- Payoffs are functions $A(x)$ and $B(x)$ defined in $[0,1]$

$$
A(x)=(a+b) x-c ; B(x)=b x
$$

Binary Choices

An economic example

- Population of N firms, each with two strategies available:
- S_{1} : invest in R\&D with payoff A
- S_{2} : just spillovers with payoff B
- Let $x=n / N \in[0,1]$ be the fraction of players that choose strategy $S_{1},(1-x)$ choose S_{2} :
- $x=0$: all choose S_{2} (just spill)
- $x=1$: all choose S_{1} (invest in R\&D)
- Payoffs are functions $A(x)$ and $B(x)$ defined in $[0,1]$

$$
A(x)=(a+b) x-c ; B(x)=b x
$$

Binary Choices

An economic example

- Population of N firms, each with two strategies available:
- S_{1} : invest in R\&D with payoff A
- S_{2} : just spillovers with payoff B
- Let $x=n / N \in[0,1]$ be the fraction of players that choose strategy $S_{1},(1-x)$ choose S_{2} :
- $x=0$: all choose S_{2} (just spill)
- $x=1$: all choose S_{1} (invest in R\&D)
- Payoffs are functions $A(x)$ and $B(x)$ defined in $[0,1]$

$$
A(x)=(a+b) x-c ; B(x)=b x
$$

Binary Choices

Binary Choices

- Collective efficiency:

$$
x A(x)+(1-x) B(x)=x(a x+b x-c)+(1-x) b x=a x^{2}+(b-c) x
$$

Binary Choices

- Collective efficiency:
$x A(x)+(1-x) B(x)=x(a x+b x-c)+(1-x) b x=a x^{2}+(b-c) x$
Collective optimum for $x=1$
- Individual optimal choice different from collective optimal choice

Binary Choices

- Collective efficiency:
$x A(x)+(1-x) B(x)=x(a x+b x-c)+(1-x) b x=a x^{2}+(b-c) x$
Collective optimum for $x=1$
- Individual optimal choice different from collective optimal choice

Binary Choices

Dynamic formulation

- Equilibria are solutions x^{*} of the equation $A\left(x^{*}\right)=B\left(x^{*}\right)$, or $x=0$ (if $A(0)<B(0)$) or $x=1$ (if $A(1)>B(1)$).
- Bischi and Merlone, 2009a, consider a repeated binary choice at discrete time, where $x(t)$ is the fraction of agents playing strategy A at time t.
- Agents at time t observe the choices of the population and try to increase their short-run payoff (myopic agents).
- If $A(x(t))>B(x(t))$, then a fraction $(1-x(t))$ of agents playing B will switch to strategy A in the next period and vice-versa.

Binary Choices

Dynamic formulation

- Equilibria are solutions x^{*} of the equation $A\left(x^{*}\right)=B\left(x^{*}\right)$, or $x=0$ (if $A(0)<B(0)$) or $x=1$ (if $A(1)>B(1)$).
- Bischi and Merlone, 2009a, consider a repeated binary choice at discrete time, where $x(t)$ is the fraction of agents playing strategy A at time t.
- Agents at time t observe the choices of the population and try to increase their short-run payoff (myopic agents).
- If $A(x(t))>B(x(t))$, then a fraction $(1-x(t))$ of agents playing B will switch to strategy A in the next period and vice-versa.

Binary Choices

Dynamic formulation

- Equilibria are solutions x^{*} of the equation $A\left(x^{*}\right)=B\left(x^{*}\right)$, or $x=0$ (if $A(0)<B(0)$) or $x=1$ (if $A(1)>B(1)$).
- Bischi and Merlone, 2009a, consider a repeated binary choice at discrete time, where $x(t)$ is the fraction of agents playing strategy A at time t.
- Agents at time t observe the choices of the population and try to increase their short-run payoff (myopic agents).
- If $A(x(t))>B(x(t))$, then a fraction $(1-x(t))$ of agents playing B will switch to strategy A in the next period and vice-versa.

Binary Choices

Dynamic formulation

- Equilibria are solutions x^{*} of the equation $A\left(x^{*}\right)=B\left(x^{*}\right)$, or $x=0$ (if $A(0)<B(0)$) or $x=1$ (if $A(1)>B(1)$).
- Bischi and Merlone, 2009a, consider a repeated binary choice at discrete time, where $x(t)$ is the fraction of agents playing strategy A at time t.
- Agents at time t observe the choices of the population and try to increase their short-run payoff (myopic agents).
- If $A(x(t))>B(x(t))$, then a fraction $(1-x(t))$ of agents playing B will switch to strategy A in the next period and vice-versa.

Binary Choices

Dynamic formulation

The dynamic of $x(t)$ can be modelled as

$$
\begin{aligned}
& x(t+1)=f(x(t))= \\
& \begin{cases}x(t)+\delta_{A} g[\lambda(A(x(t))-B(x(t)))](1-x(t)) & \text { if } A(x(t)) \geq B(x(t) \\
x(t)-\delta_{B} g[\lambda(B(x(t))-A(x(t)))] x(t) & \text { if } A(x(t))<B(x(t)\end{cases}
\end{aligned}
$$

Binary Choices

Dynamic formulation

The dynamic of $x(t)$ can be modelled as

$$
\begin{aligned}
& x(t+1)=f(x(t))= \\
& \begin{cases}x(t)+\delta_{A} g[\lambda(A(x(t))-B(x(t)))](1-x(t)) & \text { if } A(x(t)) \geq B(x(t) \\
x(t)-\delta_{B} g[\lambda(B(x(t))-A(x(t)))] x(t) & \text { if } A(x(t))<B(x(t)\end{cases}
\end{aligned}
$$

where

- $\delta_{A}, \delta_{B} \in[0,1]$ are propensities to switch to other strategy
- $g: \mathbb{R}^{+} \rightarrow[0,1]$ is a continuous function such that $g(0)=0$ and $\lim _{y \rightarrow+\infty} g(y)=1$
- λ is the speed of reaction

Binary Choices

Dynamic formulation

The dynamic of $x(t)$ can be modelled as

$$
\begin{aligned}
& x(t+1)=f(x(t))= \\
& \begin{cases}x(t)+\delta_{A} g[\lambda(A(x(t))-B(x(t)))](1-x(t)) & \text { if } A(x(t)) \geq B(x(t) \\
x(t)-\delta_{B} g[\lambda(B(x(t))-A(x(t)))] x(t) & \text { if } A(x(t))<B(x(t)\end{cases}
\end{aligned}
$$

where

- $\delta_{A}, \delta_{B} \in[0,1]$ are propensities to switch to other strategy
- $g: \mathbb{R}^{+} \rightarrow[0,1]$ is a continuous function such that $g(0)=0$ and $\lim _{y \rightarrow+\infty} g(y)=1$
- λ is the speed of reaction

Binary Choices

Dynamic formulation

The dynamic of $x(t)$ can be modelled as

$$
\begin{aligned}
& x(t+1)=f(x(t))= \\
& \begin{cases}x(t)+\delta_{A} g[\lambda(A(x(t))-B(x(t)))](1-x(t)) & \text { if } A(x(t)) \geq B(x(t) \\
x(t)-\delta_{B} g[\lambda(B(x(t))-A(x(t)))] x(t) & \text { if } A(x(t))<B(x(t)\end{cases}
\end{aligned}
$$

where

- $\delta_{A}, \delta_{B} \in[0,1]$ are propensities to switch to other strategy
- $g: \mathbb{R}^{+} \rightarrow[0,1]$ is a continuous function such that $g(0)=0$ and $\lim _{y \rightarrow+\infty} g(y)=1$
- λ is the speed of reaction

Binary Choices

Dynamic formulation

The dynamic of $x(t)$ can be modelled as

$$
\begin{aligned}
& x(t+1)=f(x(t))= \\
& \begin{cases}x(t)+\delta_{A} g[\lambda(A(x(t))-B(x(t)))](1-x(t)) & \text { if } A(x(t)) \geq B(x(t) \\
x(t)-\delta_{B} g[\lambda(B(x(t))-A(x(t)))] x(t) & \text { if } A(x(t))<B(x(t)\end{cases}
\end{aligned}
$$

where

- $\delta_{A}, \delta_{B} \in[0,1]$ are propensities to switch to other strategy
- $g: \mathbb{R}^{+} \rightarrow[0,1]$ is a continuous function such that $g(0)=0$ and $\lim _{y \rightarrow+\infty} g(y)=1$
- λ is the speed of reaction

Binary Choices

Dynamic formulation

The dynamic of $x(t)$ can be modelled as

$$
\begin{aligned}
& x(t+1)=f(x(t))= \\
& \begin{cases}x(t)+\delta_{A} g[\lambda(A(x(t))-B(x(t)))](1-x(t)) & \text { if } A(x(t)) \geq B(x(t) \\
x(t)-\delta_{B} g[\lambda(B(x(t))-A(x(t)))] x(t) & \text { if } A(x(t))<B(x(t)\end{cases}
\end{aligned}
$$

where

- $\delta_{A}, \delta_{B} \in[0,1]$ are propensities to switch to other strategy
- $g: \mathbb{R}^{+} \rightarrow[0,1]$ is a continuous function such that $g(0)=0$ and $\lim _{y \rightarrow+\infty} g(y)=1$
- λ is the speed of reaction

Binary Choices

Dynamic formulation

Theorem (case 1)

Assuming that
(1) $A(0)<B(0)$
(2) $A(1)>B(1)$
(3) there is a unique $x^{*} \in(0,1)$ such that $A\left(x^{*}\right)=B\left(x^{*}\right)$.

Then $x=0, x=1, x=x^{*}$ are fixed points. x^{*} is unstable and constitutes the boundary separating the basins of attraction of the stable fixed points 0 and 1. The dynamics converges monotonically to 0 if $x(0)<x^{*}$ or to 1 if $x(0)>x^{*}$.

Binary Choices

Dynamic formulation

Theorem (case 1)

Assuming that
(1) $A(0)<B(0)$
(2) $A(1)>B(1)$
(3) there is a unique $x^{*} \in(0,1)$ such that $A\left(x^{*}\right)=B\left(x^{*}\right)$.

Then $x=0, x=1, x=x^{*}$ are fixed points. x^{*} is unstable and constitutes the boundary separating the basins of attraction of the stable fixed points 0 and 1. The dynamics converges monotonically to 0 if $x(0)<x^{*}$ or to 1 if $x(0)>x^{*}$.

This theorem applies to the previous example (R\&D vs. spillovers)

Binary Choices

Dynamic formulation

- Similarly to Hommes, take $g(x)=\frac{2}{\pi} \arctan (x)$
- $A(x)=x ; B(x)=0.25+0.5 x ; \delta_{A}=0.1 ; \delta_{B}=0.9 ; \lambda=40$;
- Piecewise smooth map; the previous theorem applies

Binary Choices

Dynamic formulation

- Similarly to Hommes, take $g(x)=\frac{2}{\pi} \arctan (x)$
- $A(x)=x ; B(x)=0.25+0.5 x ; \delta_{A}=0.1 ; \delta_{B}=0.9 ; \lambda=40$;
- Piecewise smooth map; the previous theorem applies

Binary Choices

Dynamic formulation

Theorem (case 2)

Assuming that
(1) $A(0)>B(0)$
(2) $A(1)<B(1)$
(3) there is a unique $x^{*} \in(0,1)$ such that $A\left(x^{*}\right)=B\left(x^{*}\right)$.

Then $x=x^{*}$ is the only fixed point. x^{*} is stable if

$$
f_{-}^{\prime}\left(x^{*}\right) f_{+}^{\prime}\left(x^{*}\right) \leq 1
$$

Binary Choices

Dynamic formulation

Theorem (case 2)

Assuming that
(1) $A(0)>B(0)$
(2) $A(1)<B(1)$
(3) there is a unique $x^{*} \in(0,1)$ such that $A\left(x^{*}\right)=B\left(x^{*}\right)$.

Then $x=x^{*}$ is the only fixed point. x^{*} is stable if

$$
f_{-}^{\prime}\left(x^{*}\right) f_{+}^{\prime}\left(x^{*}\right) \leq 1
$$

Binary Choices

Dynamic formulation

$$
\begin{aligned}
& A(x)=0.25+0.5 x \\
& B(x)=1.5 x \\
& \delta_{A}=\delta_{B}=0.5
\end{aligned}
$$

- Theorem of case 2 applies
- Period doubling route to chaos as λ is increased

Binary Choices

Dynamic formulation - Bischi, Merlone 2009b

- Schelling provides exemples for unimodal payoff functions
- Bischi and Merlone 2009b carry on an example with $A(x)=0.5 x$; $B(x)=-8 x^{2}+12 x-4 ; \delta_{A}=\delta_{B}=0.5$ and $\lambda=6$

Binary Choices

Dynamic formulation - Bischi, Merlone 2009b

- $\lambda=10$

Binary Choices

Dynamic formulation - Bischi, Merlone 2009b

- $\lambda=60$

Binary Choices

Dynamic formulation - Bischi, Merlone 2009b

- $\lambda=60$; role of initial conditions

Binary Choices

Dynamic formulation - Bischi, Gardini, Merlone 2009

- When $\lambda \rightarrow \infty$ agents are impulsive and the map is discontinuous
- Bischi, Gardini, Merlone 2009, show that in some cases stable periodic cycles of any period that appear and disappear through border-collision bifurcations.

Concluding remarks

- The list of models is not exhaustive...
- Maps are often derived by solving static, dynamic or 'myopic' optimization problems, by conditions on stocks and flows, equilibrium equations, ...
- Main mathematical concepts employed so far include:
- linear and nonlinear maps, stability of equilibria and cycles
- bifurcations, bifurcation diagrams and hysteresis
- conjugacy and period doubling route to chaos
- noninvertible maps and critical points
- basins of attraction and global bifurcations
- piecewise and discontinuous maps
- ...

Quoted works I

- Bischi G. I., Merlone U., "Impulsivity in Binary Choices and the Emergence of Periodicity," Discrete dynamics in nature and society, vol. 2009a.
- Bischi G. I., Merlone U., "Global dynamics in Binary Choice models with social influence," Journal of Mathematical Sociology, 33:277, 2009b.
- Bischi G. I., Gardini, L., Merlone U., "Global dynamics in binary choice models with social influence," Journal of Mathematical Sociology, vol. 33, pp. 1-26, 2009.
- Boldrin, M., Montrucchio L., 1986, On the indeterminacy of Capital Accumulation Paths, Journal of Economic Theory, 40, 26-39.
- Clark, C.W., 1990. Mathematical Bioeconomics, 2nd edition. New York: Wiley Interscience.

Quoted works II

- Day, R.H. 1982, Irregular Growth Cycles, American Economic Review, 72, pp.406-414.
- Diamond, P.A., National debt in a neoclassical growth model, American Economic Review, 55-5, pp.1126-1150, 1965.
- Ezekiel M., The cobweb theorem, Quarterly Journal of Economics, 52, 255-280, 1938.
- Gandolfo, G., Economic dynamics, Springer, 1997.
- Hommes, C.H., Adaptive learning and road to chaos, Economics Letters, 36, 127-132, 1991.
- Hommes, C.H., Dynamics of the cobweb model with adaptive expectations and nonlinear supply and demand, Journal of Economic Behavior and Organization, 24, 315-335, 1994.
- John A., Pecchenino R., An overlapping generation model of growth and the environment, The Economic Journal, 104-427, 1393-1410, 1994.

Quoted works III

- Lorenz H.W., Nonlinear Dynamical Economics and Chaotic Motion, Springer, 1993
- Medio A., Lines, M., Nonlinear dynamics, Cambridge, 2001.
- Nerlove M., Adaptive expectations and cobweb phenomena, Quarterly Journal of Economics, 72, 227-240, 1958.
- T. C. Schelling, "Hockey helmets, concealed weapons and daylight saving," Journal of Conflict Resolution, vol. 17, no. 3, pp. 381-428, 1973.
- Stokey, Nancy L. and Robert E. Lucas (1989), Recursive Methods in Economic Dynamics, Harvard University Press
- Zhang, Environmental sustainability, nonlinear dynamics and chaos, Economic theory, 14, 489-500, 1999.

