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Abstract

This paper analyzes the dynamics of a general explicit random price process of

�nitely many assets in an economy with overlapping generations of heterogeneous

consumers forming optimal portfolios, extending the one dimensional investiga-

tion of B�ohm, Deutscher & Wenzelburger (2000). Consumers maximize expected

utility with respect to subjective transition probabilities de�ned by Markov ker-

nels. Given a forecasting rule (predictor) and an exogenous stochastic process of

producer dividends, the dynamics of the economy is described as a random dynam-

ical system in the sense of Arnold (1998). The paper investigates existence and

stability of random �xed points (invariant measures) for mean{variance prefer-

ences under various forecasting schemes, including unbiased predictions as well as

OLS forecasting. Numerical simulations show the stability and the performance of

the di�erent predictors for linear mean{variance preferences. alternative random

dividend processes are provided.
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1 Introduction 1

1 Introduction

One of the most intriguing theoretical problems for a dynamic analysis of asset prices

is to model and understand the causes and forces which determine the kind of evo-

lution typically observed in such markets. It is commonly assumed that part of the


uctuations are generated by exogenous unobservable factors which are modeled as

stochastic processes. In addition, however, empirical observations as well as straightfor-

ward theoretical insight into the nature of the asset price process indicate that traders'

expectations about the future development of asset prices have a signi�cant in
uence

on the actual determination of current prices. On a micro based theoretical level the

way in which agents form their expectations is well understood. Apart from the usual

microeconomic characteristics (like preferences, endowments, and other individual con-

sumption features) these expectations play a fundamental role. The main structural

reason for this fundamental in
uence in intertemporal models is the existence of a so

called expectations feedback which appears naturally in the demand and supply behavior

of interacting agents with multiperiod lives.

The �rst important implication from this insight is that market clearing prices at each

point in time (whether in a deterministic or stochastic environment, in real or asset

markets) will be an endogenous outcome of the interaction of agents with their expec-

tations. Second, the evolution of prices will depend on the way in which agents change

their expectations, i. e. which updating rule they use. Therefore, in general, the behav-

ioral features of such rules will have an impact on the evolution of prices. From this

perspective one would not expect that asset prices can be described by a mere exogenous

process.

For deterministic systems numerous contributions investigate di�erent forms of fore-

casting rules which induce conditions under which complex dynamic behavior may arise

(cf. for example Brock & Hommes 1997, 1998), or Chiarella & He (2000). In such cases

the theory of (deterministic) dynamical systems and bifurcation theory provide a wide

array of results and methods to study the long run behavior of the system and its com-

plexity, as well as the role of di�erent rules. In this way an understanding of the nature

of the expectations feedback can lead to an evaluation of the performance of di�erent

rules.

For dynamical systems which are simultaneously subject to random perturbations pub-

lished results characterizing price processes o�er much less insight into the properties

of the process and their relationship to expectations formation. Most strikingly, the

fundamental assumptions of market clearing, of no arbitrage conditions, and of rational

expectations dominant in the �nancial markets literature preclude a standard dynamic

analysis of the interaction of di�erent forecasting rules with other determinants of the

market mechanism. Only the outcome of the intertemporal processes of pricing and

expectations formation are described as a solution of implicitly given equilibrium condi-

tions and not as orbits of a forward recursive dynamical system (cf. Lucas (1978), Cox,

Ingersoll, Jr. & Ross (1985), and DuÆe (1996)). This leaves no explanatory room for

non rational beliefs, adaptation, or learning. It is evident that explicit forward recursive

solutions in such models can be obtained only in very special cases (as for example in the

CAPM Sharpe (1964), Lintner (1965), Mossin (1966), and Stapleton & Subrahmanyam

(1978)).
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1 Introduction 2

The implicit approach describes asset prices as a �xed point in the appropriate space

of random variables and provides proofs of existence of a particular equilibrium. Essen-

tially, this means that, excluding exceptional cases, the solutions describing the actual

stochastic process cannot be derived explicitly. As a consequence, very little qualitative

structure of the price process can be derived. In general nonlinear and multivariate sit-

uations it seems diÆcult to determine global qualitative properties of such �xed points.

More important, the implicit solution approach under rational expectations does not

describe the process of rational expectations formation; that is, it does not characterize

those forecasting rules which, if applied, generate rational expectations orbits. More-

over, no information on nonrational forecasting rules and their impact can be deduced,

providing no information on the nature of the expectations feedback.

One way to overcome the implicit non{sequential equilibrium approach is to model the

explicit mechanisms determining price formation in markets along with the expectations

formation procedures agents use. In this case the methods of dynamical systems theory

become available, in particular also those of the so{called random dynamical systems

(cf. Arnold 1998). This not only improves the scope of the analysis from a theoretical

point of view, but also provides a much more convincing descriptive theory of economic

random dynamics. The experience with the fully explicit modeling strategy in other

deterministic economic models, (cf. B�ohm & Wenzelburger 1999) as well as stochastic

models (cf. B�ohm &Wenzelburger 1997b) suggests, that these can be applied to �nancial

markets as well. Fortunately, the newly developed theory of random dynamical systems

(cf. Arnold 1998) provides applicable and powerful new results.

The asset pricing literature treats the questions of the dynamic forces of markets and

of the expectations formation procedures in di�erent ways and di�erent degrees of gen-

erality. As already pointed out above, most contributions do not supply an explicit

sequential model within a micro{based intertemporal model. B�ohm, Deutscher & Wen-

zelburger (2000) presented the �rst fully explicit and sequential model with an overlap-

ping generations structure of consumers, where heterogeneous agents can hold arbitrary

expectations of future asset prices. The general purpose there was 1) to model the

e�ect of preferences and of expectations as well as of market interaction of agents on

asset prices, showing explicitly that market clearing asset prices are determined en-

dogenously, 2) to show that with the description of speci�c but arbitrary expectations

formation rules the forward dynamics of the asset price process was well de�ned. The

model uses an overlapping generations structure for consumers who can trade in two

assets, one with a safe and one with a risky return. Such a structure captures the basic

features of standard asset market models while providing a general framework to study

the impact of heterogeneity of agents on price formation. It provides a reference model

to other explicit sequential structures, for example electronic mechanisms like Xetra on

the German stock exchange (cf. Deutsche B�orse AG 1998). In particular, it sets the

stage for a systematic investigation of the in
uence of alternative adaptive expectation

formation and learning on the stability and on the long run properties of endogenous

asset price processes.

The current paper extends this model to the general case with an arbitrary �nite number

of assets. It embodies a fully general analysis of situations with heterogeneous consumers

with arbitrary beliefs, preferences, and forecasting rules, providing an explicit sequential

modeling of the endogenous price process as a random dynamical system in the sense
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of Arnold (1998). This makes an application of the new techniques for such systems

available, including the analysis of the long run behavior, its stability, and other quali-

tative properties. In this set up the equilibrium process of the traditional CAPM model

becomes a particular stochastic orbit (a random �xed point) of the random dynamical

system.

Section 2 of the paper presents the general dynamic model with an arbitrary �nite num-

ber of assets and a random dividend process and it discusses the dynamic structure of

the price process under general forecasting rules modeled as Markov kernels. The no-

tion of perfect (unbiased) Markov kernels introduced in B�ohm & Wenzelburger (1997b)

is used to show that the expectations feedback for the asset pricing model induces a

speci�c timing and memory structure of unbiased forecasting rules, necessary if rational

expectations are guaranteed along all orbits. For the dynamic analysis of the price pro-

cess the section introduces the concepts of a random �xed point and its stability which

are needed to describe the long run behavior of all sample paths of a random dynamical

system. Using these notions section 3 analyzes the dynamics of the random asset price

process for the class of mean{variance preferences and shows existence of the price pro-

cess under rational expectations and gives conditions under which it is stable. Section 4

analyzes the dynamics of the asset price process under di�erent forms of "nonrational"

forecasting rules including OLS forecasting. Numerical simulations for an AR(1) divi-

dend process are provided. The results exhibit the strong impact of di�erent predictors

on stability as well as on prices and returns. Section 5 draws some conclusions.

2 The Model

Consider an economy with one real consumable commodity which is available in each

period of time, but which cannot be stored by consumers directly. There exist k =

1; : : : ; K (nominal) retradeable assets corresponding to stocks/shares of �rms. The

production activity of each �rm is assumed to induce a stochastic process of dividends

over time which are distributed to the share holders (the owners of the assets in each

period).

The set of agents participating in the asset markets consists of overlapping generations

of �nitely many consumers. Let A = f1; : : : ; Ng denote the set of consumers in each

generation. Each consumer a 2 A lives for two periods. He receives an initial endowment

ea > 0 of the consumable commodity in the �rst period of his life, when he does not

consume. To transfer wealth to the second period, consumer a can save part of the

endowment to receive a �xed non random rate of return R > 0 and purchase any of the

K assets. He will choose a portfolio whose proceeds he will consume in period two of

his life. Since he receives no additional endowment in the second period of his life, his

total consumption is equal to the real wealth accumulated.

For every young consumer a 2 A, let ua : R+ ! R denote his von{Neumann-Morgenstern

utility function for future consumption. If a purchases a vector of assets x 2 R
K at

prices p 2 R
K

+ when young, his portfolio1 (y; x) := (ea � p � x; x) 2 R
K+1 implies

wealth/consumption when old given by Rea + x � (q + d� Rp) where d is the vector of

1With a slight abuse of language x 2 R
K will also be referred to as a portfolio. No confusion should

arise.
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dividend payments and q is the vector of future prices of the assets at which he sells in

the second period of his life. In order to obtain well de�ned asset demand, it is assumed

that there exists a (suÆciently low) uniform bound � 2 �(RK+ ) on short sales for all

assets and that consumers cannot obtain credit. Let

B(p; ea) :=
�
x 2 R

K j p � x � ea ; � � x
	

(2.1)

denote the budget set of consumer a.

Since the primary purpose of this analysis is to study the in
uence of subjective expec-

tation for future prices on current prices, it is assumed that the sequence of events and

the market mechanism are such that every young consumer knows the buying price as

well as the dividend payment to be received when he trades the assets. Thus, when

deciding on his portfolio, he treats both arguments parametrically, so that all remaining

uncertainty for the return of the portfolio rests with the future price q at which he sells

his assets2. Let �a 2 Prob(RK+ ) denote the subjective probability measure held by the

young consumer a regarding the future sales price3 of the asset. Then his asset demand

is de�ned as a portfolio which maximizes expected utility of his future wealth on his

budget set, i.e.

~'a(p; d; �a) = arg max
x2B(p;ea)

Z
RK
+

ua(Rea + x � (q + d� Rp))�a(dq):(2.2)

Assumption 2.1 Preferences and expectations of each consumer a 2 A are such that

the following hold:

(i) The utility function ua : R �! R is twice continuously di�erentiable, strictly

monotonically increasing, strictly concave, and bounded.

(ii) Each distribution �a is a Borel measure on R
K

+ .

Clearly, ~'a(p; d; �a) is well de�ned for all positive prices and positive endowment ea if

assumption 2.1 holds. Notice that prices p, dividends d, and the safe rate R enter in

a linear way as d � Rp in the utility function, a term which measures the discounted

premium of the dividend of each asset over the purchase price if the future sales price is

zero. De�ne this vector as the dividend premium � := d�Rp 2 R
K . Standard arguments

imply that any optimal portfolio in the interior of the budget set is a function of the

dividend premium alone. Thus, if portfolios of consumers are interior, it suÆces to

consider the reduced asset demand function

'a(�; �a) := argmax
x

Z
RK
+

ua(Rea + x � (q + �))�a(dq):(2.3)

2for a more detailed discussion of the time structure see B�ohm, Deutscher & Wenzelburger (2000)
3The analysis of consumer behavior as well as the market analysis which follows would be the same,

if expectation were considered cum dividends with no essential structural implications for the model.
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Lemma 2.1 If assumption 2.1 holds, individual asset demand ~'a is a continuous func-

tion of (p; d; R), while the reduced demand function 'a is a continuous function of the

dividend premium �, for every Borel measure �a .

De�ne aggregate asset demand4 by young consumers as '(�; �) :=
P

a2A
'a(�; �a) where

� := (�a)a2A. Let �x 2 R
K

+ denote aggregate supply of assets o�ered by old consumers

in the economy. Since young consumers take the dividend premium parametrically the

asset market is in equilibrium if and only if for some �

�x =
X
a2A

'a(�; �a) = '(�; �);

which implies a deterministic equilibrium premium �. As a consequence, one obtains

the following lemma describing equilibrium asset prices in each period.

Lemma 2.2 Let assumption 2.1 on preferences be satis�ed and assume that aggregate

demand is globally invertible with respect to the dividend premium. Then, there exists a

continuous mapping

S : D �
�
Prob(RK )

�jAj
�! R

K (d; (�a)a2A) 7�! S(d; (�a)a2A)

determining endogenous asset prices at each time t by

p = S(d; �) :=
1

R
[d� �(�)](2.4)

where �(�) := '�1(�x; �).

Therefore, if aggregate asset demand is globally invertible there exists a unique equilib-

rium dividend premium which clears asset markets in every period implying that the

equilibrium dividend premium in every period is a deterministic function of individual

characteristics (preferences and beliefs) of young consumers. As a consequence, individ-

ual portfolios are non random and functions of these characteristics as well. However,

the equilibrium price of assets will be a random variable determined by (2.4) if and only

if dividends are random. Note also, that prices would be non random, if expectations

were formed with respect to cum dividend prices.

To complete the description of the model, assume that the dividends d 2 R
K will be

subjected to exogenous noise which is modeled in the following way. Let (
;F ;P) denote
a probability space and # : 
 ! 
 a measurable invertible mapping with measurable

inverse. The map # is measure preserving with respect to P and P is ergodic with re-

spect to # such that the collection (
;F ;P; f#tg) becomes an ergodic dynamical system,

4In order to investigate the structural features of the asset price process, all of the remaining analysis

assumes that consumer behavior is represented by interior portfolio choices, ignoring and avoiding the

associated boundary problems. This is a well justi�ed approach for mean{variance preferences. The

issue of possibly negative asset prices is treated explicitly at the appropriate locations.

5



2 The Model 6

(cf.Arnold (1998) for details). In addition let D : 
 ! R
K denote a measurable map

such that the exogenous perturbation is given by

D Æ #t : 
 �! R
K ; t 2 N(2.5)

which de�nes a so called real noise process on (
;F ;P).

Assumption 2.2

The dividend process (Dt)t2N de�ned by Dt := D Æ #t is a stationary Markov process on

the probability space (
;F ;P) such that Dt : 
! D where D := [dmin; dmax] � R
K

+ ; with

0� dmin � dmax

Given the price law (2.4), assumption 2.2, and �xed beliefs � = (�a)a2A, then prices

fptgt2N evolve over time according to a stochastic process S(Dt(�); �x; �) : 
 ! R
K

de�ned by

pt = S(Dt(�); �) =
1

R
[Dt(�)� �(�)] :(2.6)

The mapping (2.4) resp. (2.6) is an economic law in the sense of B�ohm & Wenzelburger

(1997b, 1999) with an expectations feedback. Such mappings incorporate the interaction

of the given expectations and of the realization of the random dividend process at any

point in time.

The mapping (2.4) has several distinctive structural features. First, the mapping S is

of the cobweb type, i. e. S does not contain the price itself for which expectations are

formed as an argument, which is the common feature of all cobweb models. As is well

known for such mappings, this implies that the dynamics of the system are exclusively

driven by the expectations formation process. Second, the dating of the expectations

term � = (�a)a2A relative to the dividend process and the determination of the price in

each period shows that (2.4) has an expectational lead, i. e. expectations are formed with

respect to the realization of prices one period ahead of the mapping S. As a consequence,

the predictors (the functions) describing the expectation formation process possess an

extra delay of one period: predictions made in t for period t+1 are based on information

up to the previous period t� 1 (cf. B�ohm & Wenzelburger (1997a)).

Third, the algebraic form of the economic law is worth noting. It has a systematic

(deterministic) component determined by the equilibrium dividend premium, aggregate

supply of shares �x, and by the subjective beliefs � = (�a)a2A of young consumers for

future prices. These in turn determine deterministic quantities of assets traded by each

consumer. Therefore, the randomness of the asset price is generated by an additive

noise term driven by the dividend process. Thus, the price process inherits all of the

properties of the dividend process with two immediate consequences. For every t 2 N ,

the conditional mean of asset prices is given by

E t�1pt = E t�1 [S(Dt(�); �x; �)] =
1

R
[E t�1dt � �(�)] ;(2.7)
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2.1 Returns and Risk premia 7

and its conditional covariance

Vt�1pt = Vt�1 [S(Dt(�); �x; (�
a)a2A)] =

1

R
Vt�1dt:(2.8)

Notice that the conditional mean depends strongly on subjective expectations for the

future price development whereas the conditional covariance is independent of individual

preferences and beliefs. These features of the asset price process are quite general and

independent of the characteristics of consumers. They are essentially consequences of

the market clearing mechanism and of the additive nature of the de�nition of the return

on assets. They show that the asymmetry of the price uncertainty among the di�erent

generations has a structural impact on the nature of the return process.

It is clear that the price process will be a direct mirror image of the dividend process if

expectations do not change across generations. If, however, agents change/update their

expectations, this will induce an additional interaction between the expectations for-

mation process and the dividend process. Thus, in general, actual prices and dividends

may follow quite di�erent paths. As a consequence the description of the development

of endogenous asset prices is complete only if the expectation formation process as well

as the dividend process are speci�ed. Then, as will be shown below, the interaction of

the dynamic forces of expectations formation with the random dividend process induces

a random dynamical system in the sense of Arnold (1998).

2.1 Returns and Risk premia

Before discussing the dynamics of the economic system, it is useful to analyze some

consequences of the price process (2.6) on the rates of return and on risk premia. Given

an arbitrary portfolio (y; x) 2 R
K+1 , its total return would be Ry + x � (q + d) where

the vector (R; q + d) 2 R
K+1 describes the rates of return for each of the K + 1 assets.

Taking account of the budget constraint y + p � x = e and making the time structure

explicit, the return (measured in monetary units) on a portfolio (e�pt �xt; xt) purchased
in period t is de�ned as

wt = Re+ xt � (pt+1 + dt � Rpt) = Re+ xt � (pt+1 + �t):(2.9)

Here, the vector (pt+1+ �t) 2 R
K is the vector of premia over the safe rate R earned by

each risky asset and xt � (pt+1 + �t) is the total premium earned by the asset portfolio.

Consider the return on consumer a's portfolio if he belongs to an arbitrary generation

t� 1. Let W a

t�1(�) denote his actual �nal wealth at the beginning of period t. As before

write � := (�a)a2A and denote by �a
t
resp. �t := (�a

t
)a2A the beliefs of young consumers

in period t. Then (2.9) implies

W a

t�1(�) = Rea + 'a(�(�t�1); �
a

t�1) �

�
1

R

�
Dt(�)� �(�t)

�
+ �(�t�1)

�
:(2.10)

7



2.1 Returns and Risk premia 8

The risk premium earned by consumer a of generation t� 1 (measured as the total rate

on investment minus the safe rate R) becomes

Ra

t�1(�) =
1

ea
W a

t�1(�)�R(2.11)

=
1

ea
'a(�(�t�1); �

a

t�1) �

�
1

R

�
Dt(�)� �(�t)

�
+ �(�t�1)

�
:

Equations (2.10) and (2.11) describe the stochastic and intertemporal factors which

determine the random development of the return process. It is transparent that, due

to the overlapping generations structure, each generation in
uences strongly the buying

price of its shares through its expectations, whereas the selling price is determined by the

expectations of the following generation. Thus, wealth, rates of return, and risk premia

of any agent in any generation will depend on a pair of expectations from two consecutive

generations and on the stochastic nature of the dividend process. It is obvious therefore,

that the evolution of individual beliefs over time will play an important role in the

determination of actual asset prices and returns.

Finally, consider the development of aggregate wealth

X
a2A

W a

t�1(�) = R
X
a2A

ea + �x �

�
1

R

�
Dt(�)� �(�t)

�
+ �(�t�1)

�
(2.12)

and its return resp. risk premium

Rt�1(�) =
�X

ea
��1

�x �

�
1

R

�
Dt(�)� �(�t)

�
+ �(�t�1)

�
:(2.13)

Before studying the dynamics of expectations formation and its impact on the price

process, it is useful to consider the special case when beliefs are stationary, i. e. when

expectations of consumer types are the same across generations, i. e. for any a 2 A,

�a
t
= �a

t�1 holds for all t. As a consequence dividend premia and individual portfolios

are constant through time. For the wealth process one obtains

W a

t�1(�) = Rea +
1

R
'a(�(�); �a) � [Dt(�) + (R� 1)�(�)] :(2.14)

Similarly, the risk premium for consumers of type a becomes

Ra

t�1(�) =
1

Rea
'a(�(�); �a) � [Dt(�) + (R� 1)�(�)] :(2.15)

The development of aggregate wealth under stationary beliefs is described by

X
a2A

W a

t�1(�) = R
X
a2A

ea +
1

R
�x � [Dt(�) + (R� 1)�(�)] :(2.16)

8



2.2 Mean{Variance Preferences 9

Thus, the risk premium process of the market portfolio under stationary beliefs is

Rt�1(�) =

�
1

R
P
ea

�
�x � [Dt(�) + (R� 1)�(�)](2.17)

The derivation of the preceding equations shows that, under stationary beliefs, the

stochastic processes of returns and premia are aÆne functions, linear in the dividend

with a systematic deterministic (constant) term depending on individual and market

characteristics. As a consequence, their conditional mean values depend on individ-

ual preferences and beliefs whereas their conditional covariances do not. Thus, under

stationary beliefs, the volatility of all processes (prices, returns, and premia) will re-


ect essentially the features of the underlying production process from which the real

dividends are generated.

2.2 Mean{Variance Preferences

The situation when agents make portfolio choices on the basis of mean{variance pref-

erences constitutes a much studied class of models which have been used widely and

successfully in �nancial theory. They form the basis of the classical capital asset pricing

model (CAPM) the results of which serve as a fundamental guideline to the understand-

ing in evaluating the trade o� between returns and risk in asset markets5.

The primary importance of mean{variance preferences within the classical asset pric-

ing theory stems from the fact that they supply a convenient structure to analyze asset

demand behavior explicitly. The case with quadratic utility and normally distributed re-

turns yields the well known standard CAPM pricing formula of Sharpe{Lintner{Mossin6.

In other more general situations, as is known with quadratic utility, mean{variance

preferences induce globally invertible demand functions which are often solvable alge-

braically. In the general equilibrium context this may yield explicit functional forms of

the equilibrium price map, which are needed if an explicit description of the asset price

process is the goal.

Consider now the general case of mean{variance preferences taken as a general primitive

concept to represent preferences under risk. Assume that consumers form their future

price expectations �a using a �xed two parameter family of measures with mean �a 2 R
K

and covariance matrix va 2 R
K � R

K . Thus we can identify �a with the pair (�a; va) 2
R
K � (RK � R

K ):

Assumption 2.3 For every a 2 A, beliefs (�a; va) 2 R
K � (RK � R

K ) satisfy:

(i) 0� �min 5 �a 2 R
K

+ ,

(ii) va is symmetric, non singular, and positive de�nite.

5The relationship/restrictions the mean{variance model imposes are well understood if consistency

with expected utility maximization is required, see for example Brennan (1989), Eichberger & Harper

(1994), and Dumas & Allaz (1996)).
6Sharpe (1964), Lintner (1965), and Mossin (1966)
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2.2 Mean{Variance Preferences 10

Property (i) imposes a strictly positive lower bound on expected prices. Let x 2 R
K be

arbitrary and (ea� p � x; x) 2 R
K+1 denote the associated portfolio. Then, for arbitrary

beliefs, (�a; va) 2 R
K � (RK � R

K )

Ma(�a + �; x) := Rea + x � (�a + �)(2.18)

de�nes the subjective expected return of the portfolio and

V a(x) := x0vax(2.19)

its variance. Then, consumer a's asset demand function is de�ned by

'a(�a + �) := argmax
x

Ua(Ma(�a + �; x); V a(x)):(2.20)

Since the characteristics (va; Rea) are kept constant throughout the remainder of the

analysis they are suppressed as arguments of the demand function. It is well known and

straight forward to show that the demand for risky assets 'a is a well de�ned function.

The following proposition states a suÆcient condition under which individual as well as

aggregate asset demand is globally invertible in the mean premium (�a + �).

Proposition 2.1 Let the concave mean{variance utility Ua be twice continuously di�er-

entiable and additively separable. If the characteristics of consumers satisfy Assumption

2.3, then, for every va 2 R
K � R

K , the asset demand function 'a is globally invertible.

Proof: (standard) 2

Lemma 2.3 Let the concave mean{variance utility Ua be twice continuously di�eren-

tiable, linear in the mean and strictly concave in the variance. If, in addition, the char-

acteristics of consumers satisfy Assumption 2.3, then aggregate demand
P

a
'a(�a + �)

is globally invertible in � for any given (�a)a2A.

Proof: (see Appendix) 2

It follows now from the results of the previous section, that under the conditions of

Lemma 2.3, the model has a well de�ned price law given by a mapping

S : D �
�
R
K
�jAj

! R
K

de�ned by

S(d; �) =
1

R
[d� �(�)](2.21)

10



2.2 Mean{Variance Preferences 11

with � := (�a)a2A.

The situation where consumers have the linear utility function

Ua(M;V ) :=M �
�a

2
V(2.22)

where for each a 2 A, �a > 0 measures risk aversion and 1=�a measures risk tolerance,

provides an explicit algebraically solvable example for the price mapping. In this case

individual asset demand is given by

'a(�a + �) =
1

�a
(va)�1 (�a + �)(2.23)

= �a(�a + �)(2.24)

where �a := 1

�a
(va)�1 2 R

K�RK is the risk adjusted inverse of the subjective covariance

matrix. Invoking asset market clearing

X
a2A

'a(�a + �) = �x;

one obtains for the equilibrium dividend premium

�(�) :=

 X
a

�a

!�1 
�x�

X
a

�a �a

!
:(2.25)

This yields the asset price law as

p = S(d; �)(2.26)

=
1

R

2
4d+

 X
a

�a

!�1 X
a

�a �a � �x

!35 :(2.27)

Notice that the price law is an aÆne function in expected means (determined by the

dividend premium, aggregate supply of shares, preferences, and by arbitrary but given

subjective beliefs (�a; �a)a2A of young consumers) with additive noise. If dividends are

zero and/or expectations were formed cum dividends, prices would not be random. Ob-

serve the similarity of the price map with the standard Sharpe{Lintner{Mossin equation

(see for example Stapleton & Subrahmanyam 1978). However, individual portfolios are

proportional to the market portfolio �x if and only if all consumers hold the same mean

expectations � and the same covariances.

It is also apparent that, without further restrictions, asset prices may become negative

if dividends are too low. Therefore, some additional restrictions are needed to obtain

non{negative prices.

11



2.3 Expectations formation and the dynamics of random asset prices 12

Lemma 2.4 Let the conditions of lemma 2.3 be satis�ed and assume that

dmin �

 X
a

�a

!�1

�x:

Then, asset prices

p =
1

R

2
4d+

 X
a

�a

!�1 X
a

�a �a � �x

!3
5

are positive for all non{negative mean expectations (�a)a2A.

2.3 Expectations formation and the dynamics of random asset

prices

The dynamical features of the economy are only speci�ed completely, if the way in which

predictions are made by the di�erent generations are described, i. e. how consumer a of

generation t determines the measure �a
t
. It is obvious, in view of the forward recursive

structure of dynamical systems, that agents at time t have observed previous states p�
and exogenous perturbations D� = D(#�!) only up to time � � t� 1. In addition, the

information set It at t may also include the forecasts made by previous generations �� ,

� � t� 1.

Usually, two distinct scenarios are considered when the explicit formation of expecta-

tions is described in economic models. The �rst one adopts a stationary framework.

This de�nes forecasting mechanisms or expectations functions (often called predictors )

as time invariant forward recursive mappings using the information It. Such rules are

typically (best) modeled by Markov kernels. These include for example Bayesian up-

dating, many econometric updating schemes (like the Kalman �lter or OLS estimation),

and a large number of other adaptive rules. It is known, that this class also contains

the predictors generating rational expectations. They di�er primarily in the form and

in the extent to which they use past information. They share the common stationarity

property of being time invariant mappings updating the predictions at each time in a

recursive fashion. The key implication of using such predictors in conjunction with an

economic law is that the resulting dynamical system becomes autonomous.

The second scenario uses non stationary rules as in many models of (non{autonomous/non{

adaptive) learning or in evolutionary models. Their dominant feature is that the up-

dating mechanism of subjective beliefs becomes a function of time. Since the general

theory of (non{autonomous) learning in non linear random models is still in its infancy,

this paper will use exclusively the Markovian/stationary approach. Here, the structure

proposed in B�ohm & Wenzelburger (1997a, 1997b) will be followed directly.

Assume that each consumer a of a generation determines his subjective probability

distribution of future prices using a Markov kernel

	a : D � R
K � Prob(RK )� B(RK ) �! [0; 1] (d; p; �; B) 7! 	a(d; p; �)(B)(2.28)

12



2.3 Expectations formation and the dynamics of random asset prices 13

with B(RK ) denoting the �-algebra of Borel sets. Thus, 	a(d; p; �)(B) is consumer a's

subjective probability that future prices are in B7. Thus, the predictor 	a described in

(2.28) can be viewed as a function

	a : D � R
K � Prob(RK ) �! Prob(RK )

predicting probability distributions, in other words, �a
t
:= 	a(dt�1; pt�1; �

a

t�1) 2 Prob(RK )

is the subjective probability distribution used by consumer a of generation t when de-

termining his optimal portfolio.

Let 	 := ((	a)a2A) denote the list of the Markov kernels for all a 2 A. Inserting them

into the price law (2.4) de�nes a mapping

S	 :=

�
D �D � R

K � (Prob(RK ))jAj �! R
K

(d; d�1; p�1; ��1) 7! S	(d; d�1; p�1; ��1)

determining endogenous prices in any period

p = S(d;	(d�1; p�1; ��1))

as a function of current dividends as well as past dividends and past prices while assum-

ing that agents use the kernels 	 to make their forecasts. As a consequence, the pair of

mappings

(S	;	) : 
� R
K � Prob(RK )jAj �! R

K � Prob(RK )jAj

de�ned by

pt = S	(Dt(�); Dt�1(�); pt�1; �t�1)(2.29)

�t = 	(Dt�1(�); pt�1; �t�1))(2.30)

de�nes the time-one map of a discrete time random dynamical system in the sense of

Arnold (1998), which governs the evolution of prices and beliefs.

It is obvious from the structure of these equations that the form of the predictors (	a)a2A
will have a dominant in
uence on the actual price development. Thus, under stationary

updating, the evolution of prices will not be a simple image of the dividend process.

However, this random dynamical system has two speci�c features. First, note that only

the price law is subject to the current random perturbations, while the predictor is a

deterministic di�erence equation corresponding to a normal statistical updating proce-

dure. Second, the vector of past prices enters into the time one map only through the

predictor. Thus, if past prices are not taken into account by consumers when making

their predictions, then the random dynamical system will consist of the prediction pro-

cess alone, while prices evolve according to the stochastic process induced by equation

(2.4).

7It is assumed for simplicity that consumers in each generation use the beliefs of their own prede-

cessors only when making their forecasts. The more general case where they know also all other beliefs

is a straightforward extension which can be integrated easily.

13



2.3 Expectations formation and the dynamics of random asset prices 14

One of the primary objectives of this paper is to analyze the long run behavior of

the random dynamical system given by (2.29) and (2.30). In deterministic dynamical

systems the concepts used to describe the long run behavior are stable �xed points and

attractors. These concepts have been extended to the random case. Here the concept

of a stable random �xed point will be used to characterize stable random evolutions of

asset prices, cf. Arnold (1998), Schmalfu� (1996, 1998).

De�nition 2.1 Consider a random dynamical system given by the continuous mapping

F : X � R
m �! X with real noise process ut = u Æ #t , u : 
 �! R

m measurable, over

the ergodic dynamical system (
;F ;P; (#t)). A random �xed point of F is a random

variable x� : 
 �! X on (
;F ;P) such that almost surely

x�(#!) = F (x�(!); u(!)):(2.31)

Some implications of the de�nition can be observed directly. If F is independent of the

perturbation !, then the De�nition 2.1 coincides with the one of a deterministic �xed

point.

De�nition 2.1 implies that x�(#
t+1!) = F (x�(#

t!); u(#t!)) for all times t. Therefore,

the orbit fx�(#
t!)gt2N, ! 2 
 generated by x� solves the random di�erence equation

xt+1 = F (xt; ut(!)):

It follows from stationarity and ergodicity of # that the processfx�(#
t)gt2N is stationary

and ergodic. If, in addition, E jjx� jj <1, then

lim
T!1

1

T

TX
t=0

1B(x�(#
t!)) = x�P(B) := P f! 2 
jx�(!) 2 Bg

for every B 2 B(X). In other words, the empirical law of an orbit is well de�ned and

is equal to the distribution x�P of x�. Finally, if the perturbation corresponds to an

i. i. d. process the orbit will be an ergodic Markov equilibrium in the usual sense (cf.

DuÆe, Geanakoplos, Mas-Colell & McLennan 1994).

The concept of stability to be used in the context of a random dynamical system is as

follows.

De�nition 2.2 A random �xed point x� is called attracting on some set U � 
�X

if

lim
t!1

jjxt(!)� x�(#
t!)jj = 0 for all (!; x0(!)) 2 U :

Thus, a random �xed point is attracting if nearby orbits converge to the orbit of the

random �xed point. This is clearly a rather strong property for random di�erence

equations. However, as it turns out, this stability property can be veri�ed for many of

the economic systems under investigation here.

14
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3 The dynamics with unbiased predictions {

rational expectations

One of the intriguing questions dealt with in economic models with an expectations

feedback is to understand whether perfect forecasts can be made in such environments

at all times. Within the context of models with exogenous disturbances the concept

of rational expectations equilibrium is the most widely used one to describe long run

equilibrium along time paths. It is well known for many economic models that the two

requirements of ongoing equilibrium and of rational expectations at all times cannot be

ful�lled.

It is clear that the evaluation of the performance of predictors (Markov kernels) can be

carried out on several levels. B�ohm & Wenzelburger (1997b) provide a general abstract

method using the notion of a pseudo metric on the space of probability measures. In most

applications, however, it is rare to have full knowledge of the measure, and more often

it is useful and practicable to compare moments of (conditional) distributions. In fact,

the notion of rational expectations compares only �rst moments of actual conditional

and of subjective distributions. Since this is also the major objective here, the analysis

will be con�ned to the speci�c situation of the comparison of conditional means only.

With a slight abuse of notation, let 	a : D � R
K

+ � R
K

+ ! Prob(RK ) denote a kernel,

whose arguments are past dividends and prices as well as the subjective expected mean

value of the previous generation. In order to characterize conditional subjective expec-

tations consider the mean value predictor associated with 	a de�ned by the function

 a : D � R
K

+ � R
K

+ �! R
K

+ ; (d; p; q) 7!

Z
RK

x	a(d; p; q; dx);(3.1)

making qa
t
:=  a(dt�1; pt�1; q

a

t�1) the predicted mean value for the realization pt+1 given

the information (dt�1; pt�1; q
a

t�1). The mean value predictor therefore is a point predictor

rather than a predictor for distributions. As before, let  := ( a)a2A denote the list of

mean value predictors used by agents a 2 A. Then, the pair of mappings

(S	;  ) : D � R
K �D � (RK )jAj �! R

K � (RK )jAj(3.2)

determines prices and predicted means in every period as functions of current and past

dividends, past actual and predicted prices. Therefore,

(S	;  ) : 
� R
K �D � (RK )jAj �! R

K � (RK )jAj(3.3)

yields the random dynamical system with the two component maps

pt = S	(Dt(�); Dt�1(�); pt�1; qt�1)(3.4)

qt =  (Dt�1(�); pt�1; qt�1)):(3.5)

15



3.1 Unbiased predictions with mean{variance preferences 16

It is obvious that the consumers a 2 A can be unbiased simultaneously only if they all

make the same mean prediction. Using the notions proposed in B�ohm & Wenzelburger

(1997b) and taking account of the expectational lead (see Wenzelburger (1999)) yields

the following de�nition.

De�nition 3.1 A list of predictors 	� := ((	a

�)a2A) with associated mean value predic-

tors  a� : D � R
K

+ � R
K

+ �! R
K

+ ; is called unbiased if, for all a 2 A and all t:

E t�1S	�
(Dt(�); dt�1; pt�1; qt�1) = qa

t�1 =  a�(dt�2; pt�2; qt�2):(3.6)

Thus, predictors are unbiased if the true conditional expectation of the price process

coincides with the point forecast for the mean value of the price made by all agents for all

points in time. Hence, all orbits with an unbiased predictor have rational expectations

in the usual sense.

For a study of the case with unbiased predictions it is useful to impose further restrictions

on agents' expectations. Assume, for example, that all agents choose from a �xed (not

necessarily the same) family of probability measures parameterized in their means, when

making their predictions. In this case, asset demand will depend on the subjective mean

parametrically. Unbiased predictions for all agents then requires that all choose the

same mean prediction � 2 R
K

+ , so that aggregate demand for assets is a function of

the simple form '(�; �). Then, the equilibrium dividend premium can be written as

�(�) = '�1(�x; �), so that the economic law (2.4) S : D � R
K

+ � R
K

+ ! R
K is given by

S(d; �) =
1

R
[d� �(�)] :(3.7)

3.1 Unbiased predictions with mean{variance preferences

Consider the case with mean{variance preferences as described by (2.21) assuming that

consumers make mean{variance predictions with the same expected mean � = �a for

all a 2 A: Then, assuming that aggregate asset demand is globally invertible, one �nds

that the equilibrium premium is linear in �, i. e.

�(�) := '�1(�x; �) = �(�x)� �;(3.8)

so that the price law is of the special form

S(d; �) =
1

R
[d+ �� �(�x] :(3.9)

Using the techniques developed in B�ohm & Wenzelburger (1997b) one obtains the fol-

lowing result.

Theorem 3.1 Let consumers have mean{variance preferences and assume that con-

sumers know the conditional mean of the dividend process (or let dividends follow a

martingale process with E t�1Dt = dt�1). If aggregate asset demand is globally invertible,

there exists a unique unbiased predictor  �. Moreover,  � is an aÆne map with additive

noise independent of actual prices.

16



3.1 Unbiased predictions with mean{variance preferences 17

Proof: Assume that members of successive generations make the same mean price

forecasts, i. e. �a�1 = ��1, �
a = � for all a 2 A; and consider the conditional mean error

by the old generation in any arbitrary period

E t�1 [S(Dt(�); �)]� ��1 =:
1

R
[E t�1Dt � �(�)]� ��1(3.10)

=
1

R
[E t�1Dt + �� �(�x)]� ��1

=: eE
S
(E t�1Dt; �; ��1):(3.11)

The mapping eE
S
: R3 ! R (3.11) de�nes the mean forecast error as a function for arbi-

trary values (E t�1Dt; �; ��1) of conditional dividend means and pairs of mean expecta-

tions by two successive generations. Therefore, the forecast � by any young generation

makes the forecast ��1 by the preceding generation unbiased if and only if the mean

forecast error of the latter is zero. In other words, eE
S
(E t�1Dt; �; ��1) = 0 if and only if

�� �(�x) = R��1 � E t�1Dt:

Solving for �, one obtains the unbiased predictor

 �(E t�1Dt; ��1) := �(�x) +R��1 � E t�1Dt:(3.12)

Thus, knowing the conditional mean (or setting E t�1Dt = dt if dividends follow a mar-

tingale) one obtains the result.

�

Thus, the unbiased predictor associated with the economic law (2.21) is an aÆne map

independent of prices. Combining (3.12) with (2.21) yields the random dynamical system

(S �;  �) with unbiased prediction given by

pt =
1

R
[Dt(�) +R�t�1 � E t�1Dt] ;(3.13)

�t = �(�x) +R�t�1 � E t�1Dt:(3.14)

Since the unbiased predictor is independent of past prices, the random dynamical system

reduces to equation (3.14), generating prices via the stochastic process (3.13) which one

may also write as

pt =
1

R

�
Dt(�) + �t � '�1(�x; v)

�
:(3.15)

Its conditional mean is equal to ��1 while its conditional covariance is given by

Vt�1S �(Dt(�);  �(dt�1; �t�1)) =
1

R
Vt�1Dt(�)(3.16)
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3.1 Unbiased predictions with mean{variance preferences 18

con�rming the property derived in (2.8). Notice in particular that it is independent

of subjective expectations, and thus of the predictor. It varies inversely with the safe

rate R, i. e. higher R implies a lower conditional covariance. Notice, however, that

the price process will exhibit serial correlation through the expectations feedback and

through the dividend process itself. For example, even if the dividend process is i. i. d. ,

price expectations follow a Markov process. As a consequence, prices would be serially

correlated.

It is apparent from Theorem 3.1 that the dynamic properties of the price process under

unbiased prediction originate exclusively from the expectations process (3.14), which is

an aÆne random dynamical system with additive noise. For such systems, existence and

stability of a unique globally attracting random �xed point follow from well established

results (see Arnold 1998) which imply the following theorem.

Theorem 3.2 The random dynamical system given by equation (3.14) has a unique

random �xed point �� if and only if R 6= 1. Furthermore, �� is globally attracting if and

only if 0 < R < 1.

The instability of the �xed point for a rate of return of the safe asset greater than one

is an immediate consequence of the structure of the model, namely the cobweb nature

and the expectational lead. This phenomenon is well known in the comparable class

of deterministic models under perfect foresight with monotonic economic laws (see for

example Chiarella 1988).

To obtain globally de�ned positive prices as well as positive price expectations in the sta-

ble case, some further restrictions on the structure of the economy (aggregate demand)

and on the dividend process have to be imposed.

Theorem 3.3 Let 0 < R < 1 and assume dmax � dmin � 0.

1. There exists a non empty forward invariant interval
�
�; �

�
� R

K , for the mapping

(3.14) de�ned by

� :=
1

1� R
[�(�x)� dmax] ; � :=

1

1� R
[�(�x)� dmin] :(3.17)

2. Price expectations are positive along all orbits if

�0 � �(�x)� dmax � 0:(3.18)

3. If, in addition,

�(�x)� max

�
dmax;

1

R
[dmax � (1� R)dmin]

�
(3.19)

holds, then asset prices generated by (3.13)are strictly positive if

�0 �
dmax � dmin

R
:(3.20)
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3.1 Unbiased predictions with mean{variance preferences 19

Proof: By straightforward calculations. �

Due to the linearity of the expectations process, one can calculate directly the basic

properties of the so called empirical law of asset prices and of price expectations of the

random dynamical system (3.13) and (3.14). Since all orbits converge to the random

�xed point �� the long run behavior is completely characterized by its statistical prop-

erties. Stationarity and ergodicity of the mapping � and the de�nition of a random �xed

point (2.1) imply that

E��(!) = E��(�!)(3.21)

= E f�(�x) +R��(!)� E t�1D(!)g ;(3.22)

which yields the mean of the �xed point as

E��(!) =
1

1� R
[�(�x)� ED(!)] :(3.23)

Therefore, ergodicity implies

lim
T!1

1

T

TX
t=0

�t(!) = E��(!) =
1

1� R
[�(�x)� ED(!)] :(3.24)

In other words, for all initial conditions �0 satisfying (3.18), the mean of all sample

paths of (3.14) converges to the long run mean (3.23).

To complete the description of the long run features of the economy, notice that the

behavior all other variables of the economy (prices, premia, 1portfolios, returns, etc.)

is also determined by uniquely de�ned sample paths each converging to a stationary

random variable. Let p� denote the stationary random variable for the price process

induced by the unbiased �xed point �� which is de�ned as

p�(!) :=
1

R
[D(!) + ��(!)� �(�x)] :(3.25)

One �nds that p� and �� have the same mean, i. e.

Ep�(!) = E��(!) =
1

1� R
[�(�x)� ED(!)] ;

as it should be. By the same token, let

��(!) := D�(!)� Rp�(!) = �(�x)� ��(!)

denote the stationary dividend premium. This implies that

��(!) + ��(!) = �(�x);
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3.1 Unbiased predictions with mean{variance preferences 20

the vector of net expected returns, is non random. As a consequence, the stationary

state of the economy will have constant individual portfolios of all young consumers.

Notice, however, that stationary individual wealth, rates of return, and equity premia

will still be agent speci�c stationary random variables, although all consumers have

rational expectations.

The situation where consumers have linear mean{variance preferences (see 2.23) pro-

vides an explicitly solvable example of the price law and the unbiased predictor. With

consumer characteristics given by (�a; �a)a2A, one obtains the economic law given in

equation (2.26).

p =
1

R

2
4d+

 X
a

�a

!�1 
(
X
a

�a�a) � �x

!35 :
With �a = � for all a 2 A, this simpli�es to

p =
1

R

2
4d+ ��

 X
a

�a

!�1

�x

3
5 ;(3.26)

which implies the following corollary to Theorem 3.1.

Corollary 3.1 Let the conditions of Theorem 3.1 be satis�ed and assume that con-

sumers have CARA preferences with given subjective risk tolerance. There exists a

unique unbiased predictor  � which is an aÆne map independent of actual prices.

Therefore, the random dynamical system (S �;  �) under unbiased prediction

pt =
1

R
[Dt(�) +R�t�1 � E t�1Dt(�)](3.27)

�t =

 X
a

�a

!�1

�x +R�t�1 � E t�1Dt(�):(3.28)

reduces to equation (3.28), generating prices via the stochastic process (3.27). The

results of Theorem 3.2 and of Theorem 3.3 translate directly into the case with CARA

utilities implying the following corollary.

Corollary 3.2

Let 0 < R < 1 and let the conditions of Corollary 3.1 be given. If

 X
a

�a

!�1

�x� max

�
dmax;

1

R
(dmax � dmin) + dmin

�
(3.29)

holds, then random asset prices will be positive for all initial conditions �0 satisfying

�0 � � :=
dmax � dmin

R
:(3.30)
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3.2 Unbiased predictions with AR(1) dividends 21

3.2 Unbiased predictions with AR(1) dividends

This section presents results of numerical simulations carried out for an economy with

one risky asset and heterogeneous consumers with linear mean{variance preferences, to

illustrate the results of Theorem 3.3. All simulations were carried out using �ACRODYN

, a software package (cf. B�ohm, Lohmann & Middelberg 1998) designed for the analysis

of discrete time dynamical systems (see also B�ohm & Schenk-Hopp�e 1998).

Consider the associated general price law from equation 2.26

p =
1

R

2
4d+

 X
a

�a

!�1 X
a

�a �a � �x

!35 :
With �a = � for all a 2 A, this simpli�es to

p =
1

R

2
4d+ ��

 X
a

�a

!�1

�x

3
5 :(3.31)

Thus, if agents make the same mean forecast, the vector �(�x) = (
P

a
�a)

�1
�x captures all

of the remaining exogenous parameters (including the heterogeneity of the consumption

sector, i. e. the number of consumers, their risk tolerance, subjective covariance, as well

as the total number of assets). For the single asset case here, the value �(�x) = :55 will

be used for all simulations along with R = 1:01 .

Consider a situation where dividends follow an AR(1) process modeled as

Dt+1 = :8Dt + �t; where �t � uniform i.i.d. over [:01; :13](3.32)

g

t

0.55

0.45

0.35

0.25

0.15

500 625 750 875 1000

dt

Figure 3.1: AR(1) dividends: Dt+1 = :8Dt + �t; �t � uniform i.i.d. over [:01; :13]

The dividend process (3.32) is itself a random dynamical system with a unique globally

attracting random �xed point D� with mean ED� = :35. Figure 3.1 shows a typical time

window for the dividend process, while Figures 3.2 { 3.4 display additional features.
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Figure 3.2: AR(1) Dividends and recursive mean
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Figure 3.3: Recursive standard deviation of AR(1) dividends
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Figure 3.4: Dividends: mean=0.350047; variance=0.00331875; sd =0.0576086; T = 106
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The quantity

mean(d)t :=
1

t+ 1

tX
�=0

d�

.

is the recursive mean dividend along the orbit and

sd(d)t :=
1

t+ 1

tX
�=0

0
@
vuut 1

� + 1

�X
i=0

�
di �mean(d)i

�21A
is the recursive standard deviation. The next three diagrams show the behavior of asset

prices. Figure 3.5 portrays the stability of the price process indicating that convergence

of prices is obtained (numerically) within less than 500 periods for arbitrary initial prices.

Figures 3.6 and 3.7 show quite distinct phases of the orbit of the random �xed point.

t
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22.5
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17.5

15

0 125 250 375 500

pt

Figure 3.5: Convergence of prices under unbiased prediction: AR(1) dividends

Figures 3.8 { 3.10 show some of the long run statistical properties of the �xed point.

The cyclical movement of the recursive deviation in Figure 3.9 is a clear indication of

volatility clustering of prices, in spite of the fact that the long run density of prices,

calculated on the basis of 106 periods, is symmetric.

The following three diagrams (Figures 3.11 { 3.13) show the performance of the unbiased

predictor. They depict the sample path, recursive mean and standard deviation, and

the density of the forecasting errors et := pt � �t�1 which is approximately uniform, an

indication of the fact that errors are uncorrelated. Notice, while the unbiased predictor

induces a zero conditional forecast error at any point in time, the diagrams show that

the long run average error is strictly positive.
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Figure 3.6: Prices with AR(1) dividends
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Figure 3.7: prices with AR(1) dividends
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Figure 3.8: Prices and recursive mean with AR(1) dividends

Figure 3.9: Recursive standard deviation of prices with AR(1) dividends

Figure 3.10: mean=20.0064; variance=0.919327; sd=0.958815; T = 106
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Figure 3.11: Forecast error and recursive mean with AR(1) dividends
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Figure 3.12: Recursive standard deviation of error with AR(1) dividends
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Figure 3.13: mean=0.000503457; variance=3.07008e-06; sd =0.00175216; T = 106
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The remaining diagrams are designed to provide a characterization of the volatility of

prices (Figures 3.14 { 3.16) and of the predictions (3.17 { 3.19). They show the sample

paths of �rst di�erences of prices (�p)t := pt�pt�1 and of predictions (��)t := �t��t�1.
Notice that prices 
uctuate systematically more than predictions. This is due to the fact

that the volatility of asset prices under unbiased predictions is made up of the volatility

of the predictions and of the dividends themselves. This con�rms the intuition that

under unbiased predictions (i. e. when expected conditional forecast errors are zero)

predictions of prices 
uctuate less and deviate less from the long run mean than actual

prices.

Finally, the diagrams Figures 3.20 through 3.22 show di�erent time pro�les of the return

of the asset and its long run characteristics (mean and standard deviation).

27



3.2 Unbiased predictions with AR(1) dividends 28

2000

t

0.25

0.125

0

-0.125

-0.25

1500 1625 1750 1875

(�p)t; mean(�p)t

Figure 3.14: Volatility of prices and recursive mean with AR(1) dividends
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Figure 3.15: Recursive standard deviation of �p with AR(1) dividends
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Figure 3.16: �p: mean=-2.65849e-07; variance=0.00449621; sd =0.0670537; T = 106
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Figure 3.17: Volatility of predictions and recursive mean
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Figure 3.19: �� :mean=-3.3544e-07; variance=0.00205272; sd =0.0453069; T = 106
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Figure 3.20: Returns and recursive mean with AR(1) dividends
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Figure 3.22: mean=0.017549; variance=1.38042e-05; sd =0.00371539; T = 106
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4 The dynamics with adaptive expectations forma-

tion and learning

This last section is designed to explore the dynamical properties of the asset price process

for some commonly used predictors, portraying some typical stochastic features which

one might expect, but also demonstrating the importance of the expectations feedback

when some standard and commonly used predictors are employed. The exercise is also

partly of an expository nature designed to exhibit the power of numerical and analytical

possibilities once an explicit sequential model of asset price formation is obtained. The

three cases analyzed numerically are those of (1) naive error correction, (2) unweighted

averaging, and (2) so called OLS learning.

4.1 Naive expectations formation and averaging

Recall the price law with mean{variance preferences of the CARA type from equation

(2.26) when all types make the same mean prediction �,

p =
1

R

2
4d+ ��

 X
a

�a

!�1

�x

3
5 ;(4.1)

and consider �rst a predictor employing a simple error correction principle

�t = pt�1 + �(�t�2 � pt�1)(4.2)

with 0 � � � 1. Notice that this formulation includes the two special cases of constant

predictions (� = 1, i. e. �t = �t�2 = �0) and of naive prediction (� = 0, i. e. �t = pt�1).

Combining this with the price law (4.1) yields the random dynamical system (an aÆne

stochastic delay system of order 2)

pt =
1

R

2
4Dt(�) + pt�1 + �(�t�2 � pt�1)�

 X
a

�a

!�1

�x

3
5(4.3)

�t = pt�1 + �(�t�2 � pt�1)(4.4)

with additive noise. Hence, the results on the existence of a unique globally attracting

random �xed point apply if the deterministic part of the mapping is a contraction. For

the situation with one asset only, it is straightforward to show that the deterministic

mapping of the system 4.3 and 4.3 has three distinct real roots, �1 < �1 < �2 = 0 < �3.

One �nds that �3 < 1 if and only ifp
(1� �)2 + 4�R2 < 2R� (1� �):

This requires R > 1 if 0 < � < 1. In order to keep the numerical results with adaptive

expectations formation comparable with the results under unbiased predictions, all other
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4.1 Naive expectations formation and averaging 32

parameters of the model are kept at the same levels as in the unbiased case. The following

simulations take � = :1 and R = 1:1 while maintaining the value �(�x) = (
P

a
�a)

�1
�x =

:55 and the parameters of the AR(1) dividend process.

Figures 4.1 { 4.3 display the stable sample paths of prices, their recursive means and

standard deviations and the histogram, followed by the same set of diagrams for the

return and the forecasting error. Notice that prices 
uctuate substantially around a

negative mean with a slowly but not monotonically converging recursive mean and non

monotonic recursive standard deviation. This indicates that the orbit of the �xed point

displays distinct phases of volatility clustering. The negativity of prices is caused by the

shift parameter �(�x) and by R > 1. There exists a random �xed point with 0 < R < 1

which is unstable. Notice further that individual portfolios will not be constant along

the �xed point.

One also observes that the returns are permanently negative. Prediction errors 
uctuate

substantially with a long run negative mean, indicating that the error adjustment rule

underpredicts more often than not. This seems to be one of the causes why returns are

negative, in spite of the fact that the safe rate is positive. Thus, the prediction perfor-

mance and the portfolio performance of the error correction mechanism are disastrous

taking into account that ceteris paribus each generation could have obtained a positive

return by investing in the safe asset alone.
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Figure 4.1: naive prices 1000{10000

10000

t

1.2

1.025

0.85

0.675

0.5

1000 3250 5500 7750

sd(p)t

Figure 4.2: sd naive prices 1000{10000

-15

p

0.0125

0.0094

0.0063

0.0031

0

-23 -21 -19 -17

Figure 4.3: naive prices: mean= -18.9954; variance=1.17046; sd=1.08188; T = 106
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Figure 4.6: naive returns: mean=-0.0185303; var=3.42112e-05; sd=0.00584904; T = 106
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Figure 4.9: naive errors: mean=-1.47409e-05; var=2.66943e-05; sd=0.00516665; T = 106
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4.1 Naive expectations formation and averaging 36

The second forecasting scheme assumes that all agents choose the average of past prices

with a memory of length L � 1 and some trend parameter � � 1 to be the expected

future price. Hence, the predicted mean price � is de�ned as

�t =
�

L

LX
i=1

pt�i:(4.5)

Substituting (4.5) into (4.1) yields the random dynamical system for prices (an aÆne

stochastic delay equation of order L) with additive noise

pt =
1

R

2
4Dt(�) +

�

L

LX
i=1

pt�i �

 X
a

�a

!�1

�x

3
5 :(4.6)

It is well known that stability of the random �xed �xed point requires

�1 <
�

R
< L;(4.7)

Two numerical experiments with a short lag L = 2 and a long one L = 20 are carried

out with � = 1 and R = 1:01 while keeping the other parameters the same including

the AR(1) dividend process. As in the naive case, the unique random �xed point for

0 < R < 1 is unstable.

General economic folklore developed from deterministic systems tends to support the

view that higher memory in predictions tends to reduce 
uctuations if mappings are

linear. However, it is not known whether this is a monotonic relation in general8.and

whether this dampening occurs in stochastic systems with a decisive expectations feed-

back. The e�ects of di�erent memory in the model here are not clear and are not easily

established. The numerical results go against that intuition for the price orbit: while

for L = 2, prices 
uctuate mildly with no volatility clustering (Figure 4.10) the orbit

with the longer lag shows clear clustering (cf. Figures 4.19 and 4.20). The diagrams

show no clustering for the returns which are negative for the entire orbit (cif. Figures

4.13 { 4.15 and 4.22 { 4.24). The means for the two lags are essentially the same with

a slightly smaller variance for the longer memory. Thus, on average both lags perform

equally poorly relative to the unbiased and to the safe rate. The prediction errors are

systematically smaller with smaller variance for the longer lag, while both have negative

means.

8For many nonlinear deterministic models of the cobweb type, simple (or more complex) averaging

rules may generate stable as well as complex behavior, but where longer memory does not always

stabilize (cf. for example Chiarella & Khomin (1996), Balasko & Royer (1996), Stiefenhofer (1998,

1999)).
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Figure 4.12: MA L2 prices: mean=-18.9956; variance=0.959744; sd=0.979665; T = 106
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Figure 4.13: MA L2 returns 1500{2000
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Figure 4.14: MA L2 returns 1500{2000
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Figure 4.15: MA L2 returns: mean=-0.0185119; var=2.93938e-05; sd=5.42161e-03; T =

106
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Figure 4.17: MA L2 error 1500{2000

0.025

ferr

0.025

0.0188

0.0125

0.0063

0

-0.025 -0.0125 0 0.0125

Figure 4.18: MA L2 error: mean=-0.0185118; variance=2.93936e-05; sd=0.00542158T =
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39



4.1 Naive expectations formation and averaging 40

10000

t

-18

-18.5

-19

-19.5

-20

1000 3250 5500 7750

pt; mean(p)t

Figure 4.19: MA L20 prices 1000{10000
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Figure 4.21: MA L20 prices: mean=2.07182; var=0.0121042 sd=0.110019; T = 106
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Figure 4.24: MA L20 returns: mean=-0.0184478; variance=1.78104e-05; sd=0.00422024
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Figure 4.27: MA L20 errors: mean=-7.97631e-06; var=9.96226e-06; sd=0.00315631 T =
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4.2 Recursive Least Squares Predictions

One of the most widely used expectations formation principles is associated with ordi-

nary least squares estimates (OLS), often referred to as OLS learning dynamics (see for

example the recent survey Evans & Honkapohja (1999) and references therein). The

underlying assumption of this procedure is that the observed time series is generated by

a deterministic linear model with an additive noise process and speci�c statistical prop-

erties. Then, forecasts are made using the updated OLS estimate of the unknown linear

mapping (matrix). Under relatively weak additional assumptions predictions using the

OLS estimate are unbiased and have acceptable and reliable statistical properties if the

true model is linear and without an expectations feedback.

To formulate the associated OLS estimation procedure for the model here, let

xn+1 = �xn + wn(�)(4.8)

describe the perceived linear model of the asset price process of the forecasting agent,

where � 2 R
K � R

K is a K �K matrix and wn(�) an i. i. d. process of perturbations.

Let xj 2 R
K , j = 1; : : : ; n denote the list of observed prices, then the n-th OLS estimate

�̂n for � is de�ned as

�̂n := argmin
�

n�1X
j=0

jjxj+1 � �xjjj(4.9)

which yields the well known solution

�̂n =

 
n�1X
j=0

xjx
T

j

!+
n�1X
j=0

xjx
T

j+1;(4.10)

where the matrix Xn :=
�P

n�1

j=0
xjx

T

j

�+
is the so called Moore{Penrose generalized

inverse. Following Chen & Guo (1991) one obtains the recursive least squares procedure

RLS for the OLS estimate as

�̂n+1 = �̂n + �nXn

�
xn(xn+1 � �̂nxn)

T

�
(4.11)

�n = (1 + xT
n
Xnxn)

�1(4.12)

Xn+1 = Xn + �nXn(xnx
T

n
)Xn(4.13)

with X0 = �Id, 0 < � < (1=e), and �̂0 arbitrary. Then, at any stage n the one step

ahead forecast

xe
n+1 = �̂nxn(4.14)

is unbiased since �̂n is a best linear unbiased estimator if the system is linear. As a

consequence, the two step ahead unbiased forecast would be �̂2
n
xn.
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Applying the RLS procedure to the asset market model here, (which has an expectational

lead!), the associated predictor for the mean price uses equations (4.11) - (4.13) to predict

�t+1 in period t on the basis of observed prices pt�1 and estimated �̂t�1, i. e.

�t+1 = �̂2
t�1pt�1(4.15)

Assume again, as in the examples before, that all agents use the same RLS forecast

(which may be one given by some oÆcial forecasting institute!). Then, combining the

RLS predictor with the price law (3.9) with identical mean predictions, one obtains the

time{one map of a random dynamical system

F : 
� R
K � (RK � R

K )2 �! R
K � (RK � R

K )2

de�ned by

pt =
1

R

h
Dt(�)� �(�̂2

t�1pt�1; v)
i

(4.16)

=
1

R

h
Dt(�) + �̂2

t�1pt�1 � '�1(�x; v)
i

�̂t = �̂t�1 + �t�1Xt�1

�
pt�1(pt � �̂t�1pt�1)

T

�
(4.17)

Xt = Xt�1 + �t�1Xt�1(pt�1p
T

t�1)Xt�1(4.18)

where

�t�1 =
1

(1 + pT
t�1Xt�1pt�1)

:(4.19)

These equations show quite clearly why, in general, the RLS forecasts cannot generate

the statistical properties expected to prevail for the actual sample path. At �rst sight,

equation (4.16) looks like a �rst order linear di�erence equation in prices with an addi-

tive noise term. However, the estimated coeÆcient �̂2
t�1 is a highly non{linear function

of prices which feeds back into the price law (3.9). Thus, this non{linear expectations

feedback induces a so called ARMAX process, violating the underlying structural as-

sumption of an ARMA process needed for the success of the OLS estimation procedure.

Therefore, the direct application of the OLS learning approach to the asset price pro-

cess in the ARMAX setting here in general cannot be expected to lead to successful

predictions.

Many authors have used the OLS forecasting rule in non{linear deterministic cobweb en-

vironments (Marcet & Sargent (1989, 1989a), Bullard (1994), Sch�onhofer (1999, 1999a),

and others). They have found numerous scenarios where the OLS procedure fails to

predict eÆciently. This is hardly surprising. Structurally one would expect that the

OLS forecasting technique fails in situations with a decisive (non{linear) feedback since

it is designed for systems without it. Moreover, the above contributions indicate that

OLS learning often destabilizes the steady state and may generate almost any kind of

deterministic dynamic behavior. Therefore, it would not be too surprising, if one �nds in

the stochastic environment here, that sample paths do not con�rm the statistical prop-

erties typically claimed for RLS in an ARMA setting and/or that the system becomes

unstable.
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Figure 4.30: RLS prices: mean=-18.9866; variance=1.42164; sd=1.19233; T = 106
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Figure 4.31: RLS returns 1000{10000
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Figure 4.33: RLS returns: mean=-0.018559; variance=3.91099e-05; sd=0.00625379; T =
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Figure 4.34: RLS errors 1000{10000
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Figure 4.36: RLS errors: mean=-1.12051e-05; variance=3.16049e-05; sd= 0.00562182;

T = 106
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In spite of this criticism, it is a worth while exercise to investigate the e�ects of the RLS

predictors for the asset pricing model and to compare its performance with the unbiased

predictor as well as with the other adaptive schemes. Since the system (4.16) { (4.18)

is non linear, the stability results from aÆne random dynamical systems are no longer

applicable. A general proof of existence and stability of a random �xed point is out of

reach at this point. However, the numerical analysis for R > 1 yields stable behavior

for the one asset model analyzed so far. In order to keep the results comparable the

values R = 1:01 and �(�x) = :55 were used along with the same AR(1) dividend process

of equation (3.32).

Figures 4.28 { 4.36 show the sets of diagrams characterizing prices, returns, and forecast

errors. All three sample paths show some small volatility clustering (non constant

recursive standard deviations), prices more so than returns and errors. Mean prices and

returns are negative as with all other adaptive predictors. The prediction performance

has a low mean error but a high variance while the portfolio performance has the highest

long run standard deviation among the adaptive predictors.

Tables (4.39 and 4.37) and Figure 4.38 summarize the results of the numerical analysis

and provide a comparison of the performance of all predictors. They show very clearly

that the portfolio performance of the adaptive procedures is poor relative to the unbiased

predictor. In all periods consumers receive a negative return on their portfolio when

ceteris paribus a safe asset with a positive return is available. The long memory moving

average predictor (L = 20) seems to be the worst performer with the highest (absolute)

mean-to-sd ratio while the RLS predictor has the lowest ratio, but with the highest long

run variance of the portfolio. Considering the forecasting errors, RLS has a low mean

error, but it performs poorly with the highest variance and the smallest mean-to-sd ratio

among the adaptive predictors (see Figure 4.38.

Portfolio Performance: Returns

mean variance sd mean/sd

unbiased AR1 +0.017549 1.38042�10�5 0.00371539 +4.723326488

naive AR1 -0.0185303 3.42112�10�5 0.00584904 -3.168092542

MA L 2 -0.0185119 2.93938�10�5 0.00542161 -3.414465445

MA L 20 -0.0184478 1.78104�10�5 0.00422024 -4.371267985

RLS -0.018559 3.91099�10�5 0.00625379 -2.967640423

Figure 4.37: Statistics of returns
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Figure 4.38: Mean{Standard Deviation of returns

Prediction Performance: Forecasting errors

mean variance sd mean/sd

unbiased AR1 +5.03457�10�3 3.07008�10�6 0.00175216 +0.28733506

naive AR1 -1.47409�10�5 2.66943�10�5 0.00516665 -2.85308662�10�3

MA L2 -1.85118�10�2 2.93936�10�5 0.00542158 -3.414465894

MA L20 -7.97631�10�6 9.96226�10�6 0.00315631 -2.5270996�10�3

RLS -1.12051�10�5 3.16049�10�5 0.00562182 -1.9931445�10�3

Figure 4.39: Statistics of errors
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5 Conclusions

The extension of the model developed in B�ohm, Deutscher & Wenzelburger (2000)

to the case of an arbitrary �nite number of assets has led to the analysis of a fully

explicit and sequential model whose temporary structure coincides with that of the

traditional capital asset pricing model. This paper presented a full dynamic analysis

of the endogenous formation of random asset prices providing existence and stability

results for adaptive as well as unbiased expectations formation. These results show

quite strikingly that the long run random behavior of asset prices results from the

dynamic interaction of agents' preferences and behavior towards risk, their expectation

formation procedures, the market mechanism, and of exogenous random forces. All

four factors are essential determinants of the �nal process. More precisely, the random

movement of prices and returns derives from the joint interaction of the exogenous

forces and an induced randomness from the expectation formation procedure used by

agents. This implies, for example, that prices and returns re
ect the stochastic nature

of the exogenous dividend process fully only if predictions of agents about prices are

constant over time. If, however, agents adjust their predictions based on new information

every period, the stochastic features of prices and returns above that of the dividends

is essentially generated by the agents themselves. As a consequence, the notion of a

fundamental law of asset prices should be viewed always in connection with a particular

forecasting principle employed by agents in the market.

It is one of the remarkable results of the above analysis that sequential models of this

type generate a unique stable long run (stationary) price process supported by an un-

biased prediction mechanism for large classes of models under general structural eco-

nomic assumptions. Along any generated orbit, one has full rational expectations, thus

the sample paths are generalizations of Markov equilibria, a concept used extensively

in economics when exogenous noise processes are assumed to be i. i. d. The results on

uniqueness and stability were obtained using some new mathematical results from the

theory of random dynamical systems (cf. Arnold 1998), which proves their adequacy

and usefulness for economic applications. Finally, it is evident from the results obtained

in the numerical simulations that the eÆciency and predictive power of additional fore-

casting rules can be analyzed within such models, in order to examine their role and

usefulness for econometric forecasting.
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Mathematical Appendix

Proof of Lemma 2.3

It suÆces to show that �
'(�)� '(�0)

�
T

(� � �0) > 0

holds for all � 6= �0. Let

Ua(M;V ) =M �
�

2
w(V )

be given with w : R ! R strictly increasing, strictly convex, and C2. For any symmetric

positive de�nite matrix v, the mapping W : RK ! R de�ned by

W (x) :=
�

2
w(xT v x)

1. is strictly convex,

2. has a gradient DW (x) = �
�
w0(xT v x)

�
v x,

3. which satis�es (x� y)T (DW (x)�DW (y)) > 0 for all x; y 2 R
K with x 6= y.

Individual asset demand 'a is globally invertible since Ua is quasi linear in M and w is

strictly convex. Therefore, � 6= �0 implies: 'a(�a + �) = x 6= y = 'a(�a + �0). Then,

using the �rst order conditions,

�a + � = �
�
w0(xT va x)

�
va x = DW (x)

�a + �0 = �
�
w0(yT va y)

�
va y = DW (y)

one has

�
'a(�a + �)� 'a(�a + �0)

�T
(� � �0) =

(x� y)T
�
� [w0(x va x)] va x)� � [w0(y va y)] va y

�
=

(x� y)T
�
DW (x)�DW (y)

�
> 0

Therefore, '(�) :=
P

a2A
'a(�a + �) satis�es

�
'(�)� '(�0)

�T
(� � �0) > 0

holds for all � 6= �0.
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