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Abstract

In this paper we consider the impact of spillovers occurring within
and between two populations of firms on the long run agglomeration
patterns in a market. In each period every single firm can either pro-
duce for this market or choose some outside option (e.g. a risky asset).
Firms switch between the two options based on information about the
relative profitability of the market and the outside option. In the mar-
ket, due to spillovers, the production costs are influenced by the total
number of firms from both populations in the market. The resulting
model describes the evolution of the size of the two firm clusters and
their market shares over time. We provide a global analysis of the
existence and basins of attraction of equilibria to address the question
what impact different constellations of spillover effects have on the
growth of dominant respectively incoming clusters. We demonstrate
that the basins of attraction of coexisting long run equilibria do not
depend continuously on the size of the spillover effects. Furthermore,
an increase in the initial cluster size is not necessarily beneficial if the
switching behavior of firms is fast.

Keywords: spillover effects, evolutionary dynamics, equilibrium selection,
basins of attraction, critical curves

1 Introduction

In many industries a well-observed phenomenon is the clustering of firms
related to this industry in relatively small geographical regions. Industries
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where such agglomeration patterns have been observed include car manufac-
turing, computer manufacturing, fashion designing or the chemical industry
(see Audretsch and Feldman (1996) and, in particular, Ellison and Glaeser
(1997) for an extensive analysis of the geographic concentration of several
different US industries). Two major reasons for this agglomeration have
been identified in the literature: first, endowment effects suggesting that cer-
tain regions are especially well suited for the production of certain goods and,
second, positive externalities due to technological and intellectual spillovers
from other similar companies in a region. Beginning with Marshall (1920) it
has been argued in numerous places that the flow of information on produc-
tion techniques and product design as well as the pooling of skilled labor in
a certain region may lead to considerable reduction of the production costs
and make it attractive for firms to produce similar or related products. It
has also been pointed out that the size of these spillover effects between firms
does not only depend on local proximity of the production facilities but also
on the ownership of the company. For example, Head et al. (1995) show that
internal spillovers within each groups of Japanese and American car manu-
facturers in the US are larger than external spillovers between these groups'.
Nevertheless, there is evidence for positive spillovers from companies from
different groups and also between regions (see e.g. Mansfield (1988) for an
empirical study). The size of the internal and external spillovers has been
shown to differ between different regions and industries (Mansfield (1988))
which is due to differing management and production techniques but also
due to differences in the infrastructure (means of transportation, etc.) or in-
centives for foreign direct investment and human capital exchange programs
(see e.g. Chuang and Lin (1999) or Neven and Siotis (1996) on the connection
between foreign direct investment and spillovers). The ability of Japanese
car manufacturers to yield a sustainable market share on western markets is
generally attributed to their keiretsu organization which facilitates internal
spillovers and their superior ability for technological sourcing which allows
them to use externally based technologies much faster and more efficient
than their U.S. competitors (Mansfield (1988)).

This raises the question whether we can gain some general insights on
the conditions which allow for the evolution of a viable cluster of firms pro-
ducing for a certain market in a region. In particular, it is interesting to
examine which differences in internal and external spillover effects allow an
initially marginal cluster to coexist with another cluster of firms in the mar-

!Relatedly, Ellison and Glaeser (1997) find in their empirical study that within county
spillovers are stronger than nearby-county spillovers.



ket and under which circumstances internal and/or external spillover effects
may lead to a market takeover by one cluster. Furthermore, the question
whether an increase of internal or external spillover effects is more advanta-
geous from the long run perspective of a local industry group arises. These
questions are particularly relevant for regional planners who are interested in
attracting or building up a certain industry cluster in their region by provid-
ing appropriate infrastructure and incentives for the emergence of spillovers
and by attracting initial investments. A few authors have provided policy
recommendations on these issues based on empirical studies (Chuang and
Lin (1999)) or static models (Carlisle (1992)), however without explicitly
taking into account the interaction of distinct clusters in the market. In this
paper we carry out a dynamic evolutionary analysis of the competition of
two industry groups (say Japanese and US car manufacturers) in a market
where internal and external spillover effects are present. The size of the two
industry groups depends on the attractivity of the market for both groups,
which is expressed by the profits achieved by firms who are producing for
the market in relation to the profit of some outside option. The market
entry and exit decision of firms is made on the basis of information about
the relative profitability of the market which has been collected via direct
communication within the group. In order to address the questions posed
above, we analyze the evolution of the size and market shares respectively
for both firm clusters. In particular, we will investigate to which steady
state the process converges depending on the sizes of the spillover effects,
their relation to each other and the initial market shares of both groups. We
will characterize the set of initial market shares which lead to convergence
to a certain equilibrium — the basin of attraction of this equilibrium — and
will use the size of the different basins as a measure of the efficacy of policies
leading to increases or advantages in internal or external spillovers.

Besides dealing with these economic questions this paper also addresses
a general, more technical, point related to dynamic evolutionary analysis.
For the last two decades dynamic evolutionary models based on local inter-
action of boundedly rational agents have been used frequently to gain a new
understanding of several economic problems?. Whereas this type of research
initially focused on the notion of evolutionary stability (ESS) and determin-
istic evolutionary dynamics, the larger part of recent contributions has used
stochastic models including ’experimentation’ or ’error’ terms. These mod-

?The fields of application include bargaining models (Young (1993), Ellingsen (1997)),
auctions (Dawid (1999a), Lu and McAfee (1996)), the formation of social norms (Young
(1998) or various models of market interaction (Quin and Stuart (1997), Vega-Redondo
(1997)).



els are usually analyzed using the so called 'Freidlin-Wentzell method’ which
characterizes the states which stay in the limit distribution of the process
as the probability for experiments goes to zero. An appealing feature of
this technique is that it generates, for most of the models, a unique long
run prediction and, therefore, is a useful tool for equilibrium selection based
on evolutionary arguments. However, it has to be pointed out that these
predictions often hold only in the very long run and there may be a large
probability that the process stays for a very long time close to some state
different from the stochastically stable one®. One the other hand, deter-
ministic models normally do not provide unique predictions about the long
run outcome. It is well-known that there might exist several (non-interior)
evolutionary stable states which are locally stable for many prominent evo-
lutionary dynamics. Thus, the long run prediction in general depends on the
initial conditions of the process, and the long run in this framework involves
a much shorter time horizon than for the stochastic models.

Considering our model of two competing groups of firms it seems that
the initial conditions (i.e. the initial market shares of the two groups) indeed
has a crucial influence on the outcome of the competition in a reasonable
time frame. Thus, for the purpose of this paper, we find it more suitable
to look at the intermediate run using a deterministic model of the evolution
of the size of the two industry groups. We will follow Friedman (1998) who
points out that ” [I/n most applied work it suffices to identify the evolutionary
equilibria and their basins of attraction”, (p. 34; see also Friedman (1991)
p. 639) and will characterize the equilibria in our model and their basins for
different constellations of internal and external spillovers. Obtaining such a
characterization for higher dimensional non-linear models by analytic means
(and not only numerically) is, however, an intricate task. So far few results
other than for standard normal form games are available (see e.g. Friedman
(1998)). This might be seen as a reason that very few such dynamic analyses
have been carried out so far, but in this paper we demonstrate how the theory
of critical curves can be used to understand and predict the changes of the
basins of attraction in highly non-linear evolutionary models with multiple
coexisting steady states. Although this technique has been sporadically
applied in economic modeling in the past (see e.g. Bischi et al. (2000) and
Bischi and Kopel (1999)), this is to our knowledge the first study where the
merits of this approach for evolutionary analysis are explored. The use of

3For example Ellison (2000) points out that ”..., it is inherently limited in scope to a
characterization of the very long run limit. This can be problematic because evolution in
these models is at times so slow as to be of limited practical importance.”



this technique should facilitate the applicability of deterministic evolutionary
analysis in many other models as well, and could in some cases generate
predictions for a more realistic time horizon than the stochastic approach.
Thus, the analysis provided here should be of general interest for researchers
working in the field of evolutionary modeling as well.

The paper is organized as follows. In section 2 we introduce the model.
Section 3 deals with the case where only internal spillovers exist. Section 4
then studies the changes of the long run outcomes when spillovers exist not
only within a population but also between populations. Section 5 briefly
summarizes the main findings. All proofs are given the Appendix.

2 Markets and Spillovers

Consider two groups of firms ¢ = 1,2 which have to decide whether to
produce for a certain market or not. Alternatively, you might think of two
groups of investors who have to decide whether to invest in a certain local
industry branch or not. As laid out in the introduction, the assignment into
one of the groups may be due to several reasons like the location or the
national origin of the firms. The only crucial observation here is that there
is more flow of information within a group than between the two groups.
To keep matters as simple as possible we assume that the two groups are of
the same size and denote by x;; the fraction of firms in population ¢,7 = 1,2
which are in the market at time ¢. This fraction might as well be interpreted
as the fraction of available capital in each country which is invested in firms
in the market. Assuming constant returns to scale, it does not make a
difference for any of our arguments whether output within one country is
produced by several large or many small firms as long as no firm has relevant
market power.

For reasons of simplicity it is assumed that every firm in the market
produces one unit of a homogeneous good per period. Aggregate output in
the market is then given by (x; +x2) times the number of firms. The market
clearing price is determined by an inverse demand function

p = p(x1 + x2).

Due to internal spillovers within the group, costs reductions are higher the
more other firms in the population produce the same good. Additionally,
if both, internal and external spillovers exist, costs reductions also arise
due to production activities in the other population. We include such cost
externalities in our model by assuming that the unit costs for a firm depend



on the number of firms from both populations which produce the good in the
market. Hence, we express unit costs of a firm in population i by ¢;(z1, x2),
where g—% <0,4,j=1,2 9a <9u ;=124 j This gives a per

Y5 dr; — 8a:j’

period profit of
mi(x1, x2) = p(w1 + @) — ¢5(w1, 22).

The profit of a firm which stays out of the market (i.e. chooses the outside
option) is modeled as a stochastic variable. Outside profit of firm f in
population 7 at time t is ujﬁt with expected value U;. Outside profits are
independent across individual firms in a population and time. We write
uy, = Ui + €}, where the density of ¢}, is independent of f and ¢, has
full support IR and is unimodal and symmetric with respect to 0. The
distribution function of e?t is denoted by ©;.

Each period t =0, ..., 00 every firm decides whether to enter or to exit
the market*. If a firm samples another firm (in the same population) which
has chosen a different action in the previous period, it switches (i.e. exits or
enters) whenever the profit of the other firm has been larger than its own
profit. The sampling procedure is assumed to be stochastically independent
from the outside profit “th and this implies that the probability that an
arbitrary firm in population ¢ which is now in the market exits after period
t is given by:

Pow(@1,m2) = (1 —2)P(mi(21,22) < Us + €} )
= (1 —x)(1 = 6i(mi(x1,22) — Us)),

On the other hand, a firm currently outside the market enters the market
with probability

Pin(@1,72) = 2ilP(mi(a1,23) > Ui + €5 )
= 2;04(mi(21, 22) — Us),

The expected fraction of population ¢ firms (i = 1,2) in the market is there-
fore:

Tiggr = ig+ (L= 2i0)phy (1,0, m2,0) — T aPhyy (21,02,

= Xt + Tt (1 —254)(Os(mi(x1 s, x04) — Us) — (1 — O(mi(x1 e, x24) — Us))

= i+ ig(1 — xi0) Gi(mi(21,0, x2,) — Us),

1 As indicated above, this can alternatively be interpreted as the decision of an investor
in the population to invest in this market by founding a production firm or to withdraw
capital respectively.
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where G;(x) := 20;(x) — 1. The evolution of the fractions x; and z2 are
hence described by a nonlinear deterministic system in discrete time. Word
of mouth dynamics similar to this one have been analyzed by Fudenberg
and Ellison (1993, 1995) and Dawid (1999b). It is obvious that the shape of
the function G; depends on the distribution function ©;. However, from the
fact that O; is a distribution function and the properties of the correspond-
ing density (unimodality and symmetry) it is easy to derive the following
statements for i = 1,2:
Gi(0) =0, lim G;(x)=1, lim G(x)=—1.
T—X0 T——0Q

Furthermore, G;(x) is symmetric with respect to 0, convex on (—oo,0] and
concave on [0,00). The slope of G; at 0 is twice the altitude of the hump
of the unimodal density. It will turn out that the qualitative properties of
the long run behavior of the dynamics in many cases crucially depend on
the ’speed’ of the flow towards the action with the higher expected profit.
Hence, we will use G(0) as a measure of this speed and denote it by \;°.

Studying the nonlinear two-dimensional dynamical system (1) allows us
to derive qualitative features of the evolution of the fraction of firms of
the two populations which are in the considered market. In particular,
we are interested in the question how initial market shares of firms of the
two populations, x19 and x2p, and differences in (internal and external)
spillovers influence the convergence properties of the evolutionary process
to some long run equilibrium (the agglomeration pattern). To answer this
question, we will provide an extensive analysis of the equilibria and their
basins of attraction. However, before we proceed we need to be more specific
about the functions involved.

We will assume that the demand curve is linear

p(:L'l + ZL’Q) = PO — B(ib’l +$2).

Furthermore, we use the following rational expression for the unit costs of a
firm in population :

ci(xy,mg) = Ci i,j€{1,2}, i#j

i\L1, L2 _1“‘61332‘*"7233] ) IS ) s
The parameter §; incorporates the effect of internal spillovers, whereas ~;
characterizes in how far spillovers occur externally between the two popu-
lations. As explained in the introduction, the qualitative properties of the

®For many classes of distribution functions, like the normal distribution, a large slope
of G; at zero corresponds to a small variance of the outside profit; for example for the
normal distribution A; is inversely proportional to o.



cost function are inspired by existing theoretical and empirical work. To
take account of the fact that internal spillovers are stronger than those be-
tween populations (see Ellison and Glaeser (1997), Head et al. (1995)), we
assume that 3; > ~;. The profit of a firm in population ¢ who is in the
market is then given by

C;

mio,w) = o= Bloy ) - o B
) 1]

=12 i#j (2
We will always assume that if all firms from both populations are in
the market, the payoff for firms in the market is smaller than the expected
outside profit. This assumption rules out the rather unrealistic and uninter-
esting case where the market is so much more attractive than the outside
option that all firms from both populations want to enter or stay under all
circumstances. On the other hand, the monopoly profit of the firm enter-
ing the market should be larger than the expected outside profit. These

conditions are represented by the following inequalities:
Py=2B— 5= < Ui i=1,2 ‘)

Ph-C;, > U 1=1,2

Additionally, we make the more technical assumption that, if there were no
spillovers, the expected profit of the outside option would be higher than
the profit in the market if half of the firms are in the market

Ph—-B-C;<U; 1=1,2. (4)

One of the main points we will make in this paper is to show that in the
presence of large spillovers a population of firms can invade a market despite
the fact that their initial market share is small. Accordingly, it is sensible
to assume that these spillovers are the reason why the market may become,
on average, more attractive than the outside option. By making this as-
sumption we avoid the discussion of several cases. However, it would be
straightforward to extend the analysis to cases where this assumption does
not hold.

Using the expressions given above, we obtain the following evolution-
ary model which describes the dynamics of the fraction of firms from both
populations in the market:

— _ _ ____ &
Tigp1 = Tip+ 21l —210)Gh (Al B(x1: + x24) 1+ﬁ1$1+'¥1w2)

— _ _ G
Torrl = Tor+ $27t(1 $27t)G2 <A2 B(ZL'Lt + .CUQ,t) 1+/32902+’Y2901) ,
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where A; := Py — U;. We define T : [0, 1]? — [0, 1]? as the right hand side of
(5) and using this notation the system reads x4+ = T'(z;). In general terms
we have derived a two-population evolutionary model with non-linear payoff
functions and inter- and intra population interaction. In the remainder of
the paper, we will proceed as follows: First, we will examine the set of
possible equilibria of this dynamical system, which gives the potential (long
run) agglomeration patterns of firms of the two populations in the market.
Second, we will study their local stability properties. Third, we will turn
to the equilibrium selection problem. We will focus on a global analysis
and characterize the basins of attraction of the different stable equilibria for
different parameter constellations.

3 Fixed Points and Local Stability

Obviously, the state space S := [0, 1] x [0, 1] is invariant under the dynamics
(5) and all four corners are fixed points. A standard local stability analysis
further shows that under assumptions (3) the two corners (0,0) and (1,1)
are unstable®. The corner (1,0) is locally asymptotically stable if

Cy
Py— B — > U 6
0 1+ 061 ! (6)
&
Py— B - < U 7
0 T+ ? ™)
and (0,1) is locally asymptotically stable under the symmetric conditions
Ch
Py— B - < U 8
’ I+m ! 8)
Co
Py—B— > Us. 9
0 14 3o 2 ©)

Besides these four fixed points the system may also have additional sta-
tionary points. Every point in the interior of S where 71(x1,x2) = U; and
ma(x1,x2) = Us is a fixed point of (5). Furthermore, fixed points exist on the
upper and lower boundary of S where 7 (z1,22) = Uy and on the left and
right boundary where ma(x1,x2) = Us. To facilitate the analysis we define
the curves F;, i = 1,2 as the set of all points (1, x2) where the profit in the
market equals the expected outside profit for a firm of population 1, i.e.

Fy = {(x1,22) € [0, 1]*|mi(x1, 22) = Ui} (10)

The details of the local stability analysis can be found in a technical Appendix available
upon request from the authors.



Interior equilibria exist at all intersections of the curves F1 and F>. Fixed
points at the boundary occur either at the intersection of F} with x9 =0 or
xo = 1, or at the intersection of Fy with 1 = 0 or 1 = 1. Note however,
that fixed points on the boundary might not correspond to Nash equilibria
of the model.

In the following proposition we characterize the fixed points (other than
the vertices) of the dynamics under our assumptions.

Proposition 1 For [3; > 0 the dynamical system (5) can have at most one
fized point in the interior of (0,12 and if it exists it is always unstable.
Additionally, there can be either at most two fized points on the boundary
x1 =1 or one fixed point on x1 = 0 and either at most two fixed points on
the boundary xo =1 or one fixed point on x9 = 0. There can never be fized
points on x; =0 and on x; =1, ¢ = 1,2 simultaneously for the same values
of the parameters.

Taking into account proposition 1 we conclude that our model can have
up to nine coexisting fixed points. There are always four at the vertices
of [0,1]2, at most four on the boundary and at most one in the interior of
the unit square. Short introspection further establishes that there can be
at most one stable equilibrium in the interior of a boundary line of the unit
square. Therefore, all together there can be at most four locally stable fixed
points. Any of these stable fixed points is the potential long run outcome
of the evolutionary process driven by the switching behavior of the firms.
Standard arguments used in the evolutionary game theory literature (e.g.
Weibull (1995)) imply that every locally stable fixed point corresponds to
a Nash equilibrium of the underlying two population game. Which locally
stable equilibrium is actually chosen depends on the initial market share
firms in population ¢ have. In order to obtain a thorough understanding
of the interplay between initial market shares, long run outcomes and their
dependence on parameters, for each equilibrium we need a characterization
of the set of initial conditions for which the process converges to it. In other
words, what is needed is not only an identification of the set of locally stable
fixed points, but also a characterization of their basins of attraction and the
changes these basins undergo as parameters are varied.

To make matters simple, we introduce a coherent notation for all fixed
points on the boundary which we will use throughout the analysis. We
denote the vertices as: 0 = (0,0),V; = (1,0),Vir = (1,1), Vi = (0,1), and
the unique interior fixed point as S = (s1, s2). Obviously, V; characterizes
an agglomeration pattern where all firms of population 1 are in the market
and all firms of population 2 choose the outside option. Conversely, in
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Virr population 2 firms are in the market and population 1 firms choose
the outside option. We denote by P; = (pr1,0) the interior fixed point on
the boundary line o = 0, by Q5 = (1,q112) and Pr; = (1,]?[]2) the two
fixed points on r; = 1, where qrre < prre, by Q[[[ = (qjjjl,l) and P[[[ =
(prrr, 1) the two fixed points on xo = 1, where qrr1 < prrpn and by Pry =
(0, pry2) the interior fixed point on x; = 0. For example, Py characterizes
a situation where in the long run firms of population 2 dominate the market.
However, not all firms of population 1 are driven out of the market: a fraction
of firms of population 1 coexists.

To keep our exposition as clear and simple as possible we assume that the
constant unit costs of a single firm from either population are identical: C; =
(5 = C. In other words, the profit a single firm can achieve when entering
a market where no other firm of the same population is in, is independent
of the population the firm belongs to. Furthermore, we assume that the
distribution of the outside profit is identical in both populations, i.e. ©; =
©5, which in particular implies G; = G2 := G and U; = Us. Therefore,
we have A1 = As = A. The populations might differ, however, with regard
to their infrastructure facilitating spillovers and cost externalities between
their members (i.e. with respect to (; and ;).

4 Internal Spillovers

We start our analysis by considering a scenario where internal, but no ex-
ternal spillovers exist. That is, we assume 3; > 0 and v; = 0 for ¢ = 1,2.
Discrete time dynamics have the generic property that they might ’over-
shoot’ equilibria if the step-size is too large. Throughout this first part of
the analysis we will avoid this by assuming that the dynamics is "sufficiently
slow" (i.e. A\ = A2 := A is sufficiently small), such that no local overshoot-
ing occurs at any fixed point. This corresponds to a situation where the
variance of the outside profit is large. Later on in our analysis we will also
deal with the effect of an increase of the speed of the flow in and out of the
market.

4.1 Symmetric Spillovers and Slow Dynamics

Let us start with the symmetric case where the internal spillovers in both
populations are equal, i.e. 81 = (32 := 3. Initially, we will assume very small
spillover effects and characterize how the set of fixed points and the set of
initial conditions for the fraction of firms (21 and w29) which converge
to these equilibria change as ( is increased. In the limit case § = 0, the

11



curves F1 and F» are identical straight lines with slope —1. It follows from
assumption (4) that they are both below the line x; +x9 = 1. Note that this
implies that we have a continuum of interior fixed points. Generically, in
such a case different initial conditions lead to different long run states. If we
slightly increase 3, the curve F} bends upwards; the intersection point with
x1 = 0 is fixed and the intersection point with x2 = 0 moves to the right.
The curve F5 changes in a symmetric way. We can therefore conclude that
for positive, but very small values of 3, additionally to the four vertices,
there are three fixed points: the single interior equilibrium, S, P on the
line ;1 = 0 and Pry on the line z3 = 0. Due to (4), the local stability
conditions (6) and (9) for V7 and Vi are violated for sufficiently small .
Thus, the two equilibria on the boundary, P = (ps1,0) and Pry = (0, pryv2),
where pr1 and pryo are identical and satisfy A — Bp — %ﬁp = 0, are the
only two stable equilibria. We know that the interior fixed point, S, is a
saddle point and the complete symmetry of the dynamics with respect to
x1 and x2 implies that the stable set of the saddle is the diagonal of the
unit square. Figure 1 depicts the curves Fy, Fb, all coexisting fixed points
and the diagonal. In all our numerical illustrations we use the parameter
values Py = 300, B = 100, C' = 190, U = 32 for the market environment
and expected outside profits. These values satisfy assumptions (3) and (4)
for all §;,v; € [0,1]. Other values of the parameters which satisfy these
assumptions would yield qualitatively similar results.

Figure 1: Insert here!

Due to the symmetry properties, the diagonal is invariant with respect to
the dynamics and this suggests, that it separates the basins of attraction of
the two stable fixed points Py and Pry. In order to rigorously establish this
fact, we have to show that the dynamics never maps a point from one side
of the diagonal to the other side. One way to show this, is to prove that the
diagonal is not only forwards, but also backwards invariant with respect to
the dynamics. A simple continuity argument then establishes that if there is
a backwards invariant curve either all points are mapped from one side to the
other or none. Since we know that, for example, T'(V;) = V;, showing that
the diagonal is backwards invariant is sufficient to show that it separates
the basins of attraction of P;r and Pry. If the inverse of the generating
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map of the dynamics is single-valued, it is trivial that the forwards invariant
diagonal is also backwards invariant. In order to see whether the inverse is
unique, it is useful to consider the so-called critical curves LC' of the map
T. Critical curves separate areas where the number of (rank-1) preimages
of points coincide. Whenever points have different numbers of (rank-1)
preimages, there has to be at least one critical curve between these points
(see Appendix C for a short introduction into the critical curve technique
and Mira et al. (1996), Bischi and Kopel (1999) or Bischi et al. (2000) for
more details on critical curves). If we denote the set of all points where the
determinant of the Jacobian of the map T vanishes by LC_4, then the critical
curve LC' can be determined by applying the map T to all points of this set,
ie. LC = T(LC_1). In Appendix B it is shown that every intersection of
a critical curve and the diagonal is a critical point of the restriction of 1" to
the diagonal. Accordingly, the number of preimages of T" and its restriction
to the diagonal coincides for elements of this set. This implies that if the
number of rank-1 preimages of points on the diagonal is greater than 1,
all additional rank-1 preimages have to be on the diagonal. Therefore, the
diagonal is backwards invariant and indeed separates the basins of attraction
of P[ and PIV.

An intuitive interpretation of this result can be given easily. If inter-
nal spillovers are very small and symmetric, the population of firms which
initially has the smaller fraction of firms in the market completely leaves
the market in the long run and the population with the larger initial market
share completely takes over the market. However, since spillovers (and hence
cost externalities) are small, it only pays to be in the market if the price is
rather high. Consequently, if the number of firms from the own population
in the market is too large, using the outside option is, on average, more
advantageous, even if the other population has completely left the market.
As a consequence, only a certain fraction of firms stays in the market in the
long run, whereas some members of the population (together with all firms
of the other population) end up choosing the outside option.

Looking at the transient part of a path where the initial number of
firms in the market is small in both populations with slight advantages for
population 1, it can be observed that during the early periods the market is
attractive for both populations and both z; and 3 increase (see Figure 1).
At some point, however, the number of firms in the market becomes so large
that firms in population 2 (which enjoy only smaller cost reductions due to
spillovers) start leaving the market. Since the market is still attractive for
population 1, these firms are replaced by members from population 1 and
the path converges to Pr. So, the strong effect of the small initial advantages
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in market share for population 1 becomes apparent only with a certain delay,
but in the long run only the industry cluster with the initial advantage in
market share will survive.

If the size of internal spillover effects is increased, the equilibrium P
moves to the right and eventually collides with the corner V;. At the point
where o

/6 —_ /6 «— ﬁ - 1 > O’

the fixed point Pr leaves the unit square and thus becomes irrelevant for our
study. The fixed point V; becomes locally asymptotically stable’. For the
same parameter value of § also Pry moves through Virr and Virr becomes
locally asymptotically stable. Thus, now the equilibria (1,0) and (0,1) are
the only two stable equilibria. The stable manifold of the interior saddle
point still separates the basins of attraction. We depict the equilibria and
the corresponding curves Fi, F5 in figure 2.

Figure 2: Insert here!

From an economic point of view, we now have a situation where the
cost savings in the market due to internal spillovers are sufficiently large
to make the market option always attractive if there are no firms from
the other population in the market. However, spillovers are still not large
enough to make the market in the long run attractive for the population
with the smaller market share. Trajectories here look very similar to that
observed in figure 1. If both groups initially are small, then the number of
firms from both populations increases. However, at some point firms from
the population with the smaller market share start leaving the market and,
eventually, this group vanishes from the market. On the other hand, all firms
in the population which initially has the larger market share eventually enter
the market. Thus, for such values of the parameters the long run result is
a complete market takeover. Since the distribution of the outside profit —
which is the profit earned by all firms who left the market — is identical in

"Mathematically speaking we have a transcritical bifurcation (see Lorenz (1993) p. 111.
Note that this bifurcation occurs only for A — B > 0. Otherwise, for all values of 3 and
~v only Pr and Prv are stable. We ignore this rather uninteresting case in the further
analysis.
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both populations, it follows that the firms in the population which initially
has the larger fraction of firms in the market end up with higher profits.

As internal spillovers in both populations become even larger, the curve
F1 moves up further and, analogously, F> moves to the right. Again, we will
only describe the effects of the changes of F} in detail, since the effects on
F; follow from the symmetry of the map T'. Remember that the intersection
point of Fy with the border line x1 = 0 is not affected by the size of 5, = (.
However, the remaining part of the curve moves upwards when 3 is increased
and eventually touches the horizontal border line xo = 1. The exact value
of 3 where this tangency occurs is given in the following Lemma.

Lemma 1 For v = 0 and 8 > (%, where 8% > 0 is the larger of the two
roots of

(A= B)B* - B)? — 48" B(C - (A— B)) =0 (11)
the curve F1 has two positive intersection points with xo = 1 and Fy has two
positive intersection points with x1 = 1.

The pair of intersection points of Fy and x9 = 1 might either appear left
or right of the corner (1, 1) of the unit square. In cases where the curve Fy
touches the line 2o = 1 right of (1,1), the behavior of the system in [0, 1]
does not change. Thus we focus on the case where F} touches x5 = 1 inside
the unit square. We will see that in this case the number of locally stable
equilibria and the qualitative properties of the process suddenly change.
But before we go on to discuss this transition, we summarize the findings
for small 3 in the following proposition.

Proposition 2 If internal spillover effects are symmetric between the two
populations with 3 < (3* and there exist no external spillovers, all firms
from the population with the smaller initial market share eventually leave the
market and the market is completely taken over by firms from the population
with the larger initial market share. Depending on the size of 3 only a
fraction or all of these firms stay in the market in the long run.

To understand the changes in the number of fixed points and their local
and global stability properties as the size of the internal spillovers cross the
level 8 = (%, it is useful to consider the restriction of the map T to the
invariant line xo = 1. Many properties of the two-dimensional dynamical
system on [0, 1] can be inferred from this one-dimensional restriction. For
xg = 1, the time evolution of x; is given by the system x1;¢1 = h(x1y)
where

h(ZL'Lt) = .’El,t + .’ELt(l — .’L‘l,t)G (A - B (.’ELt + ].) — (12)

_Cc
1+ Baiy
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Figure 3: Insert here!

If we look at the graph of h, it is obvious (see the analysis above) that
for small values of 3 the graph lies below the diagonal on the entire interval
(0,1). This implies that the map h has only two fixed points: 0 is locally
stable and 1 is unstable. If § is increased, at the value 8* the graph of h
touches the diagonal from below and, for even larger 3, a pair of additional
fixed points appears® (depending on the parameter values this pair is in [0, 1]
or not— see the arguments given in the previous paragraph). The stability
properties of the corner fixed points remain unchanged, whereas the left of
the two new additional fixed points, ¢rrr1, is unstable and the right, prrn
is stable. This can be easily seen in figure 3 where we show a schematic
representation of the restricted map h for 8 > (3*. The map h is monotone
if X is sufficiently small and thus any trajectory starting right of qrrr1 stays
right of qrrr1 and converges to prrrp. On the other hand, any trajectory
with initial condition 109 < qrr;1 converges to 0. We can see that the
unstable fixed point ¢rry; has only one rank-1 preimage, namely itself. The
local stability properties of the additional fixed points q;r;1 and pyrr1 of h
determine the stability of the fixed points Q;rr and Prry of the map T along
the invariant manifold xo = 1. Standard local stability analysis shows that
the eigenvalue for the transversal eigenvector is given by 1 -G (ma(x1,1)—U),
where x1 = qrrr1 or x1 = prrin depending on the fixed point we consider.
We treat the case of Qrrr, but all arguments also apply to Prrr. Since Qprr
is a fixed point, we have

1
m(qrn,1) —U=A—-B(1+qun) - 1+ Barin ’

which implies

1
1)-U=A-B(1 0.
m2(qrin, 1) = U (1 +qrn) 155 >0
Thus, G(m2(qrrr1,1) —U) > 0 and the transversal eigenvalue is in (0, 1).
This implies that Qg7 is a saddle point and Pryy is locally asymptotically
stable.

%In mathematical terms the map h undergoes a tangent bifurcation, see Lorenz (1993).
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Thus, we now have four coexisting locally stable equilibria, two with
market takeovers in the long run and two where clusters of firms from both
populations stay in the market. This makes the characterization of the
different basins substantially more difficult than in the cases we have looked
at so far. We will illustrate the following results by figures depicting the
different basins of attraction and — primarily in the section on fast dynamics
— use the actual shape of the critical curves of the dynamics. This, however,
cannot be done without further specification of the switching function G. In
the numerical illustrations we provide below we always use the specification
G(x) = %arctan (%’rw), where A\ = A\; = Xo. This function satisfies all the

assumptions for the switching function G and A = G'(0)".

The same line of arguments as used to show that the backwards invariant
diagonal cannot be crossed by a trajectory imply that the stable set of the
saddle point Q;r; cannot be crossed if all points in this set have only one
rank-1 preimage. The properties of G (in particular its S-shape) imply that
the map of the dynamics (5) is invertible on [0,1]? for sufficiently small
A. This implies that the considerations for 9 = 1 can be extended to the
whole unit square and for 3 > 3* and sufficiently small A the stable set of
the saddle point Qgyr is a smooth curve connecting Q7r; and 0. The stable
set of Qs splits the former basin of attraction of Vjj; into a smaller basin
of Virr and a basin of attraction of the new stable equilibrium Prr;. The
triangular basin below the diagonal undergoes exactly the same transition.
Thus, we have the following result

Proposition 3 For v =0, 8 > 5* and sufficiently small X there are four
locally stable equilibria — Vi, Prr, Virr, Prir — with simply connected basins
of attraction. The boundaries of the basins are given by the diagonal and by
the stable manifold of Qrr between the basins of Vi and Prr and the stable
manifold of Qrrr between the basins of Virr and Pryy.

We depict the equilibria and the basins of attraction for such a case in
figure 4.

In economic terms this means that, if internal spillovers increase sym-
metrically in both populations — for example because the exchange of in-
formation within firms of a population (e.g. a country) is made easier due

9We decided to use this specification rather than, for example, the switching function
resulting from a normal distribution for pragmatic reasons: a closed form representation
makes the calculation of critical curves easier. With the proper parameterization, a very
close match with the switching function stemming from a normal distribution can be
achieved, and it is quite obvious that the qualitative properties of the dynamics do not
depend on the exact specification.
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Figure 4: Insert here!

to improvements in information technology — at some point the long term
properties of the system abruptly change. Although it remains true that
the population which initially has the larger market share will keep a larger
market share also in the long run, after the additional pair of equilibria has
emerged it needs a quite large initial advantage to be able to drive firms
from the other population completely out of the market. For most initial
conditions the system will end up in a state where all firms from the pop-
ulation with the larger initial market share are in the market, but at the
same time a large fraction of firms of the other population is able to stay
in the market as well (e.g. the equilibrium Py if 19 < 220). It is obvious
that the market price is much lower at the state P;r; than at the state Vjyy.
Consequently, the payoff for firms of population 2 is smaller at the boundary
equilibrium than at the vertex V7j;. On the other hand, since Prjr is an
equilibrium where a fraction of the firms in population 1 is in the market and
a fraction chooses the outside option, it is obvious that the average profit
of a population 1 firm in this equilibrium is identical to the average outside
profit. Therefore, the average profit in Prjy is identical to the average profit
of population 1 firms in Vir;. Thus, if we look at the long run outcomes for
initial conditions in the basin of attraction of P;;;, we can conclude that the
difference in profits between firms in the population with the larger and with
the smaller initial market share respectively suddenly shrinks if G becomes
larger than 8* and the new equilibria appear. This confirms our observation
for the case § < %, namely that a symmetric increase of spillover effects
in both populations is harmful for the long run profit of the firms in the
population with the initial advantage in market share. Note also that this
implies that the equilibria V; and V;;; Pareto dominate the equilibria Pry
and P]]].

If we increase the parameter 8 even further, and again look at the one-
dimensional map h, we realize that the fixed point q;r71 moves to the left
whereas the fixed point prry1 moves to the right. Note however, that, since
the slope of the map at the point 0 is given by

W0)=1+GA-B-C) <1,

which is independent of 3, we have g;;;1 > 0 for all 3. On the other hand,
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if we would increase 3 so much that ¢g;;;1 = 1 this would imply

C
A-2B—-——=0,
1+
which contradicts assumption (3). Thus, given our assumptions about the
parameters, no further qualitative changes of the properties of the equilibria
and the structure of the basins occur for increasing values of 3.

4.2 Asymmetric Spillovers and Slow Dynamics

Up to now we have only considered a scenario where the cost savings due
to internal spillovers were symmetric in both populations. We have seen
that in such cases the population which initially has the larger market share
will keep this advantage also in the long run. Additionally, it has been
demonstrated that the size of this advantage depends on the value of the
spillover parameter 3. Now we will turn to the case where firms from one
population operate in an environment which provides superior possibilities
for knowledge exchange and information flow. We will analyze how such
an advantage modifies the relationship between initial market shares of the
populations and long run outcome of the evolutionary process with respect
to the scenario analyzed above.

We start with the symmetric situation depicted in figure 2, where internal
spillovers are below (* and the two fixed points V; and V;;; are the only
attractors. We recall that in this situation for each of the two populations
in the long run either all firms are in the market or out of the market
depending on the initial market share of the population. Now, let us consider
a scenario where (3, stays constant, but for population 1 the conditions of
the environment are changed such that the effect of spillovers between firms
is more significant, i.e. 31 is increased . We know that the curve F; depends
only on (3; but not on 3;, j # i and, therefore, curve Fi rotates upwards
whereas curve F» remains unchanged. Initially, the only effect of an increase
in (1 is that the interior saddle point moves up along the unchanged curve
F5. The basins of attraction of the equilibria V; and V;;; are separated
by the stable manifold of the interior fixed point which now lies above the
diagonal (note that the diagonal is no longer invariant with asymmetric
parameter values). Hence, given that spillovers in population 1 are higher
than in population 2, the former is able to take over the market even if the
initial number of firms from the other population on this market is slightly
larger (see figure 5a). So, increasing spillover effects in population 1, yields
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"continuous’ effects on the long run market shares if the increase is only
small.

Figure 5: Insert here!

However, like in the symmetric case, if 31 crosses the threshold value 3*,
the curve Fj has a contact with the line z9 = 1 and, if 7 is further increased,
a pair of new equilibria Qrr; and Prj; appears. In contrast to the case of
a symmetric increase of 31 and 32, we can now not state generally whether
this pair of additional equilibria appears right or left of the intersection of
the curve F» with 2o = 1. If the pair of equilibria appears to the left —
like in the symmetric case — the fixed point Q;;; is a saddle point and Py
is locally stable (see figure 5b). In this case the transition of the basins of
attraction is very similar to the symmetric case. All of a sudden, for all initial
conditions between the stable manifold of Q;7; and the stable manifold of
the interior equilibrium S, population 2 no longer controls the whole market
in the long run, but a fraction pyrr; of firms of population 1 will stay in the
market. Accordingly, now for more than half of all possible initial market
conditions population 1 eventually controls the whole market. Furthermore,
for an additional set of initial conditions with positive measure, at least a
certain fraction of firms from population 1 stays in the market. Note that
this huge competitive advantage for population 1 can be gained by a rather
small advantage in the parameter [ (in the example depicted in figure 5b it
is about 20%). It is worth pointing out that these effects caused by slightly
higher internal spillovers in population 1 do not happen continuously, but
abruptly. As soon as 3 is increased above the value 3*, the additional basin
of the mixed agglomeration equilibrium Pr;; emerges.

If B; is further increased, the effect is, for some time, continuous again.
The interior equilibrium and, therefore, also its stable manifold (which is the
boundary between the basins of attraction of Pry; and V) moves up and to
the left. Hence, the basin of V7 continuously expands as (3 is increased. In
figure 5¢ we show the basins of the three coexisting stable equilibria, where
the difference in internal spillovers in the two populations is almost twice as
large as in figure 5b. We see that the extents of the three basins have not
significantly changed. The only noticeable changes are a slight increase in the
extent of the basin of V; and a small reduction of the basin of V;;;. However,
starting from this situation, if (; is only slightly increased, another abrupt
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structural change in the basins can be observed (see figure 5d). The basin
of attraction of the equilibrium Pr;; suddenly disappears and is replaced
by a part of the basin of attraction of the equilibrium V;. Accordingly,
in such a situation for a rather large set of initial conditions, despite the
fact that population 2 has a larger initial market share, population 1 is
not only able to keep a certain number of firms in the market, but can
eventually take over the entire market and drive all firms from population
2 out. Mathematically, the reason for this is that the interior equilibrium
S moves through the equilibrium Prj; on the boundary and an exchange of
stability occurs. The former stable equilibrium P;;; becomes a saddle point
and the interior saddle point S leaves the unit square. The stable set of
the saddle point Pjj; is the invariant boundary xs = 1, but this line now is
repelling in the transversal direction in a neighborhood of Prrr. It is easy
to see that this transition occurs for a value of 3; where

Biprin = Ba.

This condition means that at Pryr the cost reduction effects due to internal
spillovers are identical in both populations. The value of prry1 increases
monotonically with increasing (1. Thus, there exists a unique 51 > (35 such
that for 61 = 51 the equality above is satisfied and Pry; becomes unstable.
Again, it should be pointed out that this kind of transition occurs only if
the two fixed points Qr;;r and Prj; appear to the left of the intersection of
F> with 29 = 1. In the following proposition we show that this holds only if
the spillovers in population 2 larger than a threshold 3. Also, we provide
the exact value of 3.

Proposition 4 Assume that v =0 and B2 € (32, 3%), where

_ B+C—-A+,/C(B+C—-A)
B = . (13)

A-B

Then for B1 > (* defined in Lemma 1 there appears a pair of fixed points
Prrr and Qrrr on x9 = 1, where Qrrr is a saddle point and Py is locally
asymptotically stable. For all values (x10,x2,0) between the stable manifolds
of Qrrr and S in the long run all firms of population 2 and a fraction prrn
of firms in population 1 are in the market. As (31 becomes larger than Bl =
(1+%2)1(;ﬁ723?70 > 3%, Prrr becomes unstable, its basin of attraction suddenly
disappears, and for all initial values (x10,x2,0) below the stable manifold
of Qrrr all firms from population 2 eventually leave the market which is
completely taken over by population 1 (convergence to Vr).
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This analysis shows that for values of 2 which are not too small, ad-
vantages of population 1 in terms of the size of spillover effects do not have
continuous effects on the success of this firm cluster in the market. Rather,
it is important to cross the two thresholds G* and 51 to be able to stay in
the market, respectively take over the market, even if the other population
is initially dominant in the market.

If 3, is further increased, the basin of (1,0) expands, but we know from
our analysis of the symmetric case that the saddle point Q);;; always stays
to the right of Vjy;. Accordingly, the basin of (1,0) can never cover the
whole unit square. In other words, in situations with internal spillovers in
the populations, there are always initial market conditions such that the
population with the smaller spillovers is able to eventually drive firms from
the other population out of the market. Of course, the extent of the set con-
taining these initial market conditions becomes very small as the difference
in internal spillovers (i.e. the difference in the values of the parameters (3;)
becomes large.

If we start with a small symmetric level of internal spillovers (61 = 2 <
f32) and increase the size of internal spillovers in population 1, the pair of
new equilibria Qprr, Prrr which appears for 81 = 3* are initially right of
the intersection of F» with x5 = 1. This means that both are unstable
in the direction transversal to o = 1. Accordingly, Q;;; is unstable and
Prrr is a saddle point where the stable manifold is the line 9 = 1. Thus,
also for 31 > (0* there exist only two stable equilibria, V;, Vi;r and the
basin of attraction of V7 increases continuously with increasing (31, where
the basin boundary is still given by the stable manifold of S. For 31 = i,
the interior equilibrium S wanders through Qrrr and the stable manifold of
S becomes the stable manifold of QQ;;; which is now a saddle point. Again,
no discontinuous changes in the basins of attraction occur and for 3; > 51
the basin boundary is the stable manifold of Q7;;. Thus, we see that if
the spillovers in population 2 are small, the effects of an increase of the
size of internal spillovers in population 1 are continuous and in the long
run the market is always entirely taken over by one of the two populations.
Summarizing, we have

Proposition 5 Assume v = 0 and B € (ATCB — 1,52). Then, the only

stable equilibria for By > B2 are Vi and Virr. The basin of attraction of Vi
always increases continuously in By.

Finally, let us look at the case where the spillovers are large and asym-
metric. Given the results above, it is very easy to understand the effect of an
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increase of (31 if initially large symmetric spillover effects with 81 = B2 > G*
exist in both populations. Remember, that there are four coexisting stable
equilibria in the symmetric case. We know that the curve F rotates upwards
as (41 is increased. Since Fb does not change and Pj; and Qy are already
below F1, it is obvious that the position and stability properties of P;; and
Q1 do not change for increasing 3;. On the other hand, the transition on
xs = 1 is exactly as the one described in proposition 4. At the point where
(1 becomes larger than Bl and the equilibrium Pj;; becomes unstable, the
basin of attraction of Pryy is added to the basin of Py;y. This means that now
for a large set of initial conditions population 1 gains a larger market share
in the long run. However, there always exists a smaller cluster of population
2 firms in the market. As before, further increases in the size of internal
spillovers in population 1 do not yield any qualitative changes in the long
run behavior of the process.

4.3 Asymmetric Spillovers and Fast Dynamics

Up to now we have assumed that the dynamics of the switching behavior of
firms in the two populations is rather slow, i.e. that the parameter A is very
small. This means that the probability that a firm changes to the option
which is, on average, more attractive is slowly increasing in the difference
of the expected profits. What changes can be observed if the expected net
flow towards the better option becomes larger and the dynamics faster? We
will now investigate how faster dynamics influence the effect of differences
in internal spillovers. Let us again consider the scenario depicted in figure
5b where the internal spillovers in population 1 are larger than the thresh-
old value (*, whereas (35 € (Bg, (*). In this situation three locally stable
equilibria coexist. Note that figure 5b depicts a scenario where switching is
slow (A = 22). If the speed of switching is increased (A = 22), the basin
boundaries change; see figure 6a. Whereas the boundary between the basins
of Vi and Pyyy is no longer smooth!", the change of the basins is continuous
in \; and we still have three simply connected basins.

However, if A is increased a little bit further, a quite remarkable change
of the basins of attraction can be observed (see figure 6b). The basin of
attraction of Vj;; has become non-connected, i.e. disjoint portions of it (so-

10The non-smoothness of the basin boundary is due to the fact that the interior equilib-
rium was transformed from a saddle to an unstable node by a sequence of local bifurcations.
For a parameter setting like the one in figure 6a the boundary is formed by the stable set
of a cycle, and the closure of such a stable set also includes many repelling nodes, whose
presence yields the non-smoothness of the boundary.
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Figure 6: Insert here!

called “islands”) are nested inside the basin of another equilibrium. The
basin of the boundary equilibrium Pj;; is now a multiply connected set (i.e.
connected with “holes” inside it). This has quite interesting and surprising
implications. For a given number of firms in population 1 in the market, an
increase in the initial number of firms from population 2 in the market does
not necessarily imply a higher long run market share for this population.
On the contrary, a higher initial fraction of firms in the market may lead
to a long run market share of zero whereas a lower initial fraction leads
to convergence to Prr; and the long run survival of a firm cluster from
population 2 in the market.

Note that the constellation of fixed points and their local stability prop-
erties have not changed in this transition. Accordingly, and this is important
to realize, local analysis cannot be used to explain this change in the long
run properties of the process. In order to understand the occurrence of such
a global bifurcation from a mathematical point of view we can, however,
employ the theory of critical curves.

In figure 6c it can be observed that both LC_; (which is the locus where
the determinant of the Jacobian vanishes, det DT'(z1,22) = 0) and LC =
T(LC_,) are closed curves. The region outside LC is the region Z; of points
with only one rank-1 preimage, and inside LC' there are points with three
rank-1 preimages, i.e. the region Z3. Note that the region Zs is entirely
included in the basins of P;;; and V; for this value of A. As ) is increased,
the critical curve LC' and the stable set of the boundary fixed point Qyyy,
which constitutes the boundary between the basins of Prrr and Vi, have a
contact (in fact, numerical evidence reveals that the first contact of LC and
the boundary which separates the basins occurs along the boundary xs = 1).
After this contact occurred, a small portion of Z3 enters the basin of Vi;r
(compare figures 6¢ and d). This means that suddenly a small portion of
the basin of Virr has a larger number of preimages, namely three instead
of one. The two new rank-1 preimages of this portion merge along LC_y;
see figure 6d. Since they are inside Zs these preimages again have three
(rank-1) preimages (which are rank-2 preimages of the small region which
has been created when LC crossed the basin boundary). This leads to an
arborescent sequence of preimages. All these preimages belong to the basin
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of attraction of Vjjj, since they are mapped into the immediate basin of Vj
after a finite number of iterations.

Since the first contact of LC' and the basin boundary between P;;; and
Vrirr occurs along xs = 1, the occurrence of the global bifurcation which
changes the structure of the basins can be understood by looking at the
one-dimensional restriction of the map T to the invariant line o = 111
The critical points (local maxima and minima) of these restrictions are the
intersections of LC and z3 = 1. In figures 7a-c the graph of h(x) is shown
for the parameter values corresponding to figures 6a and 6b respectively.

Figure 7: Insert here!

In figure 7a the two stable fixed points have connected basins bounded
by unstable fixed points. The local minimum is inside the basin of the
positive stable fixed point (see the close-up in figure 7b). The change of A
first causes a contact of the local minimum and the unstable fixed point.
After this contact a “hole” of the basin of x = 0 is created around the
minimum. This can be clearly seen in figure 7c, where Hy, H> and Hj
indicate points right of pryr1 which are mapped to the left of ¢rrrp in 1, 2
respectively 3 iterations. All the points in these intervals therefore belong
to the basin of attraction of 0. It should be pointed out that such a ’basin
bifurcation’ has to occur for any switching function G, where A is sufficiently
large and 3 sufficiently close to 3*. So, the transition which is responsible
for non-connected basins in this framework does not depend on the exact
specification of G.

As ) is further increased, the portion of the immediate basin of Vs in-
side Z3 becomes larger and, consequently, the holes enlarge leading to even
more fragmented and intermingled basins. It is evident that although the
attractors continue to be simple equilibria (stable fixed points) the structure
of the basins is getting more and more complex. This causes a greater un-
certainty about the long-run evolution of the system starting from a given
initial condition in the following sense: A small change in the starting con-
dition has a high probability to cause a crossing of a basin boundary and,
as a consequence, the convergence to a different equilibrium. Hence, the

117t should be emphasized that this is a special characteristic of this model, and no
general property of this kind of basin bifurcations.
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long run outcome of the process now depends very sensitively on the initial
number of firms from both populations in the market.
We summarize the findings of the analysis in the following proposition.

Proposition 6 For v = 0,32 € (B2,5*) and By > 3*, where 31 is suffi-
ciently close to B* and A sufficiently large, the basin of attraction of Virr
18 non-connected and has islands in the basin of attraction of Prrr. The
number of population 2 firms which stay in the market in the long run does
not increase monotonic in the initial number of population 2 firms in the
market.

Having provided an extensive technical analysis of the model for a sit-
uation where internal spillovers exist in both populations, we would like to
discuss the major economic insights we have obtained. First, starting from a
situation where spillovers between firms in both populations are symmetric,
all equilibria and basins are symmetric with respect to the diagonal. Ac-
cording to this result, the population which initially has the larger fraction
of firms in the market will keep a larger market share in all periods. For
small internal spillovers, all firms from the population with the smaller ini-
tial market share eventually leave the market and choose the outside option.
The market is completely taken over by the population with the larger ini-
tial market share. Larger internal spillovers make it possible that firms from
both populations coexist in the market. The population with the larger ini-
tial market share is able to keep this advantage in the long run. However,
for a set of initial conditions, an equilibrium is reached in the long run where
also a fraction of firms of the other population might stay in the market.
This set of initial conditions captures a setting where the market share of
the other population is not too much smaller. It expands in size as internal
spillovers become larger, but there remains a set of initial conditions where
firms from either population (1 or 2) is driven out of the market. For slow
dynamics, which corresponds to a large variance of the outside option, all
basins of attraction are simple connected sets. Hence, for initial conditions
inside either of the basins, a small change in the initial fraction of firms
in the market does not change the long run outcome of the evolutionary
process. This does not necessarily hold true if the flow in and out of the
market is large (this corresponds to a low variance of the outside profit).
In the latter situation the basins of the coexisting equilibrium patterns may
have an intermingled structure. Consequently, it is hard to predict whether
firms from the population with the initially smaller fraction of firms stay in
the market or if the other population takes over the market completely. The
long run outcome now depends quite sensitively on the exact values of the
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initial market shares of the two populations. Thus, our model suggests that,
even if the circumstances in two different industries are almost identical,
the adaptation process of the firms may lead to qualitatively very different
long run result. In this sense the process of industrial evolution is path-
dependent. It should be noted, that this insight is not due to some complex
or chaotic long run dynamics of the model, but simply caused by the com-
plex topological structure of the basins of attraction of the coexisting stable
equilibria.

If the spillover effects in one of the two populations is larger, the basins
become asymmetric. Surprisingly, if firms from one population can attain
a situation where spillovers between them are higher (in comparison to
spillovers in the other population), the generated cost reductions does not
have continuous long run effects. Small differences in spillovers, in general,
only lead to a small expansion of the set of initial conditions where the mar-
ket is taken over by the population with larger spillovers. However, as the
difference in spillovers (the parameter values of [3;) reaches a certain critical
level, there is an abrupt structural change in the basins. Suddenly the set of
initial market shares where firms from the population with larger spillovers
stay in the market expands due to the instantaneous creation of another
equilibrium pattern with its corresponding basin. This suggests that there
is something like a minimal advantage in the extent of internal spillovers
which is crucial for determining if a population of firms can stay in a market
in the long run even if this market is dominated by firms from another popu-
lation. Our analysis further has revealed that there is a second critical level
for the difference of internal spillovers. If the spillovers between the firms
of one population are large enough such that the corresponding difference
in spillovers is larger than this level, firms of this population can not only
coexist in the market with firms from the other population (as before), but
are suddenly able to drive firms from the other population out of the market
despite the fact that the latter initially dominated the market. Thus, one
of our major results is that the changes resulting from investments which
increase spillovers between firms of the same population are not continuous.
These changes occur suddenly when certain levels of spillover differences are
achieved.

Finally, our results indicate that it is advantageous for the population
with larger internal spillovers if exit and entry in the market is slow. As
the rate at which firms enter and exit the market becomes larger, the set of
initial market shares where the population with smaller internal spillovers
takes over the entire market in the long run becomes larger since more and
more islands of the basin of Vi are created in the basin of Prr;. Although
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we did not provide a proof that this observation holds true in general, all
our numerical analyses suggest that this is in fact a general phenomenon.

5 Internal and External Spillovers

In the previous section we have restricted ourselves to analyzing the long run
agglomeration patterns in the market in the presence of internal spillovers
between firms of a population only. In this section we focus on the im-
pact of external spillovers. More precisely, we will assume that internal
spillovers exist and are equal in both populations (1 = [32) and that, ad-
ditionally, knowledge also spills over from one population to the other. We
will consider only the case where v1 > 0,72 = 0. However, the results
can be easily generalized to any case where knowledge spillovers are asym-
metric, i.e. where the two populations are heterogeneous with respect to
these external spillovers. Our assumptions of asymmetric external spillovers
are motivated by empirical evidence. Mansfield (1988) found in his study
that countries differ with regard to their ability to adopt and use foreign
technology. Whereas US and Japanese firms were comparable in exploiting
internally developed technologies, the empirical evidence revealed a big dif-
ference in the use of externally-based technologies. Japanese firms pursue
foreign technology more aggressively and efficiently than their rivals. Ac-
cordingly, there is evidence for an asymmetry in spillovers. Several sources of
external spillovers can be named, including transfers of knowledge between
two countries (due to e.g. an exchange of engineers, managers and workers)
and direct foreign investment. See Chuang and Lin (1999), who identify
foreign direct investment as the major channel of technology transfer from
multinational enterprises to domestic firms.

We begin the analysis with a scenario like the one depicted in figure 2,
with weak internal and no external spillovers. Recall that the only two stable
equilibria are the points V; and V;;;. We know that in this case the basins of
attraction of the two equilibria are simply the triangular regions below and
above the diagonal, respectively. The curve Fj has one intersection point
with the line 1 = 0 and one with z1 = 1, but does not intersect any of the
other two boundaries of the unit square. A symmetric statement holds for
F5. Let us now assume that, due to some of the reasons mentioned above,
knowledge generated in population 2 spills over to firms in population 1, or,
in other words, the parameter v, is positive. Now the symmetry between
the two populations is broken. If v is increased, the intersection point of
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Fy with z1 = 0 — denoted by Zs — which satisfies

C

A—Biy — ——— =
2 1—1—’}/1.%2

obviously moves up on the line 1 = 0. The same happens to the intersection
point with 21 = 1 — denoted by Z3 — which satisfies

A—B(l—kicg)—#~ =0
1+ B+ mna

Depending on the parameter setting, two possible scenarios can occur for
increasing values of y; which satisfy assumption (3). First — similar to the
case discussed in the previous section — a pair of new equilibria might emerge
on the line xo = 1. Second, the curve F} may never cross xo = 1, until y;
has been increased so much that &5 = 1. In the latter case only one new
fixed point appears at V7;; and moves to the right on the line xo =1 as 11
is further increased. This fixed point is locally stable, whereas the vertex
Virr becomes unstable. This second scenario can be developed from the first
scenario and we, therefore, will not treat it separately.

If we restrict our attention to the case where a pair of new equilibria on
the line x5 = 1 emerges, considering the qualitative dynamics we encounter
a similar situation as in the case of internal spillovers with increasing values
of B1. However, here it can be guaranteed under fairly mild assumptions
that one of the two emerging fixed points is locally asymptotically stable
(proof in Appendix A).

Proposition 7 Assume that 31 = B2 = 0 € (3,5*), Yo =0 and C < 4B.

Then for
= (8) = 2/6BC — igA —B)—-B

there emerges a pair of fixed points Prrr, Qrrr on the line x5 = 1, where Pryy
18 locally asymptotically stable and Qrrr is a saddle point. Furthermore, we

always have v*(B) < f* — .

In the present scenario, population 1 benefits from the external spillovers
from population 2. These spillovers enable population 1 firms to stay in the
market for a certain set of initial conditions despite the fact that population 2
initially has a larger fraction of firms in the market. As in the case discussed
in the previous section, the basin of attraction of Pryy is created abruptly as
a set of positive measure when 1 becomes larger than «*. The proposition
also establishes that the increase in 7;, which is necessary to produce such
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a transition for every current level of 3, is smaller than the increase in 31
which is needed for such a structural change.

Thus, given a scenario where the only stable equilibria are V; and Vipy,
this result suggests the following policy formulation. A policy maker, who is
in charge of setting the conditions of the environment for firms of population
1, i.e. who can influence the values of the spillover parameters 3; and 71, is
advised to increase y; rather than ;. This leads to the long run existence
of a cluster of firms from population 1 in the market for a larger set of initial
market shares than in the case of an increase of 3; of the same size.

Figure 8: Insert here!

In figure 8a we illustrate this by depicting the basins of attraction, where
we used the same parameter setting as in section 4 with 31 = 32 = 1 and
v1 = 0.1, 79 = 0. Recall that an increase of more than 0.2 in the value of
internal spillovers, (31, was necessary to create a stable equilibrium on the
upper boundary of [0,1]?. In contrast to this, for an increase in the value
of external spillovers of 0.1, this additional equilibrium not only exists, but
already has a rather large basin of attraction. If the value of 7y is further
increased, the saddle point Qrr;r moves through the vertex Virr and the
vertex becomes unstable. Note that such a transition is not possible if (1
is increased, but 73 = 0. After this bifurcation there are only two stable
equilibria namely Pry; and V7. In other words, regardless of the initial
market shares, firms from population 1 are never completely driven out of
the market. This situation is illustrated in figure 8b.

A further increase of ; finally leads to a collision of the interior fixed
point S with the boundary fixed point P;;; and after that the only stable
fixed point is V7. Thus, population 1 takes over the entire market regardless
of the initial market conditions. Note that, again, we have an instantaneous
change of the long run behavior of the system. If ~; is only slightly smaller
than the bifurcation value, there is still a set of initial market constellations
with positive and often significant measure which lead to long run market
participation of all population 2 firms. As soon as 7; crosses this value and
is slightly larger, all firms from population 2 leave the market and choose the
outside option for all those initial states. For different parameter settings
these two transitions might occur in reversed order, however with the same
final result.
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If the (symmetric) level of internal spillover effects in both populations
is larger than * (remember that in such a situation for small v; there are 4
locally stable equilibria; see figure 4), and 7 is sufficiently large such that S
collides with Pyjy, this yields a transformation of the basin of attraction of
Prrrinto a part of the basin of Pry. In other words, if the level of internal
spillovers is large in both populations and firms from population 1 have a
higher ability to import information from population 2, a large set of initial
conditions leads to a long run state where all firms in population 1 and a
positive fraction of population 2 firms are in the market. If internal spillovers
are sufficiently large in population 2, a cluster from this population stays in
the market even if external spillovers from population 2 to population 1 is
much higher than vice versa.

In the description of the effects of an increase of 1, so far we have con-
sidered slow dynamics. In particular, in our discussion we have implicitly
assumed that the critical curve LC has no intersection point with the stable
set of Q77 and, therefore, no basin bifurcations occurs. However, as has
been demonstrated in the previous section, for large values of \; such basin
bifurcations, which change the topological structure of the basins, cannot
be ruled out. Thus, in order to deepen our understanding of the possible
dynamical patterns and how they depend on the existence and magnitude of
internal and external spillovers, we study the effect of fast switching. As an
illustration of the following discussion we show an example of the possible
transitions of the basins for fast dynamics and increasing 7 in figure 9. In
this chosen scenario, the critical curve spreads out and a large part of the
region close to the boundary lines 1 = 1 and x3 = 1 lies inside the closed
critical curve. In particular, for sufficiently large A, the pair of new fixed
points emerging on the boundary line x5 = 1 are located in a region which
is surrounded by the critical curve LC'. In this case, from similar arguments
as in the in the previous section it follows that the basin of attraction of the
stable equilibrium Pr; contains non-connected parts (islands) which belong
to the basin of attraction of Vir; (see figure 9b). In the previous section it
has been pointed out that these intermingled basins can be best understood
by looking at the map h(z) on the line zo = 1. Here it can be observed
that some of the trajectories with initial condition above q;r;1 are eventu-
ally mapped below gjrr1 and thus converge to zero. Accordingly, the basins
of 0 and prrr1 are intermingled. If 7 is further increased and the dynamics
is sufficiently fast, the slope of h(z) at prr;1 becomes larger until this fixed
point becomes unstable. For even larger 1 all points are eventually mapped
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below g7771 and thus the only attractor of the map h(z) is 0'2. Consequently,
the only attractors of the adaptation dynamics generated by the map 7T on
the unit square are again Vr and Virr (figure 9c). Interestingly, we get a
counterintuitive result stating that the further increase of v; has weakened
the position of population 1. The mixed equilibrium has disappeared, and
the situation is somehow reminiscent of the scenario before any basin bi-
furcation has occurred; compare figures 9a and c. Firms of population 1
are now driven out of the market for initial market shares, whereas before
at least a fraction of population 1 firms could stay in the market. Note,
however, that the fixed point Q;rr moves towards Virr as 7; is increased.
So eventually, this fixed point crosses the critical curve LC' and wanders
from the region Zs3 into the region Z1. After this has happened, the stable
manifold of the saddle point is forwards and backwards invariant and no
trajectory with initial conditions to the right of this boundary can converge
to Virr. All the trajectories between the stable manifold of Qr7; and the
stable manifold of the interior equilibrium S converge to some attractor on
x9 = 1, which might be either a cycle or a chaotic attractor (see figure 9d;
remember that pyrrp is unstable with respect to h(x)).

Figure 9: Insert here!

Figure 9 makes it obvious that after the transition from a) to b), pop-
ulation 2 takes over the market for less initial market shares than before
the increase of v1. A further increase of 1 seems to revert this change, at
least, as far as the basins of attraction are concerned. Note, however, that
although the basins in a) and c) look similar, the transient behavior of a
trajectory (x1,x2), for these two parameter settings may differ significantly.
In particular, in case c¢) trajectories close to the line 9 = 1 might oscil-
late for some time before converging to (0,1). So, if we just look at the
transient behavior, increasing external spillovers from population 2 to pop-
ulation 1 have the effect of keeping firms from population 1 in the market
much longer, although in both cases they eventually leave the market. This
transient effect of a viable population 1 cluster only becomes a long term
effect if 1 is further increased and scenario d) is obtained. Here for a large

12 After the prrr1 becomes unstable increasing values of 41 create stable cycles of in-

creasing period before the attractor collides with qrrr1.
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set of initial conditions the number of firms from population 1 in the market
does not converge at all, but keeps oscillating around the fixed point Prj;. It
is worth pointing out that figures 9 b) and d) help us to realize that there is
no connection between the complexity of the attractor of the dynamics and
the complexity of the basins. In figure 9 b) the dynamics of the trajectories
is simple, all attractors are single points, but the basins are intermingled.
Hence, it is rather difficult for a certain set of initial market conditions to
predict which fixed point will be reached. On the other hand, in figures 9
d) all basins are simply connected sets. However, the attractor on the line
x9 = 1 is a cycle of period four and the typical trajectory in this case is
cycling.

It should be clear by now that a similar transition along the border line
x1 = 1 occurs if external spillovers exist from population 1 to population 2,
i.e. 7y is positive. So, similar to the symmetric cases with large and identical
internal spillovers, there will be four coexisting locally stable fixed points if
external spillovers in both populations are identical and sufficiently large. In
contrast to the case where only internal spillovers exist, a further increase
of 1 = 79 leads to the disappearance of the two stable equilibria on the
vertices. Hence, only two stable equilibria are left, one in the interior of the
upper edge of the unit square and one in the interior of the right edge of the
unit square. Accordingly, our analysis yields a very intuitive result: large
transfers of knowledge between the two populations (due to large external
spillovers) result in the long-run participation of firms from both populations
in the market.

Finally, there is one main point which we would like to emphasize. If
one compares the effect of an increase in internal spillovers (due to in-
creased communication and worker rotation within a population) and exter-
nal spillovers (due to increased transfer of knowledge from one population
to the other), our analysis reveals that the long run effect of an increase in
external spillovers (v;) is always larger than the effect of an increase of the
same size of internal spillovers (3;). Also, if external spillovers do not exist,
a population is always able to drive the other population out of the market
given that the advantage in the initial market share is sufficiently large. This
is valid regardless of the difference in internal spillovers. In contrast to this,
a population can guarantee to take over the market — regardless of the ini-
tial market shares — if the advantages stemming from external spillovers are
sufficiently large. In short, the suggestion for policy makers which follows
from our analysis is that enabling import of knowledge from another source
might be a more effective means than trying to create and exchange knowl-
edge within a population. Interestingly, in their empirical study Chuang and
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Lin (1999) find that foreign direct investment is a substitute to R&D. Their
policy implication is the following: "During the early development stage,
technology transfer, especially through direct foreign investment of MNEs,
can facilitate industry-wide technological learning and diffusion, and thus
may be the most effective way for the developing country to strengthen its
technical capability and to absorb appropriate technologies.” (p. 133).

6 Discussion

In this paper we have used an evolutionary industry model to study the
effect of local and across-border spillovers in two countries competing on a
single good market. The decision of a firm whether to produce a good for
the market or to choose some outside option is made using a simple sto-
chastic decision rule. We have focused our analysis on the long run outcome
of the dynamic adaptation process in both populations and in particular
have characterized the basins of attraction of the stable market constella-
tions for different parameter values. We have demonstrated that a dynamic
analysis of the evolution of market shares yields very precise insights into
the relationship between the size of internal spillover effects, the inertia in
the process of market exit and entry, initial market shares and the long run
success of a firm cluster in the market. The main findings of this analysis
may be summarized as follows:

e for symmetric spillovers initial advantages in market share lead to
long-run dominance in the market

e increasing symmetric spillover effects facilitate the growth of the ini-
tially smaller firm cluster

e increasing spillovers have discontinuous effects on the basins of long
run agglomeration patterns

e increasing spillovers across country borders is more effective than in-
creasing local spillovers

e slow switching behavior is advantageous for the population with the
larger spillover effects

e the sets of initial market shares yielding long run dominance of differ-
ent populations may be intermingled, hence long run market shares
may depend sensitively on initial market shares and are not always
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monotonously increasing in the initial number of firms of a population
in the market.

More generally, we have shown that the analysis of dynamic evolution-
ary models with non-linear payoff structure may be challenging due to the
presence of numerous coexisting locally stable equilibria with complicated
basins of attraction. For a sound understanding of the long run properties
of the process a characterization of these basins is necessary and we have
demonstrated how the theory of critical curves can be used in addition to
local bifurcation theory to explain the structural changes in the long run
properties of the process. We hope that the merits of this combination of
techniques will in the future be further exploited by scholars interested in
evolutionary analysis.
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Appendix A

Proof of Proposition 1.

We start the proof by giving a characterization of the equal profit curves F;
and F5. The curve of equal profit F} is given by

Bp1xi+B (81 + ) 120+ By1as+(B — A1fr) 21+(B — A1m1) 29+C1—A; =
(14)
and the curve Fy satisfies

BBox3+B (B2 + 72) v122+BYoai+(B — Asfs) ma+(B — Agys) m1+Co— Ay =

(15)

_ B4A1v1i B+A1B )
B(B1—1)’ B(Bi—m)

for F; and Ky = ( &;2‘43522) ,— ;E{:‘fg;) for F5. The slopes of the asymptotes

are —1 and —% < —1 for F; and —1 and —%% > —1 for F5. We concen-
trate on the properties of Fj, the corresponding properties of F5 follow by
symmetry. Since the center of F} is left of [0,1]?, the curve F} in this area
is upward bending (it has positive curvature). Analogously, the curve F
is downward bending (it has negative curvature). It is further easy to see
from (14) that there has to be exactly one intersection of F; with the line
segment {0} x [0,00). Note further that along any straight line in [0, 1]?
with slope -1 the overall number of firms in the market and, therefore, also
the market price stays constant. Since we assume (3; > 7;, the profit differ-
ence m;(x1,x2) — U; increases along any such line. In particular, this means
that if we draw a straight line L with slope -1 through an arbitrary point
(z1,72) of F1 we have 71(%1,%2) > U; for every point (Z1,%2) € L, such
that 1 > x; and 71(%1,%2) < Uy for every point (#1,%2) € L, such that
%1 < 1. The same argument shows that if L is a straight line with slope -1
through a point (x1,x2) on Fy ma(%1,%2) < Us for every point (%1, %2) € L,
such that #; > x1, and mo(Z%1,%2) > Us for every point (Z1,%2) € L, such
that 7 < x3.

We will now characterize the fixed points on the boundary. To minimize
notation let us denote the boundary line of [0, 1]? with 23 = 0 by BL; the one
with 21 = 1 by BLs, the one with 22 = 1 by BL3 and the one with 1 =0
by BL4. Due to our assumptions (3) and (4) there has to be an odd number
of intersections of F respectively Fy with BL1UBL» and an odd number of
intersections in BL3 U BL4. Note further that due to our assumption that
B; > 7;, F1 cannot intersect with BL; without intersecting with BL, and
F5 cannot intersect with BL, without intersecting with BL,. Furthermore,

Thus, these curves are hyperbolae with centers K7 = (
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the arguments in the last paragraph imply that if Fi intersects with Bl
the whole curve must lie below the straight line with slope -1 through this
intersection point, which in particular shows that F7 cannot also intersect
with BLs3. This leaves us with 5 different cases: a) the equal profit curve
never enters [0,1]%; b) Fy has one intersection point with BL, then there
has to be exactly one intersection point with BL4 but no intersection points
with BLs and BLs. If F1 has no intersection point with BL; then there has
to be exactly one intersection point with BLsy (if there were more than one
intersection points there would have to be at least three which is ruled out
by the hyperbolic shape of F}). This gives three more cases: c¢) there is one
intersection point with BLs and one with BLy; d) there is one intersection
point with BL9 and one with BLs; e) there is one intersection point with
BLs, two intersection points with BL3 and one intersection point with BLj,.
The claim of the proposition concerning the boundary equilibria follows
directly.

To show that there can be at most one interior fixed point, we simply
have to observe that if we draw a line with slope -1 through an intersection
point (z7,23) of F; and F, all points on Fy with 1 > 27 have to lie above
this line, all points on F; with z1 < «] have to lie below this line. On the
other hand, every point on F» with z3 > 2 has to lie below the line and any
point on Fy with x9 < 2% has to lie above this line. Therefore there cannot
be a second point of intersection of F; and F5.

Finally, we show that the interior equilibrium is always unstable. Since
we know that the dynamics along the straight line with slope —1 points
away from the equilibrium, obviously the interior equilibrium always has to
have at least one unstable manifold. Furthermore, it is easy to realize that a
straight line between (0,0) and the equilibrium never intersects either Fi or
F». Given our assumptions about the direction of the dynamics at (0,0) it
follows that the dynamics points towards the interior fixed point along this
line. Accordingly, the interior fixed point either has to be a saddle point or
a repelling node with one positive and one negative eigenvalue, where both
have absolute values larger than one. O

Proof of Lemma 1
The condition for F} to have a tangency with s = 1 is that the equation

A—B(l+xz)— (16)

. —
1+ By
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which is equivalent to the quadratic equation
fBat — ((A—=B)B—B)z1 - (A—B-C) =0 (17)

has a positive real solution. Assumption (4) guarantees that the left hand
side is positive for 1 = 0. Hence, if there exist real roots, either both of
them are negative or both of them are positive. Real roots exist if

(A= B)B—B)? —=48B(C — (A~ B)) 2 0. (18)

To show that there exists a pair of positive real numbers where the inequality
is binding, we observe that the left hand side goes to infinity for § — oo,
is positive for # = 0, and, given assumption (4) is negative for 3 = ATBB‘
We denote the two real roots of (18) by 0 < 3 < £*. It is now straight
forward to see that (17) has two negative roots for g < 3, no real roots for

B < B < B* and two positive roots for § > 3*. O

Proof of Proposition 4

First, we have to show that under the conditions given in the proposition
the point where the curve Fj touches zo = 1 for 61 = 3* is left to the
intersection of Fy and xo = 1. This intersection (Z1,1) is defined by the
equality A — B(1 + x1) — ﬁ = 0 and therefore we have

;ﬁ:%(A—B—lf@>. (19)

If 31 is increased above (*, either Qrrr or Prr; eventually collides with
(Z1,1). To prove our claim we have to show that Py, which is right of Qry,
collides with (#1,1). Both at Q77 and Pryr we have A—B(1+x1) _Wowl =
0 and thus when one of the two points collides with (Z1,1) we must have

(121 = P2, which implies

B =5 =

B2(1+4 B2) B
(A=B)(1+ ) —C"

Note that the denominator is positive for 33 > (3. Considering the derivative
of population 1 payoffs with respect to =1 at this point for 31 = (1, we get

87(1(55‘171) — _B + C/Bl
oxy (1 —}—51.%1)2
Ch
- B+
(1 +52)2
s CBp;

(14 52)(A=B)(1+p2) = C)
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. . . . . CpB
The last expression is negative if and only if ) (A= B;"(l 3= < 1.

Straightforward calculations show that this is true if and only if (13) holds.
It follows from 7 (1,1) < 0 that, the inequality %ﬁf’li < 0 can only hold
at Prrr and we have shown the proposition. Note that S moves through
Prrr when Pyry collides with (531, 1). O

Proof of Proposition 7:
The minimal value of ; such that the equilibria Prr; and Qrrr are created
is given by the minimal value such that there is an x € (0,1) with

C
A B(1+ZE1) 1+51$1+’}/1 0

For every z1 the marginal increase of the left hand side if 1 is increased
is always larger than the marginal increase if (1 is increased. This implies
that for any given value of #; = (2 = B < [* a smaller increase of ~;
than of 37 is required to create the stable equilibrium P;;; and to enable
firms from population 1 to stay in the market for an additional set of initial
conditions. Thus, 7*(8) < #* — (. Determining the value of y; such that the
two solutions of the equation above coincide, yields the value v*(3) given in
the proposition.

To show that the emerging fixed point Pjry is locally asymptotically
stable we have to establish that the pair of fixed points P;;r, @77 appear to
the left of the intersection point (%1, 1) of F» with x9 = 1. As in the proof of
proposition 4, we show that as 1 is further increased, the fixed point Pyyy
collides with (%1,1). When Qrr; or Prry collide with (Z1,1) we must have
Looking again at the derivative of population 1 payoffs with respect to 1,
the assumption C' < 4B gives

87r1(i1,1) _ Cﬁ
0y = b7 (1+7 + Bi1)?
Cp
T
< 0.

Hence, we conclude that Pjj; collides with (#1,1) and we have shown the
proposition. O
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Appendix B

Since we consider a case with symmetric parameter constellations we have
Ti(x,y) = Tuo(y,v) ¥(z,y) € [0,1]%. Let us denote the restriction of the
map to the diagonal by f(z): f(x) := Ti(x,z) = Ta(x,x). Thus, f'(x) =
Tz, (x,2) + Thgy(z,x). We show that any intersection of the critical curve
separating a region with 3 preimages, Zs, from the region with only one
preimage, Z1, with the diagonal has to be a critical point of the map f.
This implies that the number of preimages of f on the diagonal switches
from 1 to 3. Let us denote this intersection by (z,z). Any point on the
critical curve has two rank-1 preimages, two merging in a point of LC_4
and an extra preimage. Since the diagonal is invariant, at least one of the
two rank-1 preimages of (z,z) has to be on the diagonal. However, since
the dynamical system is perfectly symmetric with respect to the diagonal
this implies that also the second rank-1 preimage is on the diagonal. At the
point (v,v) € LC_1, where the two merging rank-1 preimages are located,
the determinant of the Jacobian has to vanish (see Appendix C). Due to
the symmetry of the map T we have T, (v,v) = Toy, (v,v), Tig,(v,v) =
T, (v,v) and the characteristic polynomial of the Jacobian at (v, v) is given
by (Tiz, — v)? — T#,. Thus, the eigenvalues of the Jacobian at (v,v) are
given by 11 = T14, (v,0) + T4, (v,v) and vo = Th,, (v,v) — T4, (v,v). Simple
calculations show that

Tiz, (v,v) = Tig,(v,v) =14+ (1 —-20)G (A —2Bv — WSJFW)

C C(B=)
+u(1 —v)G (A —2Bv — 1+f8v+w) (H&H%)Q.

From our assumption that 8 > v it follows from that this expression is
positive. Since the Jacobian has to vanish at (v,v), T4, (v,0)+T1z,(v,v) =0
has to hold. We know that f'(v) = Tiz,(v) 4+ Thz,(v) and this implies that
z has to be a critical point of f. Accordingly, the number of additional
preimages of points on the diagonal across the critical curve with respect to
T coincide with the number of additional rank-1 preimages with respect to f.
In other words, all additional rank-1 preimages have to be on the diagonal.
Observing that the point (0,0) has one rank-1 preimage with respect to T'
and 0 has one rank-1 preimage with respect to f now establishes that for all
points on the diagonal the number of preimages with respect to T" and with
respect to f coincide. Therefore, the diagonal is for all symmetric parameter
constellation forward and backward invariant with respect to 7'. Note that
this would not necessarily hold if external spillovers would be larger than
internal spillovers (which of course is quite counterintuitive).
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Having done this we show that for sufficiently fast switching there is local
overshooting around the interior fixed point on the diagonal, which implies
that there is a region Z3 around S in the unit square where T has three
preimages. The dynamics along the invariant diagonal reads

C
Tyl = f($t) = a2 + ZL’t(l — $t)G <A — 2Bz — T ﬁib’t> ,

where 71 = 294 = x;. The derivative of f is given by

fla) = 1+(1—2x)G<A—QBx—1fﬁm)

] YT I Y <

We have f(0) =0, f(1) = 1 and, due to assumption (3), f/(0) > 1. Fur-
thermore, we know that there is at most one interior fixed point of the map.
If such an interior fixed point s exists, we therefore always have f’(s) < 1.
Since the second term in the expression for f’ has to be zero at s, the third
one has to be negative which implies —2B + % < 0. Accordingly, we

have

F(s) = 1+ C(0) <_23 + u/figv)ﬁ ,

which is negative for sufficiently large G'(0) = A. At the value of A where

f'(s) = 0 a critical curve appears which surrounds the interior fixed point
for larger values of A.

Appendix C

Noninvertible maps and critical curves.

In this appendix we give some basic definitions, properties and a minimal
vocabulary concerning the theory of noninvertible maps of the plane and the
method of critical curves. We also describe some properties of the critical
curves of the map 7T defined by (5).

A two-dimensional map T': (z,y) — (2/,3') can be written in the form

(2',y) = T(x,y) = (f(,9),9(x,y)) (20)

where (x,y) € R? and f, g are assumed to be real-valued continuous func-
tions. The point (2/,y’) € IR? is called rank-1 image of the point (x,y) under
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T. The point (z (t),y(t)) = T*(z,y), t € N, is called image (or forward iter-
ate) of rank-t of the point (x,y), where T is identified with the identity map
and T* () = T(T* ! (-)). The fact that the map T is single-valued does not
imply the existence and the uniqueness of its inverse 7~'. Indeed, for a given
(«,y'), several rank-1 preimages (or backward iterates) (x,y) = T~ (2/,y/)
may exist, i.e. the inverse relation 7-! may be multivalued. In this case T
is said to be a noninvertible map. As the point (2/,%') varies in the plane IR?
the number of its rank-1 preimages can change. According to the number of
distinct rank-1 preimages associated with each point of IR?, the plane can be
subdivided into regions, denoted by Z;, whose points have k distinct preim-
ages. Generally, pairs of real preimages appear or disappear as the point
(2',y") crosses the boundary separating regions characterized by a different
number of rank-1 preimages. Accordingly, such boundaries are generally
characterized by the presence of two coincident (merging) preimages. This
leads us to the definition of critical curves, one of the distinguishing features
of noninvertible maps. The critical curve of rank-1, denoted by LC' (from
the French “Ligne Critique”) is defined as the locus of points having two,
or more, coincident rank-1 preimages. These preimages are located in a set
called critical curve of rank-0, denoted by LC_1. The curve LC'is the two-
dimensional generalization of the notion of critical value (local minimum or
maximum value) of a one-dimensional map, and LC_; is the generalization
of the notion of critical point (local extremum point). As in the case of dif-
ferentiable one-dimensional maps, where the derivative necessarily vanishes
at the local extremum points, for a two-dimensional continuously differen-
tiable map the set LC' 1 belongs to the set of points in which the Jacobian
determinant vanishes:

LC-1 € {(z,y) € R?|det J = 0} (21)

In fact, as LC'1 is defined as the locus of coincident rank-1 preimages of the
points of LC', in any neighborhood of a point of LC'_; there are at least two
distinct points mapped by T in the same point near LC. This means that
the map T is not locally invertible in the points of LC_; and, if the map T
is continuously differentiable, it follows that det J necessarily vanishes along
LC_;. If the set LC_; is determined by (21), then LC is simply obtained
as the image of LC_q, i.e. LC =T(LC_,).

Considering the map T for the specifications of GG; used in our numerical
illustrations, we realize that it is not always invertible. In fact, given a point
(2, 245) € [0,1] x [0,1] its preimages are computed by solving the following
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system with respect to 1 and x»:

:El—I—:El(l—xl)%arctan A Al—B(xl—i—xg)—nglm :x'l
mg—}—mg(l—xg)%arctan Ao (Ag — B (1 + 22) —WM :m'z
(22)

For some sets of parameters, e.g. for small A;, this system has just one
solution, i.e. the map T is invertible, but ranges of the parameters exist
such that several solutions can be obtained, so that T is a noninvertible
map. For sufficiently high values of \; a point (2}, %) may have up to five
rank-1 preimages.

In order to find the set LC we start from (21). In our case LC_1 coincides
with the set of points at which the Jacobian det J = 0, and its numerical
computation gives a closed curve. It follows that also LC = T(LC_;) is a
closed curve surrounding the interior equilibrium S. All points in the area
surrounded by the curve have three preimages (Z3 region), those outside the
curve have one preimage (Z; region). As )\; increases the curve expands,
and may generate self-intersections (leading to Z5 regions) and non smooth
points (i.e. cusp points).

In order to give a geometrical interpretation of the action of the multi-
valued inverse relation 771, it is useful to consider a region Zj as the su-
perposition of k sheets, each associated with a different inverse. Such a
representation is known as Riemann foliation of the plane (see e.g. Mira et
al. 1996). Different sheets are connected by folds joining two sheets, and the
projections of such folds on the phase plane are arcs of LC. The foliations
associated with the Z3 region surrounding the interior fixed point S in our
model is called “lip structure” in Mira et al. (1996).
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Figure Captions:

Figure 1: The curves F;, ¢ = 1,2 for § < B and a trajectory of the process
for (x1,0,220) = (0.2,0.18) (P = 300, B = 100, C = 190,U = 32, @ =
0.05, 8 =0.131, v =0).

Figure 2: The curves F;, ¢ = 1,2 for g € (B, (3*) and a trajectory of
the process for (x1,,x20) = (0.2,0.18) (P = 300, B =100, C' =190,U =
32, =1,=0.131, p* =1.209, v =0).

Figure 3: The restriction of the map T to the line o = 1 for g > G*
and slow dynamics (Py = 300, B = 100, C' = 190,U = 32, = 1.5,0* =
1.21, y=0).

Figure 4: The basins of attraction of the four stable equilibria for G > 3*
and slow dynamics (P = 300, B =100, C = 190,U =32, f = 1.5, §* =
1.209, v =0).

Figure 5: The basins of attraction of the locally stable equilibria for
B2 € (B2,8%), i > [, no external spillovers and slow dynamics: a)
B =12 < B5b) B = 121 € (85 ©) B = 1.35 € (8,51); d)
B = 14> (Py =300, B=100, C =190,U = 32, f = 1, 3o =
0.542, 3* =1.209, 3, = 1.37).

Figure 6: The transition of the basins of attraction of the three locally sta-
ble equilibria as the dynamics becomes faster and the critical curve crosses
a basin boundary: a) no intersection of the critical curve with the bound-
ary between the basins of Vi;; and Prrp (A = %), b) the critical curve
has crossed the boundary between the basins of Vi;; and Prp (A = %;
the shape of the curves LC' and LC 1 for A = %; d) enlargement of the
area where the intersection between LC and the basin boundary occurs

(Py =300, B =100, C =190,U =32, B =1.21, By =1, v =0).

Figure 7: Illustration of the effect of the crossing of a basin boundary by a
critical curve for the one-dimensional restriction of 7" to the line x = 1: a,b)
A=22:0) A= 28 (R =300, B=100, C =190,U = 32, 3 = 1.21,7 = 0).



Figure 8: The basins of attraction of the locally stable equilibria for
slow dynamics, symmetric internal spillovers and positive external spillovers
only from population 2 to population 1 firms: a) 73 = 0.1; b) 7 = 0.2
(Pp =300, B=100, C =190,U =32, =1, 72 =0, v* =0.0768).

Figure 9: The transition of the basins of attraction of the locally sta-
ble equilibria for fast dynamics, symmetric internal spillovers and increas-
ing positive external spillovers from population 2 to population 1 firms: a)
71 = 0.076; b) 41 = 0.077; ¢) 1 = 0.08; d) v, = 0.1 (Py = 300, B =
100, C =190,U =32, =1, 12 =0, v* = 0.0768).
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