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Abstract

This paper analyses the dynamics of a model of a share market consisting of two groups

of traders: fundamentalists, who form rational expectations on the fundamental value of

the asset, and chartists, who base their trading decisions on an analysis of past price trends.

The model is reduced to a two-dimensional map whose dynamic behaviour is analysed in

detail, particularly with respect to global dynamical behaviour. The dynamics are a®ected

by parameters measuring the strength of fundamentalist demand and the speed with which

chartists adjust their estimate of the trend to past price changes. The parameter space is

characterized according to the local stability/instability of the equilibrium point as well

as the noninvertibility of the map. The method of critical curves of noninvertible maps

is used to understand and describe the range of global bifurcations that can occur. It

is also shown how the knowledge of deterministic dynamics uncovered here can aid in

understanding stochastic versions of the model.
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1 Introduction

In recent years several models of ¯nancial markets based on interacting het-
erogeneous agents have been developed, see for example [3], [18], [4] and
[7]. These models, which generally allow the size of the di®erent groups of
agents to vary according to the evolution of the ¯nancial market, are of ne-
cessity not very mathematically tractable. In the present paper, in order to
complement the above mentioned studies, we shall present a model contain-
ing the essential elements of the heterogeneous interacting agents paradigm
whilst still remaining mathematically tractable. The model that we shall
develop is a discrete time model of asset price dynamics, which includes as
a particular case the one presented in [5] and considered in more detail in
[12]. We shall assume that the share market consists of two types of traders:
fundamentalists, who are forming rational expectations on the fundamental
value of the asset, and chartists, a group which bases its trading decisions
on an analysis of past price trends. The chartists' demand is assumed to be
an S-shaped function of the di®erence between the chartists' estimate of the
price trend (obtained through an adaptive expectations scheme on past price
changes) and the return on some alternative asset. The model is reduced to
a two-dimensional nonlinear map. To investigate the dynamic behaviour of
the model we shall ¯rst determine, in the space of the parameters, the local
stability region of the unique equilibrium point of the map, together with
the regions of invertibility or non invertibility. It will appear that also in
the stability region, besides the local properties, global ones are important
in order to detect other dynamic phenomena such as coexistence of attrac-
tors, chaotic transients before the convergence to the stable equilibrium, or
divergence of points very close to the stable equilibrium.
We shall indicate the bifurcations that the ¯xed point undergoes when

the key parameters, such as the strength of fundamentalists' demand and the
speed with which chartists adjust their estimate of the trend to past price
changes, are increased. We shall also analyze the regions in the parameter
space in which the equilibrium point is unstable and the map is noninvertible.
We shall focus on particular regimes characterized by chaotic behaviour,
showing how the global bifurcation known as snap-back repellor (leading to
chaotic dynamics) can be detected by use of the critical curves of the map
(as proved in [13]). Moreover, by making use of the properties of the critical
curves of noninvertible maps (described in Chapter 4 of [20], and already
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used in several economic models, see e.g. [21]), we shall show how upper and
lower bounds for the asymptotic behaviour of the state variables (price and
chartists' expectations) can be determined, although we are in the presence
of chaotic dynamics.
The paper is organized as follows. Section 2 derives our model of fun-

damentalists and chartists. Section 3 points out some general properties of
the two-dimensional map driving the dynamics. Sections 4 contains numer-
ical simulations and in Section 5 we show how the properties of the critical
curves can help to understand the nature of the attractors, their homoclinic
bifurcations and other global bifurcations. Finally, an extension of the model
beyond its deterministic structure is suggested in Section 6, showing how the
knowledge of deterministic dynamics can help in the understanding of sim-
ple stochastic models. Section 7 concludes and makes some suggestions for
future research.

2 The model

We adopt the basic fundamentalist/chartist model of [5], whose antecedents
are [2] and [22]. Let us denote by Pt the logarithm of the asset price at time
t. Excess demand for the asset at time t (Dt) is composed of fundamentalist
demand (D0

t ) and chartist demand (dt), i.e.:

Dt = D0
t + dt .

The fundamentalists are assumed to have a reasonable knowledge of the
fundamental value of the risky asset. This knowledge has been obtained
at some cost, such as large setup costs (e.g. a major ¯nancial institution),
and the employment of highly paid professionals, such as market analysts,
economists, computer analysts, etc.. Fundamentalist demand is given by:

D0
t = a(Wt ¡ Pt) , (1)

where Wt is the logarithm of the fundamental value at time t and a (a > 0) is
the strength of fundamentalist demand: if the share price Pt is below the ra-
tionally expected fundamental value Wt, then fundamentalists try to buy the
share, because they think that the share is undervalued and therefore its price
will increase, and vice versa; if Pt is above Wt, they try to sell, thinking that
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the share is overvalued. The demand function of the fundamentalists could
be derived in a one-period mean-variance optimizing framework in which
fundamentalists have an exponential utility of wealth function. In such a
framework demand for the risky asset is proportional to the fundamentalists'
expectation of excess return on the risky asset divided by their risk-aversion
coe±cient and their estimate of the variance of the price change. The fun-
damentalists expect that (on average) the excess return will be proportional
to the di®erence between Wt and Pt, and they also assume that the variance
of price changes is constant. Thus the coe±cient a is inversely proportional
to the product of the risk-aversion coe±cient and variance estimate of the
fundamentalists. The technical details of the derivation of (1) within a utility
maximising framework are given in the Appendix.
Chartists are assumed to be unable to bear the cost structure necessary

to acquire the information about the fundamental value available to fun-
damentalists. Rather they base their investment decision on the costless
information contained in recent price changes. Chartist demand is assumed
to be a nonlinear increasing function of the anticipated return di®erential
(Ãt;t+1 ¡ gt), where Ãt;t+1 is the chartists' expectation at time t of the price
change (i.e. return) over the next trading period, i.e.:

Ãt;t+1 = Et [Pt+1 ¡ Pt] = Et [Pt+1]¡ Pt

and gt is the return on the alternative asset (e.g. bonds) over the same
period. In particular we write:

dt = h(Ãt;t+1 ¡ gt) , (2)

where the function h(:) has the properties: (i) h0(x) > 0 (8x), (ii) h(0) = 0,
(iii) there exists an x¤ such that h00(x) < 0 (> 0) for all x > x¤ (< x¤) and,
(iv) limx!¨1 h0(x) = 0.
The economic scenario behind the demand function h is also one in which

chartists are one-period mean-variance maximisers with exponential utility
of wealth functions. Their demand function will have the same general form
as that of the fundamentalists. They di®er from the fundamentalists in the
way in which they calculate the expected excess return on the risky asset.
Having less knowledge of the market they estimate return on the risky asset
by extrapolating past returns according to (3) below. Furthermore their
estimate of the variance of returns increases if they observe large excess
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returns in the recent past, which explains the changing slope of the function
h. Technical details of the derivation of chartist demand are also given in
the Appendix.
A possible choice for the function h(:) is:

h(x) = ® arctanx ,

and this is the one used in our examples and simulations. However, it is
important to remark that the qualitative analysis performed in the following
sections (as also the qualitative dynamics) are not a®ected by a change of
function, because these mainly depend on the properties of h(:) given above.
For example, a di®erent demand function satisfying the same properties is
considered in [12].
We assume that chartists form their expectation of the price change ac-

cording to the simple adaptive scheme:

Ãt;t+1 = Ãt¡1;t + c [Pt ¡ Pt¡1 ¡ Ãt¡1;t] , (3)

where c (0 < c · 1) is the speed with which they adjust their estimate of the
trend to the most recent price changes. Alternatively the quantity ¿ = 1=c
may be viewed as the time lag in chartists' information1.
Thus total excess demand for the asset at time t (assuming gt = g and

Wt = W are both constant) is given by:

Dt = a(W ¡ Pt) + h(Ãt;t+1 ¡ g) . (4)

Let us now turn to the adjustment process of the share price in the market.
We assume the existence of a market maker whose function is to set excess
demand to zero at the end of each trading day by performing transactions
at prices which di®er from the market clearing values2. If the excess demand
in period t is positive (negative), the market maker sells (buys) the quantity
of the asset needed to clear the market, and raises (reduces) the share price
for the next period t+1. Precisely, what goes on in each trading day can be
described as follows.

1The restriction c · 1, i.e. ¿ ¸ 1, has the simple economic interpretation that chartists
cannot revise their estimate of Ãt;t+1 more frequently than they receive information about
price changes. Here this frequency is one time unit.

2The role of the market maker and the impact of its behaviour on price dynamics are
discussed, for example, in [14].
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² At the beginning of day t the market maker announces the price Pt for
that day.

² The market participants then form their demands, which generally will
result in either positive or negative excess demand. More precisely,
chartists compute Ãt;t+1 according to (3) and both chartists and fun-
damentalists calculate their demands, resulting in excess demand Dt

given by (4).

² The market maker, observing the excess demand, takes a long or short
position Mt (by adjusting his/her inventory of assets) in order to clear
the market, i.e. such that:

Dt +Mt = 0 .

² The market maker then announces, at the beginning of the next trading
period, the price Pt+1. The new price is calculated as the previous
price plus some fraction of the excess demand of the previous period
according to:

Pt+1 = Pt + ¯pDt .

The process then repeats itself3.

Thus at the beginning of day (t+ 1) the following dynamic adjustments
occur, made by the market maker and chartists, respectively:(

Pt+1 = Pt + ¯p [a(W ¡ Pt) + h(Ãt;t+1 ¡ g)]
Ãt+1;t+2 = (1¡ c)Ãt;t+1 + c¯p [a(W ¡ Pt) + h(Ãt;t+1 ¡ g)]

(5)

It is worth noting that the model developed in the present section in-
cludes, as a particular case, the one obtained in [5], starting from di®erent
assumptions about the chartists' behaviour. Moreover the same dynami-
cal system can be obtained following a di®erent approach, as shown in [6].
These facts enhance the value of the model and increase the importance of
its analysis.

3In order to remain mathematically tractable our model does not take into account the
possible large positive or negative inventory positions of the market maker. These could
be taken into account in the way the market maker adjusts the new price. We leave such
analysis to future research.
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In the present paper we are interested in showing how, in the regions
of the parameters space where the equilibrium point is unstable, a di®erent
attractor exists having \good" properties from an applied point of view. That
is, even if the ¯xed point of the system is unstable, we can predict the \fate"
in a macroscopic way giving, for example, the width of the oscillations that
the state variables such as Pt can undergo. To do this we shall make use of
the properties of the critical lines, whose equation will be obtained in the
next section, together with the stability region for the ¯xed point in the space
of parameters.

3 Some general properties

3.1 The map

As described in the previous section, the time evolution of price and chartists'
expectations is obtained by the iteration of a two-dimensional nonlinear map
Q : (Ã; P ) ! (Ã0; P 0) given by:

Q :

(
Ã0 = (1¡ c)Ã + c¯p [a(W ¡ P ) + h(Ã ¡ g)]
P 0 = P + ¯p [a(W ¡ P ) + h(Ã ¡ g)]

, (6)

where the symbol 0 denotes the unit time advancement operator. It can be
easily checked that the map Q has the point (Ã; P ) = (0; W +1=a h(¡g)) as
unique ¯xed point. This implies that in equilibrium fundamentalist demand
is ¡h(¡g) (> 0) and chartist demand is h(¡g) (< 0) i.e. in equilibrium
fundamentalists are net buyers (since the price is below their estimated long
run mean) and chartists are net sellers. Of course this situation can not be
considered a true equilibrium situation, it is a result of the fact that our
dynamic model is in fact a partial one in that it leaves in the background
the market for the alternative asset. A general analysis needs to take into
account the dynamics of the alternative asset. Then (Ã¡g) would be replaced
by a single quantity, ' say, which would be the chartists expectation of the
di®erence in price change of both asset prices. We would then be dealing
with a three-dimensional dynamical system, at whose steady state it turns
out that ' = 0 and P = W . Our analysis should thus be seen as that of a two-
dimensional projection of this (more di±cult to analyse) three-dimensional
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system. For more details of the full three-dimensional system and some
preliminary analysis of its dynamics we refer the reader to [8].
By introducing the price deviation p = P ¡ P we obtain the new map

T : (Ã; p) ! (Ã0; p0) given by:

T :

(
Ã0 = (1¡ c)Ã ¡ c¯p [ap ¡ k(Ã)]
p0 = p ¡ ¯p [ap ¡ k(Ã)]

, (7)

where

k(Ã) = h(Ã ¡ g)¡ h(¡g),

having the origin O = (0; 0) as unique ¯xed point.

3.2 Local stability conditions

The local stability analysis of the ¯xed point O is performed via the evalua-
tion of the two eigenvalues of the Jacobian matrix of the map4 T :

DT (Ã; p) =

"
1¡ c+ c¯p

®
1+(Ã¡g)2 ¡ac¯p

¯p
®

1+(Ã¡g)2 1¡ a¯p

#
,

at (0; 0). Let us denote by Tr and Det the trace and the determinant of
DT (0; 0) respectively, and by P(z) = z2 ¡ Tr z +Det the associated char-
acteristic polynomial. As it is well known a su±cient condition for the local
stability consists in the following system of inequalities:8><>:

P(1) = 1¡ Tr +Det > 0
P(¡1) = 1 + Tr +Det > 0
P(0) = Det < 1

, (8)

giving necessary and su±cient condition for the two roots of the characteristic
equation P(z) = 0 to be inside the unit circle of the complex plane (see, for
instance, [15], p. 159). Elementary computations show that for our map the
conditions (8) can be rewritten as:(

a¯p(2¡ c) < 2(2¡ c) + 2c¯pk
0(0)

a¯p(1¡ c) > c [¯pk0(0)¡ 1] . (9)

4Note that for the assumed functional form of h, k0(Ã) = ®=[1 + (Ã ¡ g)2].
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Fig. 1 represents the region of local stability of the origin in the parameter
plane (c; a), 0 < c · 1, a > 0. From (9) it follows that, starting from
parameters (c; a) inside the stability region, a loss of stability may occur
either via a °ip bifurcation, when crossing the curve

a =
2

¯p
+
2ck0(0)
2¡ c

, (Flip-curve) (10)

or via a Neimark-Hopf bifurcation, when crossing the curve

a =
c [¯pk

0(0)¡ 1]
¯p(1¡ c)

. (Hopf-curve) (11)

By assuming ¯p > 0 as ¯xed, we notice that the shape of the stability
region in the parameter plane (c; a), indicated in dark grey in Fig. 1, is
greatly a®ected by the strength of chartists' demand at the steady state
(k0(0))5. In particular, when ¯pk0(0) · 1 (Fig. 1a) the region appears wider
than in the opposite case (Fig. 1b). Fig. 1a shows that, when strength
of chartist demand is relatively weak (k0(0) < 1=¯p), at a given level of
chartists reaction speed (c) the equilibrium is stable for su±ciently low values
of the fundamentalists reaction parameter a, but fundamentalists can cause
instability by reacting too strongly to the deviation from the fundamental
value. Fig. 1b shows that when strength of chartist demand is relatively
strong (k0(0) > 1=¯p), the ability of fundamentalists' demand to stabilise the
system is restricted to a fairly narrow range of the parameter a.

INSERT FIG. 1 APPROXIMATELY HERE

3.3 Invertibility of the map

Let us now consider the invertibility conditions of the map. For partic-
ular values of the parameters, the map T is a noninvertible map of the
plane.This means that, while starting from some initial values for asset price
and chartists' expectations (say (Ã0;1; p0)) the iteration of (7) uniquely de¯nes
the trajectory (Ãt;t+1; pt ) = T t(Ã0;1; p0) (t = 1; 2; :::), the backward iteration

5We recall that for the particular chartist demand function that we have chosen, we
have: k0(0) = ®=(1 + g2).
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of (7) is not uniquely de¯ned. In fact, a point (Ã; p) of the plane may have
several rank-1 preimages6.
Let us assume:

h(:) = ® arctan(:) (® > 0) ,

so that
k(Ã) = ® arctan(Ã ¡ g)¡ ® arctan(¡g) .

It can be shown by elementary geometrical arguments that, by de¯ning:

m = (a¯p ¡ 1)(1¡ c)

c
, (12)

the map has a unique inverse for m · 0 or m ¸ ®¯p, while for 0 < m < ®¯p

the map is noninvertible. In particular, by de¯ning:

Ã1 = g ¡
s

®¯p

m
¡ 1, q1 = ¯pk(Ã1)¡ mÃ1 (13)

Ã2 = g +

s
®¯p

m
¡ 1, q2 = ¯pk(Ã2)¡ mÃ2 (14)

the points (Ã; p) of the phase plane for which the function q = q(Ã; p) de¯ned
by:

q(Ã; p) = a¯pp ¡ a¯p ¡ 1
c

Ã , (15)

satis¯es q(Ã; p) < q1 or q(Ã; p) > q2 have a unique rank-1 preimage, while
the points for which: q1 < q(Ã; p) < q2 have three distinct rank-1 preimages.
Thus, following the notation used in [20], for 0 < m < ®¯p this map is of
the type Z1 ¡ Z3 ¡ Z1, which means that the phase plane is subdivided into
di®erent regions Zj (j = 1; 3), each point of which has j distinct rank-1
preimages. Such regions are bounded by the so-called critical curves of rank-
1, de¯ned as the locus of points having at least two merging rank-1 preimages
(see [15]). For our map this set is de¯ned as follows:

LC =
n
(Ã; p) 2 R2 : q(Ã; p) = q1 [ q(Ã; p) = q2

o
(16)

6Given a n-dimensional map F : Rn ! Rn and a positive integer r we say that the
point y is a rank-r preimage of the point x if F r(y) = x, i.e. if y is mapped into x in r
iterations.
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where q1 and q2 are given in (13) and (14) respectively, and it is therefore
made up of two straight lines, say LC = L [ L0, where L and L0 have the
equations:

L : p =
a¯p ¡ 1

a¯pc
Ã +

q1

a¯p
; (17)

L0 : p =
a¯p ¡ 1

a¯pc
Ã +

q2

a¯p
. (18)

Each of the critical points (Ã; p) 2 LC has two merging rank-1 preimages,
and the locus of such preimages, denoted by LC¡1 (this de¯nes the critical
curve of rank-0), turns out to be made up of two straight lines, say LC¡1 =
L¡1 [ L0

¡1, whose equations are:

L¡1 : Ã = g ¡
s

®¯p

m
¡ 1 ; (19)

L0
¡1 : Ã = g +

s
®¯p

m
¡ 1 , (20)

The critical curve LC¡1 corresponds here to the locus of points (Ã; p) of
the phase plane in which the determinant of the Jacobian matrix DT (Ã; p)
vanishes7.
Also the images of this set are called critical curves of higher rank. The

curves:
LCk = T k(LC) = T k+1(LC¡1) for k = 0; 1; 2; :::

are called critical curves of rank¡(k + 1) (LC0 = LC): In our example we
always have two branches:

LCk = Lk [ L0
k = T k+1(L¡1) [ T k+1(L0

¡1).

In order to compare the bifurcation curves in the parameter plane (c; a)
with the ranges of invertibility or non invertibility of the map T , it is useful
to draw in the same (c; a) plane the region in which the noninvertibility
condition 0 < m < ®¯p is ful¯lled.

7Generally speaking, for a di®erentiable map the critical curve LC¡1 is a subset of the
locus of points of the phase plane for which the determinant of the Jacobian matrix of the
map vanishes.
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Taking into account eq. (12), the condition m > 0 can be rewritten as:(
0 < c < 1
a > 1=¯p

,

while the condition m < ®¯p, becomes:(
0 < c < 1
a < ®c=(1¡ c) + 1=¯p

.

The noninvertibility region of the map T is indicated in light grey in Fig.
1. It is worth noting that the higher is the value of ®, i.e. the strength of
chartist demand at the steady state k0(0), the wider is the noninvertibility
region. Moreover we can see that in the region de¯ned by(

0 < c < 1
a < 1=¯p

,

the map is invertible no matter what the value of k0(0) is.
In the next section we shall investigate the dynamics of the map in di®er-

ent regions of the parameters space, mainly in order to highlight the impact,
on the dynamics, of the parameter c, measuring the speed of adjustment of
chartists' expectations. To do this we will focus, in particular, on the case
¯pk0(0) > 1 (i.e. strength of chartist demand is relatively strong) in which,
as we can see from Fig. 1b, the equilibrium \soon" becomes unstable as the
parameter c is increased.

4 Flip and Hopf bifurcations and related global

bifurcations in attracting sets

The purpose of this section is to describe some of the possible types of dy-
namical behaviour of the model (5) when the parameters are allowed to vary
both within the stability region for the equilibrium point O and out beyond
that region, crossing either the Flip-curve or the Hopf-curve. As already re-
marked in Section 3, assuming the parameter c in the interval (0; 1), we have
to consider two cases, qualitatively represented in Fig. 1. That is, if the pa-
rameters satisfy ¯pk0(0) < 1(i.e. chartist demand is relatively weak), then we
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have a wide stability region (Fig. 1a) which includes any value c 2 (0; 1) for
su±ciently low values of the parameter a, and stability is lost only via a Flip
bifurcation as the strength of fundamentalist demand a is increased. While
when ¯pk0(0) > 1 (i.e. chartist demand is relatively strong) the stability
region is reduced (Fig. 1b) and at low values of a the ¯xed point undergoes
a Neimark-Hopf bifurcation, while the Flip-curve still exists for high values
of a. It has been observed numerically that the crossing of the Flip-curve
yields the same qualitative dynamics, independently of ¯pk0(0) < 1 (Fig. 1a)
or ¯pk

0(0) > 1(Fig. 1b). Hence in this section we shall consider, without loss
of generality, only examples of the second kind.

4.1 Stability region

Let us assume ¯p = 2:6, g = 1 and ® = 2:5 so that ¯pk
0(0) = 3:25 > 1, and

consider a point belonging to the stability region. Fig. 2a shows a trajectory
in the phase-plane which spirals around the attracting focus O, while Fig.
2b shows the values of the price deviation p as a function of time. In this
example the basin of attraction of O, say B(O), which is the locus of points
whose trajectories converge to the stable equilibrium, is a fairly wide region
of the phase-plane. However, it is worth noting that for di®erent values of
the parameters c and a, always inside the stability region represented in Fig.
1b, we shall observe via the examples in this section several other dynamic
phenomena. That is, besides the attracting ¯xed point O, in the region of
the phase-plane of interest for applications we may have also

(i) a coexisting attractor (regular or chaotic),

(ii) points having divergent trajectories,

(iii) a chaotic repellor.

In case (i) we shall denote by A the coexisting attractor, and by B(A) its
basin of attraction which, as we shall see, may also be wider than B(O). Case
(ii) is quite common in nonlinear maps, but we are interested to see if such
points are close to the attractors or far away from them. Such points, which
are not meaningful in a practical sense, may be viewed as points converg-
ing to an attractor at in¯nity, on the \Poincar¶e equator", i.e. an improper
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point of the phase-plane. We shall denote by B(1) the set of points hav-
ing divergent trajectories (basin of attraction of a point at in¯nity). The
complementary set in the phase-plane is the set of points having bounded
trajectories. As noticed in case (i) above, this set may be shared between
two or more coexisting attracting sets.
An example is given in Fig. 2c where besides the stable focus O there

exists a coexisting attracting 4-cycleA4. The white region denotes the closure
of the basin B(O) while the closure of the basin B(A4) is in light grey. A
third attractor is at in¯nity, and the basin B(1) is the dark grey region. It
is clear that in similar cases, although the unique ¯xed point of the system is
locally stable, we must be careful in saying that the system approaches the
attracting equilibrium, because the time evolution strongly depends on the
initial state.
It is important to evaluate also the \robustness" of the stability property

with respect to external events, or shocks, which abruptly modify the state
of the system, moving the point away from its \true" state. For example we
can certainly say that the stability of the ¯xed point O in the case shown in
Fig. 2a is robust with respect to external perturbations. In fact, given any
initial condition in that region, its trajectory converges towards the stable
focus and even if, at a given time, a shock moves the point in the phase-plane,
we simply get another initial condition in the same basin and thus the e®ect
of the shock is simply a slight change in the oscillatory motion converging to
the ¯xed point.
This is no longer true in the case shown in Fig. 2c. In fact, even if we start

from an initial condition in B(O), a shock may bring the phase-point inside a
di®erent basin of attraction, thus changing the asymptotic behaviour of the
trajectory. We may ultimately converge to the attracting cycle of period 4
or even diverge. In Fig. 2d the trajectories of two nearby initial conditions
are shown: one gives damped oscillations towards O, while the other gives
wide oscillations converging to the 4-cycle.
It is important to note that in the case of a noninvertible map, as it

is in this regime, the basins of attraction of coexisting attracting sets are
generally not connected (a property which cannot occur in invertible maps).
It is evident that the basin (in grey) of the 4-cycle in Fig. 2c is non connected.
The reason why the basins have such a structure is that the total basin is
obtained by taking all the preimages of any rank of the \immediate basin".
Precisely, the immediate basin of the 4-cycle is obtained by considering the
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4 ¯xed points of the map T 4, for each of them we take the widest simply
connected area contained in the basin, including the periodic points. The
immediate basin B0 of the 4-cycle of T is the union of 4 disjoint, cyclical
areas8. Then the whole basin is B = [n¸0T

¡n(B0), and we get the light grey
area shown in Fig. 2c.
But the complementary set of B(1) may also display a di®erent structure.

Instead of coexisting attractors (which may also be the stable ¯xed point O
and a chaotic attractor), we may have coexistence of the stable ¯xed point
with a strange repellor, as already remarked in (iii). The presence of such an
\invisible chaos" can be deduced from the transient part of the trajectory. An
example is shown in Fig. 2e. There the grey region denotes B(1) while the
white region gives the closure of the basin B(O). This means that any point in
the white region, except for a set ¤ of zero Lebesgue measure, has a trajectory
converging to O. However, we may observe a very strange behaviour in the
transient part of the state values. Compare the points of the trajectory in the
cases shown in Fig. 2a and Fig. 2e and the corresponding representations of
the state variable p as a function of time (Figs. 2b and 2f, respectively). It is
clear that if we restrict our interest to a \short period", as it is often the case
in applications, then it is di±cult to \classify" the robustness of the stability
of O. In the case of Fig. 2e the dynamic behaviour in the short time is the
same as the one observed when O is unstable and a chaotic attractor exists
around it (as we shall see again later). Thus, looking at the transient part
we cannot predict if the system is stable or unstable, i.e. whether the state
will ultimately settle in the stable ¯xed point or if it will wander chaotically,
and unpredictably, around it.

INSERT FIG. 2 APPROXIMATELY HERE

We may ask how such a chaotic repellor, ¤, was created. It is invariant
for the map T , i.e. T (¤) = ¤ , and the restriction of T to ¤ is a map
with chaotic behaviour. Even if ¤ is a set of zero Lebesgue measure, it is
homeomorphic to a Cantor set. As it is not embedded into an absorbing area,
it behaves like a \chaotic saddle" or \invisible chaos". Its formation is often
due to a sequence of °ip bifurcations of saddles. It is well known nowadays
that one of the most common routes to chaos is associated with the so-called
\°ip sequence" or \period doubling sequence". In the two-dimensional case

8That is the four grey areas in Fig. 2c containing the points x1, x2, x3 and x4.
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such a mechanism may have two di®erent e®ects depending on the nature
of the starting cycle, which may be a stable node or a saddle. For example,
starting from a stable node one of the two eigenvalues may cross through the
value ¡1, leaving the cycle as saddle and giving rise to an attracting node
of double period. This process may be repeated inde¯nitely, often leading
to a chaotic attractor. In the same way, starting from a saddle cycle, the
second eigenvalue may cross the value ¡1 and the resulting °ip bifurcation
changes the saddle into a repelling node giving rise to a saddle cycle of double
period, and so on. Such a sequence of \invisible" °ip bifurcations, applied to
unstable cycles and creating unstable cycles, is often the mechanism which
gives rise to a chaotic repellor ¤. The set ¤ includes all the in¯nitely many
saddles and unstable nodes created along the \route" together with all their
stable sets. We remark that in the case of non invertible maps (as it is the
case of our model for values of the parameters in the light grey regions in
Figs. 1a and 1b), also the unstable nodes and unstable foci have a stable
set, given by all the preimages of any rank of the periodic points, and in our
examples these preimages may be in¯nitely many. Moreover, as we shall see
in Section 5, the existence of preimages of repelling nodes or foci gives one of
the simplest ways to detect the chaotic behaviour of the system (\visible" or
\invisible"), which is otherwise di±cult to prove. We have seen above that a
stable ¯xed point may be considered as \practically unstable" because of a
very small basin of attraction. We notice that this may occur also when the
¯xed point is the only attractor and no other cycles exist, neither stable nor
unstable, except for a ¯nite number of saddles on the boundary of its basin.
An example is shown in Fig. 3a, where the basin B(1) is close to the ¯xed
point O, which is an attracting node. Thus, two nearby initial conditions,
even very close to O, may lead to very di®erent dynamic behaviour, as shown
in Fig. 3b, where in one case the state variable p approaches its equilibrium
value, and in the other case it takes increasing values with a catastrophic
e®ect.

INSERT FIG. 3 APPROXIMATELY HERE

4.2 Crossing the Neimark-Hopf bifurcation curve

We are now interested in the description of the types of dynamic behaviour
that may occur when the ¯xed point becomes unstable via a crossing of the
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Neimark-Hopf bifurcation curve. As we shall see, starting from inside the
stability region of Fig. 1b with a value of a su±ciently high, an increase of the
parameter c leads to oscillatory behaviour which may become chaotic around
O, and as c approaches the value 1 the dominating state is an attracting cycle
(although coexisting with a strange repellor) with a wide basin of attraction.
While when the same Hopf-curve is crossed at low values of the parameter a,
we have numerically observed a stronger \stability e®ect", with persistence
of regular oscillations.
Let us ¯x a = 0:8 and increase the parameter c. When crossing the

Neimark-Hopf bifurcation curve we observe a supercritical bifurcation, leav-
ing a repelling focus O surrounded by an attracting closed invariant curve,
see ¡ in Fig. 4a, on which the trajectories are either periodic (when the ro-
tation number at the Neimark-Hopf bifurcation is rational) or quasi-periodic
(when the rotation number is irrational), as described in [16].
In Section 5 we shall see the e®ects of the noninvertibility of the map,

which shall lead us to the construction of an absorbing area inside which
the attractors are con¯ned. Now we simply observe that local and global
bifurcations occurring to the attracting set existing around O give rise to a
chaotic attractor A of \annular shape", as the one shown in Fig. 4b. Such a
chaotic attractor A is generally the ¯nal e®ect of a period-doubling route, set
o® by the appearance of a stable cycle on the closed invariant curve ¡. The
behaviour of the trajectory in such a case is a kind of \permanent" erratic
transient. The phase point wanders inside a chaotic area in an unpredictable
way. However, as we shall show in Section 5, in the noninvertible case the
structure of the phase-plane in zones with a di®erent number of rank-1 preim-
ages (also called Riemann foliation9 in [20]), enables us to predict the strip
inside which the state variables are con¯ned. That is, even if, given a state,
we cannot predict what will be the state in the next period, we can determine
its lower and upper bound.

INSERT FIG. 4 APPROXIMATELY HERE

9As it is described in [20], in the case of two-dimensional noninvertible maps the phase-
plane can be identi¯ed with several \sheets", each one being associated with one inverse of
the map. The noninvertibility is thus characterized by the overlapping of di®erent sheets
constituting the regions Zj (with j di®erent rank-1 preimages) and the boundaries of these
regions are generally given by the critical curves of rank¡1, crossing which the number of
distinct rank-1 preimages changes. This characterization is known as the foliation of the
Riemann phase-plane.
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As c increases, several regimes with \periodic windows" and \chaotic ar-
eas" may be observed. This regime is a two-dimensional analogue of what
occurs in one-dimensional chaotic maps. We may think for example of the
well known logistic map x0 = f(x), f(x) = ¹x(1¡x), and remember the com-
plex mechanism giving the intervals of values of the parameter ¹ in which
there exists an attracting cycle as well as the intervals with chaotic dynam-
ics. See the \box-within-a-box" mechanism described in [16] and similar two-
dimensional behaviour described in [20]. It is well known that, on increasing
the parameter ¹ in the logistic map, the appearance of the attracting cycle of
period three comes from a \previous" chaotic regime, and that the attract-
ing 3-cycle is surrounded by a chaotic repellor, a kind of \invisible chaos"
given by a set with the same characteristics of the set ¤ previously described.
Returning to our two-dimensional model, on increasing c (at values of the
parameter a not too high), we can observe the appearance of a similar peri-
odic regime, which persists as c approaches the value 1. An example of an
attracting cycle appearing after the chaotic regime is given in Fig. 4c. We
note that in this case a strange repellor ¤ surrounding the stable cycle is
likely to exist, and it is possible that looking at the trajectories in the \short
period" there is not much di®erence between the case of Fig. 4b and that of
Fig. 4c. The di®erence is evident in the long period or when the initial state
is quite close to a periodic point of the cycle. In all the three situations shown
in Fig. 4 we may consider the existing attractor (a closed curve ¡, a chaotic
area A or a stable cycle) as \robust" with respect to external in°uences. In
fact, the basin B(1) is quite far from such attracting sets and almost all the
points in the region of the phase-plane shown in the ¯gures have a similar
qualitative behaviour. This kind of \robustness" is increased at lower values
of a. When crossing the Hopf-curve at low values of a, an attracting closed
curve ¡ is observed but no route to chaotic regimes: we have numerically
observed that the oscillatory behaviour persists and the oscillations become
wider as a is decreased. Whereas, on increasing a the system goes towards a
less stable regime, as already remarked in the previous section. For example,
at a = 1 we have already seen the stable ¯xed point coexisting with an at-
tracting 4-cycle in Fig. 2c. On increasing c from that situation we cross the
Hopf-curve and an attracting closed invariant curve ¡ appears. However we
already know from Fig. 2c that O is not far from the boundary of its basin,
and the same is true for ¡, as shown in Fig. 5a. This leads us to foresee that
the interval of values of c for which an attracting closed invariant curve exists
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will be very short. In fact, a global bifurcation occurs when the attracting
set has a contact with the frontier of its basin of attraction. In our example
this contact occurs in a point belonging to the frontier between the basin of
¡ and the basin of the 4-cycle A4, @B(¡)\ @B(A4). Thus, after the contact,
the only surviving attractor is the 4-cycle A4, as shown in Fig. 5b. We note
that this contact bifurcation also corresponds to a global bifurcation of the
basin B(A4), which increases abruptly. The closure of B(A4) is now the white
region in Fig. 5b and this new attracting set is also stable with respect to
perturbations, being quite far from the boundary of its basin. We also note
that only a few unstable cycles exist in that white region. From this cycle of
period 4 the usual route to chaos via period doubling bifurcations is observed
as c is further increased. A 4-piece chaotic attractor is shown in Fig. 5c and
a global bifurcation leads to the reunion of the chaotic pieces into a single
attractor of annular shape, shown in Fig. 5d.

INSERT FIG. 5 APPROXIMATELY HERE

Similarly, when we start from the situation shown in Fig. 2e and increase
c we observe, on crossing the Hopf-curve, an attracting closed invariant curve
¡. Also now we shall have a global bifurcation causing the destruction of ¡
but di®erently from the previous case: it cannot be predicted by the position
of ¡ with respect to @B(1). In fact, as shown in Fig. 6a, ¡ is quite far from
that boundary. But it is the existence of the strange repellor ¤ that will cause
the global bifurcation. A contact between ¡ and the strange repellor causes a
homoclinic explosion (or ¡-explosion) which transforms the strange repellor
into a strange attractor, as shown in Fig. 6b, after a very small increase
of c. Such a global bifurcation has a very strong e®ect on the \observed
attractor" because after the disappearance of the attracting set around O
the generic trajectory wanders, aperiodically, within the chaotic set (which
was previously \invisible", except for the transient part of a trajectory).

INSERT FIG. 6 APPROXIMATELY HERE

4.3 Crossing the Flip-curve

From the examples seen up to now, it is clear that the increase of the para-
meter a causes an increase of the dimension of the basin B(1), i.e. of the
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points having a divergent trajectory. Thus, from a practical point of view,
this is a regime which must be controlled and possibly avoided.
In any case let us increase a so that the parameters approach the Flip-

curve, and correspondingly the attractor has a lower basin of in°uence. This
situation may also occur at the extreme conditions, as shown in Fig. 7a,
where the attracting ¯xed point O may be considered as \practically un-
stable" by virtue of the fact that its basin is so narrow, and surrounded by
points with divergent trajectories. It is clear that an increase of the value
a, causing the °ip bifurcation of O, shall give rise to a stable 2-cycle. And
we may think that the usual °ip-cascade shall occur. Whereas, after a few
(say k) °ip bifurcations the cycles of period 2k created approach the basin
boundary (see Fig. 7b). Then, a contact bifurcation (like that occurring to
¡ in the previous example) causes the disappearance of the attractor, after
which the generic trajectory in the phase plane is divergent. Note that also
a decrease in the parameter c, when a has quite high values, causes a similar
dynamic behaviour. For example, starting from the case shown in Fig. 3a a
decrease of the parameter c causes the crossing of the Flip-curve. Similarly
to the previous example we observe an attracting 2-cycle, followed by an
attracting 4-cycle, and then the disappearance of the attractor.

INSERT FIG. 7 APPROXIMATELY HERE

5 Role of the critical curves in the global bi-

furcations

The goal of this section is to enter in more detail into the mechanism of
some of the global bifurcations. We shall do this by following the examples
already considered in Section 4, showing how the noninvertibility of the map
(which at ¯rst sight seems to lead to an increase of di±culty) allows us to
easily explain several phenomena. We use the powerful technical tool given
by the critical curves, which have been determined, for our map, in Section
3.3. We ¯rst use the critical curves to construct an absorbing area, i.e. an
area bounded by a few arcs of critical curves LC, LC1, ..., which attracts
nearby points and is trapping (once inside, a trajectory can never escape).
Clearly, inside one absorbing area we have at least one attracting set. As we
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shall see, inside an absorbing area several attractors may follow one another,
and the area itself may undergo global bifurcations.
The reader who knows the role of the critical points (local extrema) in

the dynamics of one-dimensional noninvertible maps (see kneading theory
in [11] and [10]) can easily appreciate how the critical curves represent the
corresponding two-dimensional analogue. Just as it occurs for the local ex-
trema in one-dimensional maps, the critical curves bound the foliation of
the Riemann phase plane. We shall use the notation introduced in [20], to
which we refer the reader for further details and examples. One of the main
applications of the critical curves and of the absorbing areas consists in a
quick and easy method to determine whether a repelling node or focus is a
snap-back-repellor, as described below. But let us start an analysis of some
simple qualitative behaviour.

5.1 Absorbing areas

We consider again the case shown in Fig. 4a. As the parameter c is increased
the closed invariant curve ¡ increases in size, and the noninvertibility of T
comes to play a role as ¡ approaches the critical curve LC¡1 and then crosses
it. Note that from Fig. 4a it seems that ¡ is closer to LC than to LC¡1 and
one might think that a contact with LC will come ¯rst. But this is impossible
given the structure of the Riemann foliation of the zones Z1-Z3 bounded by
LC. To make a one-dimensional analogue, think at an interval J mapped
by the logistic map f(x) = ¹x(1¡ x). It is clear that f(J) cannot cross the
local maximum, denoted by C; f(J) can only have C on the boundary and
this can occur only if J includes the critical point C¡1. In the same way the
critical curve LC cannot be crossed, the arcs crossing LC¡1 are mapped by
T into arcs \folded" on LC and tangent to that curve. Consider Fig. 8a.
The crossing of LC¡1 causes the appearance of \oscillations" in the smooth
shape of ¡, due to the \folding" on LC and its further images. In fact, the
portion of ¡ which crosses LC¡1 (in the points a0 and b0) is folded back with
two points of tangency on LC (see a1 and b1 in Fig. 8a, where also the points
a2 and b2of tangency on LC1 are indicated as well as the points of tangency
on critical curves of higher rank). More crossings of LC¡1 as c increases
may occur, which are the cause of more oscillations in the shape of ¡, as
shown in Fig. 8b. We remark that such qualitative changes in the shape of ¡
modify the quasiperiodic orbit of the asymptotic trajectories. Moreover, we
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can completely de¯ne the area enclosing ¡ by means of the critical curves.
In fact, making use of the properties decsribed in Chapter 4 of [20], we select
a suitable piece of LC¡1, and with a few iterates of this segment we get a
closed area, simply connected, which is mapped into itself by T (see again
Figs. 8a,b); ¡ is tangent to the boundary of this area in several points (those
on LC and their images). Moreover, with some more iterates of the same arc
on LC¡1, an \inner" boundary is also obtained, so that an absorbing area
of annular shape is de¯ned (Fig. 8b). ¡ is tangent both to the external and
internal boundaries of that area (see the enlargement of Fig. 8c).

INSERT FIG. 8 APPROXIMATELY HERE

As c is further increased, several attracting sets alternate inside the ab-
sorbing area: quasi-periodic orbits, periodic orbits, °ip sequences leading to
chaotic dynamics, as it was shown in Fig. 4 in the previous section. The
annular attracting set of Fig. 4b is inside an annular absorbing area. An-
other example is given in Fig. 9a. A small portion of LC¡1 in that ¯gure
was iterated 19 times and the resulting set is an invariant absorbing area
A1, inside which the trajectories are con¯ned. A trajectory is shown in Fig.
9b. What is remarkable in the use of the critical curves is that these allow
us to predict the lower and upper bounds of both the state variables. Such
limiting values can be obtained from the rectangle bounding the absorbing
area.
Looking at the iterated points of a trajectory we shall see that a global

bifurcation occurs at a particular value of c, say c¤ (in our example 0:525 <
c¤ < 0:526). Before, for c < c¤, we have iterated sequences all inside the
annular absorbing area as in Figs. 9a,b, while immediately after, for c > c¤,
we shall have iterated points which also go outside, although such \bursts"
are quite rare, as shown in Fig. 9d. This is the e®ect of a global bifurcation
due to the contact of the critical curves on the boundary of the absorbing
area A1 with a chaotic repellor existing outside. Such a contact destroys
the invariance property of the area A1 and after the bifurcation the iterated
points can escape the old area A1.
This bifurcation can be detected also by use of the critical curves. In fact,

for c < c¤ the iterations of the small segment a0b0 of LC¡1 de¯ne an area A1

which is invariant, so that all the iterates T n(a0b0), n > 0, belong to that
area. While for c > c¤ the area obtained by iterating the segment a0b0 of
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LC¡1 is no longer invariant, i.e. there exists a positive integer m such that
T m(a0b0) has points also outside. This corresponds to an \explosion" of the
attracting set. After the contact the new iterates will cover a wider area;
but which one? Again we can predict the area by looking at the images of
the critical segments. A wider portion of LC¡1, see a0c0 in Fig. 9c, is such
that with a ¯nite number of iterates we obtain a new wider absorbing area
A2 (which includes the old area A1, no longer invariant). The boundary of
the new absorbing area is strictly included in [12

n=1T
n(a0c0). From Fig. 9d it

is evident that A2 is the smallest invariant absorbing area existing after the
contact bifurcation that destroys A1.

INSERT FIG. 9 APPROXIMATELY HERE

This global bifurcation is very similar to the one we have already observed
in Section 4, causing the \¡-explosion". That is, a drastic change of the
structural shape of the attractor, from a closed invariant curve ¡ (Fig. 6a)
to the chaotic area in Fig. 6b. Note that also before such a contact bifurcation
we could predict the e®ect of the bifurcation by use of the critical curves.
Fig. 10 represents the same closed invariant curve ¡ of Fig. 6a, but inside an
invariant area A bounded by a few arcs of critical curves, obtained by taking
the images of the small segment a0c0 on LC¡1. Clearly, in Fig. 10, such an
invariant area also includes the chaotic repellor that we know exists outside
¡, and its shape perfectly reproduces the attractor shown in Fig. 6b, existing
soon after the contact. While before the contact all the trajectories starting
inside A, except for a set of zero Lebesgue measure, converge to ¡, after
such a bifurcation the generic trajectory is spread out, wandering among the
repelling cycles existing outside, as shown in Fig. 6b. But such iterations
cannot escape the invariant area A (Fig. 10), so that the iterated points are
forever con¯ned inside it. Note that in this case we could determine an upper
and lower bound of the state variables, also before the contact bifurcation,
predicting the e®ect of a global bifurcation. This is quite important if we
want to take account of \shocks" that change the values of the parameters
of the model.

INSERT FIG. 10 APPROXIMATELY HERE

It is now clear that also the sequences of bifurcations shown in Fig. 5 of
the previous section all occur inside a similar absorbing area. Regular and

23



chaotic dynamics alternate inside the annular area around the repelling ¯xed
point O.

5.2 How to detect the homoclinic bifurcation of a snap-
back repellor

Let us return to the annular absorbing area A2 shown in Fig. 9. We see that
a hole W exists including the ¯xed point O, a repelling focus. As locally the
trajectories spiral out of O, it turns out that all the points of Wn fOg have
trajectories entering the trapping annular absorbing area. Thus, in such a sit-
uation, although the ¯xed point O is repelling, we cannot ¯nd any homoclinic
orbit of the origin. The existence of a homoclinic orbit of a repelling focus
O often causes the appearance of a set which \attracts" and then \repells"
(as occurs in the case of homoclinic orbits to saddles). A trajectory behaves
chaotically far from O, but then it approaches O and seems attracted, but
soon after it is repelled away. This occurs with intermittence, and with un-
predictable return time near O. The existence of such homoclinic orbits is a
powerful tool used to prove the true chaotic nature of the observed trajecto-
ries. In fact, Marotto [19] ¯rst proved that such an orbit for a repelling node
or focus implies the existence of chaos in the sense of Li and Yorke (see [17]).
In our example, the ¯xed point O is a repelling focus for a wide interval

of values of c, i.e. for c > c ' 0:48. However when is it possible to ¯nd some
homoclinic orbits of O? Certainly we cannot look for homoclinic orbits as
long as the map has a unique inverse, because in invertible maps, homoclinic
orbits of repelling nodes and foci cannot exist: but in our example, where a =
0:8, the map T is noninvertible in all the range of c for which O is unstable.
In the regime of non-invertibility of T we can make use of the properties of
the critical curves of the map. In fact, as proved in [13], the critical curves
provide a powerful technique that helps us in ¯nding the homoclinic orbits
of cycles. For example, although chaotic dynamics certainly exist for the
map in the cases shown in Fig. 9, we can state that these do not involve
the ¯xed point O. In fact, as long as the repelling ¯xed point belongs to an
absorbing area, bounded by critical curves, as shown in that ¯gure, but with
a hole W surrounding O, then we can prove that all the preimages of any
rank of O (which are in¯nitely many) are outside the absorbing area (and
thus outside the chaotic area there shown). This is true for all the points
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belonging to the hole W de¯ned by the annular absorbing area, and it is an
immediate consequence of the fact that the absorbing area is trapping. We
note that other qualitative changes occur in the absorbing area, with tongues
approaching O, but as long as the rank-1 preimages of O distinct from itself
are outside the invariant absorbing area, then the critical curves leave an
empty hole around O (see Fig. 11a and the enlargement in Fig. 11b), and
no homoclinic points of O can exist. This is because for any n > 0, T ¡n(O)
can never return near O.
Then we can easily conclude that as c increases, the ¯rst homoclinic

bifurcation, or homoclinic explosion, necessarily occurs when one of the rank-
1 preimages of the ¯xed point O, from the outside of the absorbing area
A2, falls on the boundary and crosses it, through an LC arc. This occurs
approximately at c ' 0:5335. Even if we would not compute the rank-1
preimages of O, we could be sure that we are at the homoclinic bifurcation
of the ¯xed point because at this particular value the images of the critical
curves of LC must cross through O and, as shown in the enlargement of Fig.
11d, we can see that all the images LC12, LC13, LC14, ... (LCk for k ¸ 12)
of the LC curve cross the ¯xed point O, which means that one of its rank-1
preimages, say O¡1, lies now on the boundary of the absorbing area, on the
curve LC11.
At this bifurcation value homoclinic orbits of O (and in¯nitely many)

appear. In fact, the point O¡1 on the curve LC11 of the boundary of the
absorbing area must have a rank-1 preimage on the curve LC10, and so on
iteratively, up to a preimage in the segment of LC¡1 inside the area A. In
its turn this point has an arborescent sequence of preimages of any rank
inside the absorbing area A, and in¯nitely many of these preimages can be
obtained with the local inverse near the ¯xed point O, thus giving critical
homoclinic orbits. In fact, when c is at the ¯rst homoclinic bifurcation value,
the characteristic property (see also [13]) is that all the homoclinic orbits of
O are critical (i.e. include a critical point). While soon after the bifurcation
value in¯nitely many non-critical homoclinic orbits of O exist.
In the same way as homoclinic orbits appear, these can also disappear

(reverse bifurcation). In our example, such forward and backward bifurcations
occur as the parameter c increases. Homoclinic orbits appear at about c '
0:5335 and disappear at c ' 0:562. In fact, it is easy to see that O¡1 crosses
again the boundary of the absorbing area, now from inside to outside, thus
destroying all the homoclinic trajectories. For c > 0:562, homoclinic orbits
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of O no longer exist (see Figs. 11e,f).

INSERT FIG. 11 APPROXIMATELY HERE

This gives us the opportunity to generalize the same mechanism of ho-
moclinic bifurcations to cycles. As we have seen in the previous example, in
which the parameter a is ¯xed (a = 0:8) and we increase c from the value c,
on the Hopf-curve, towards 1, homoclinic orbits of the ¯xed point O exist for
a very narrow interval of c-values. However we have seen trajectories which
seem chaotic for several other intervals of values of c. How can we prove that
these regime are truly chaotic? It is a simple matter to note that the same
reasoning performed on the ¯xed point can hold for any cycle. Inside the
absorbing area there are in¯nitely many unstable cycles repelling nodes or
foci. Consider one of them, say of period k. Then the periodic points are
¯xed points for the map T k and for them we can look for the existence of
homoclinic orbits. As above, we have simply to consider the preimages of
these periodic points. Whenever one of these preimages is inside the invari-
ant area, then homoclinic orbits of the cycle exist. Also: when the images
of the small arcs of LC¡1 (which give the \germ" to construct the boundary
of the absorbing area) cross through a repelling periodic point of the k-cycle
(as it was shown in Fig. 11d), we are at the snap-back-repellor bifurcation of
that cycle.
We remark that the existence of homoclinic orbits is a sure indication

of chaotic dynamics, but often of what is also called \invisible chaos". For
example, chaos also occurs in the case shown in Fig. 4c, where the generic
numerically observed trajectory is convergent to a cycle of period-4. Let us
recall here a one dimensional analogue to better clarify the issue, consider-
ing the box-within-a-box bifurcation structure occurring in the logistic map
f(x) = ¹x(1¡ x). One of the widest intervals with periodic orbit is the one
associated with a cycle of period 3: for an interval of ¹-values we have an
attracting 3-cycle which attracts almost all the trajectories in the interval
[0; 1]. However we are in a \chaotic regime" because an invariant set ¤ on
which the restriction of the map is chaotic (in the purest sense) exists (and
this is true for any value of ¹ after the Feigenbaum point).
Similarly, also in the two-dimensional case, whenever a homoclinic orbit

of some cycle exists (as it is certainly the case for many repelling cycles in Fig.
4c), we can say that an invariant set ¤ exists on which the map is chaotic,
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but \how big" is the set ¤ is not known. Generally such sets are of zero
Lebesgue measure. When they are \embedded" in some bounded absorbing
area, then we can argue their presence through the \chaotic transients" before
the trajectory settles down on some attracting cycle, as it was shown in Fig.
6a. Also chaotic dynamics such as those shown in Fig. 6b inside the absorbing
area are generally chaotic transients of trajectories which ultimately may
converge to a cycle of period so high that we cannot detect it by numerical
simulations.
Consider the case shown in Fig. 11c: we can never observe the \end" of

the numerically computed trajectory, which wanders around for a long time
and then approaches the snap-back-repeller O, and is repelled out, again
returns near O after a while and again it is pushed back, and so on. Fig.
11c clearly shows the many points lying near O, and also we can observe a
sort of \structure" inside this small portion of the phase-plane. This is due
to the foliations of the Riemann plane; the points of a trajectory visit more
frequently the critical curves, and the \structure" which is evident in Fig.
11c is due to arcs of critical curves LCk, k > 1.

6 A simple stochastic extension

The aim of the present section is to present numerical examples showing how
the critical-lines tools can help to understand the dynamic behaviour of the
system in simple stochastic situations.
The introduction of stochastic factors into the model can be done in di®er-

ent ways. For our purposes, we simply suppose that the speed of adjustment
of chartists' expectation c, instead of being ¯xed, is a random variable uni-
formly distributed between cmin and cmax. In doing so we capture, albeit
in a crude way, the notion that the chartists adjust c up and down around
some mean value, in response to randomly arriving market news. Such news
rendering the chartists either aggressive (increase in c) or cautious (decrease
in c) in their use of the trading rule. Under this assumption the stochastic
trajectory is given by:

Xt+1 = Tct(Xt) ,

where ct is a random parameter uniformly distributed on the interval [cmin; cmax]
and Tct is the map given in (7) with parameter value ct. Let us ¯x a = 1:25
and consider a regime in which the system has as its only attractor the stable
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equilibrium O, with a wide and connected basin of attraction; for example
let us assume c is uniformly distributed on the interval [0:59 ¨ 0:04]. The
observed dynamic e®ect is that also the stochastic trajectory converges to
the stable ¯xed point O, but its representation in the phase-plane is similar
to a \cloud" around O (Fig. 12a).
The existence of an absorbing area A (inside which the transient and as-

ymptotic dynamics are constrained to move) su±ciently far from the bound-
ary of its basin @B(A) guarantees the \stability" of the \stochastic" model
so obtained. In fact, the introduction of such a noise has in general the
dynamic e®ect of changing the attractor of the deterministic model into a
\cloud" having similar shape and the knowledge of the critical curves of the
map (7) allows us to predict whether the new \stochastic" dynamics will be
bounded inside a deterministic region or not. As an example let us ¯x a = 0:8
and consider an interval of values of c for which the deterministic model has
an attracting set (a closed invariant curve, a chaotic attractor or a cycle)
belonging to an absorbing area, say c uniformly distributed on the interval
[0:52¨ 0:03]. Figs. 12b and 12c show the attractors and the absorbing areas
of the limiting cases c = 0:49 and c = 0:55, respectively. Assuming an initial
condition near the repelling ¯xed point, we see (Fig. 12d) that the stochastic
trajectory consists in points belonging to a bounded area (although its con-
tour is not well determined). The width of this region obviously depends on
the range assumed for c, which also determines the nature of the underlying
deterministic attractors

INSERT FIG. 12 APPROXIMATELY HERE

It is di±cult to draw conclusions about the stochastic behaviour of the
model starting from a deterministic framework. It would be interesting to
try to prove the existence of a deterministic area, say S, which is trapping for
the stochastic model at least for a number of iterations su±ciently high to
be considered of interest in an applied context. A ¯rst step in this direction
could be the analysis of the dynamic behaviour of the limiting cases Tcmin

and Tcmax , as we have done in the previous example, also in order to predict
whether we are in a stable regime of the stochastic model or not. In fact it
is clear that when values of a and c are involved for which the basin B(1)
of the deterministic map Tc approaches the attracting sets then we can say
that the stochastic approach is highly unstable. Consider as an example the
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situation represented in Fig. 13, where we assume ct uniformly distributed on
the interval [0:595¨ 0:045]. The deterministic limiting maps T0:55 and T0:64

have as attracting sets the ¯xed point O, on which the trajectory settles
down after a chaotic transient, and a 4-piece chaotic attractor, respectively.
These attractors are represented, together with the basin B(1), in Figs.
13a and 13b. We note in particular that the basin of the attractor in Fig.
13b is multi-connected with in¯nitely many holes. The stochastic map Tct ,
c 2 [0:595 ¨ 0:045], starting from the same initial condition used for the
limiting maps, gives rise to a trajectory which is divergent, after a chaotic
transient, as shown in Fig. 13c.

INSERT FIG. 13 APPROXIMATELY HERE

7 Conclusions

In this paper we have developed a discrete time model of asset price dynam-
ics, based on the interaction of two types of traders: rational fundamentalists,
who form rational expectations on the fundamental value of the asset and
whose demand is an increasing function of the di®erence between the funda-
mental value and the current price, and chartists, a group basing its trading
decisions on an analysis of past price trends, whose demand is an S-shaped
function of the expected return di®erential with an alternative asset. To clar-
ify the adjustment process of the share price in the market, we assume the
existence of a market maker, whose role is to set excess demand to zero at
the end of each trading period by taking an o®-setting long or short position,
and who announces the next period price as a function of the excess demand.
We have highlighted the role of the two types of traders by showing the ef-
fect, on the local and global dynamics, of the key parameters, namely the
\strength" of fundamentalist and chartist demand (a and ®, respectively),
and the speed of adjustment of chartists' expectations (c). In particular we
have clari¯ed how the strength of chartist demand ® a®ects the local stabil-
ity of the equilibrium, by showing that for su±ciently low values of ® the
equilibrium is stable for a wide range of values of the fundamentalist pa-
rameter a and for any level of the chartists' reaction speed c (0 < c · 1);
while when ® is su±ciently high, i.e. chartist demand is relatively strong, the
ability of fundamentalists' demand to stabilise the system is restricted to a
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fairly narrow range of the parameter a. Our analysis has then focused on the
global dynamical behaviour observed in this latter case. First we have shown
that also when the equilibrium is locally stable other dynamic phenomena
arise for su±ciently high values of c and a, such as chaotic transients before
the convergence to the stable equilibrium or coexistence of attractors. We
have then performed a detailed analysis of the dynamic phenomena occurring
when, by increasing the parameter c, the equilibrium O becomes unstable via
a Neimark-Hopf bifurcation: we have numerically observed that when this
bifurcation occurs at su±ciently high values of the parameter a, an increase
of c leads to oscillatory behaviour which may become chaotic around O, and
as c approaches the value 1 the dominating state is an attracting cycle (al-
though coexisting with a strange repellor) with a wide basin of attraction.
In this global analysis, the theory of critical curves and various numerical
tools have been extensively used.
We have paid particular attention to the analysis of the homoclinic bifur-

cation of ¯xed points and cycles, leading to a chaotic regime. The existence
of chaotic behaviour in a model of asset price dynamics similar to ours has
been detected in [12]. But the present paper follows a di®erent approach
based on the theory of critical curves and is able to explain in detail the
appearance of chaotic dynamics.
Finally, we have suggested an extention of the model beyond its deter-

ministic nature, showing how the analysis of deterministic dynamics via the
critical-lines tools can help to understand the dynamic behaviours of the
system in simple stochastic situations.
Future developments of the model introduced here would be to analyse

the dynamics of the three dimensional map which arises when the dynamics
of the market for the alternative asset is also taken into account (as discussed
brie°y in section 3). It is also important to focus on attemps of each group
to learn about their economic environment in the face of stochastic factors
(capturing for example the random arrival of new events in the market).
Some initial attempts in this directions are outlined in [1] and [7]
Finally, in order to focus on the dynamics induced by the interaction

of fundamentalists and the speculative behaviour within a two-dimensional
map, we have left in the background the dynamics of the wealth of the two
groups. This is perhaps justi¯able in the present context since an exponen-
tial utility of wealth function underlies both the fundamentalist and chartist
demand function. As is well known demand functions in this case are inde-

30



pendent of wealth. Clearly in the long term the evolution of the wealth of
each group will also determine their economic behaviour, and such evolution
needs to be modelled. Chiarella and He [9] have developed a model of hetero-
geneous agents with logarithmic utility function which takes explicit account
of the wealth dynamics of each group, but the analysis of this model is only
possible via computer simulations. However the insights into the dynamics
of speculative behaviour gained via the simpler model of this paper are useful
in attempting to understand the dynamics of the more complete models of
Chiarella and He [9] as well as those of Chen and Yeh [4].
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Appendix: Derivation of asset demand functions
We use the subscript i 2 ff; cg to denote fundamentalists or chartists.
Let i;t be the wealth of agent i and Zi;t be the fraction of this wealth

that agent i decides to invest in the risky asset, at time t. The agent's wealth
at time (t+ 1) will then be given by:

i;t+1 = i;t + i;t(1¡ Zi;t)gt + i;tZi;t(Pt+1 ¡ Pt) ,

where gt is the return on the alternative asset. Agent i computes the con-
ditional mean and variance of i;t+1(denoted by Ei;t [i;t+1] and Vi;t [i;t+1],
respectively) assuming that (Pt+1 ¡ Pt) is conditionally normal, thus:

Ei;t [i;t+1] = i;t + i;t(1¡ Zi;t)gt + i;tZi;tEi;t [Pt+1 ¡ Pt] ,

Vi;t [i;t+1] = Z2
i;t

2
i;tVi;t [Pt+1 ¡ Pt] .

Assuming that each group of agents has an exponential utility of wealth
function, each agent seeks Zi;t so as to maximise

Ei;t [¡ exp(¡®ii;t+1)] ,
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where ®i is agent i's risk aversion coe±cient. Under the assumption that
i;t+1 is conditionally normally distributed, this problem is equivalent to

max
Zi;t

½
Ei;t [i;t+1]¡ ®i

2
Vi;t [i;t+1]

¾
.

The solution to this optimization problem is:

³i;t ´ Zi;ti;t =
Ei;t [Pt+1 ¡ Pt]¡ gt

®iVi;t [Pt+1 ¡ Pt]
.

We note that ³i;t is the demand by agent i for the risky asset.
The two groups of agents essentially di®er in the way they calculate the

mean and variance of the price change over successive time intervals.
Fundamentalists, with their assumed superior knowledge of market fun-

damentals, believe that the asset price follows a mean reversion process with
the fundamental value being the long run mean. Hence they calculate that
the expected excess return is proportional to the di®erence between the cur-
rent asset price and the fundamental value, i.e.:

Ef;t [Pt+1 ¡ Pt]¡ gt = ´(Wt ¡ Pt) ,

where ´ is the speed of mean reversion estimated by the fundamentalists.
They also assume that the conditional variance of price changes is constant,
i.e.:

Vf;t [Pt+1 ¡ Pt] = vf .

Thus the fundamentalist asset demand becomes:

³f;t =
´(Wt ¡ Pt)

®f vf
,

which becomes (1) when we identify the strength of fundamentalist demand
a with ´=(®f vf).
Chartists, on the other hand, calculate Ec;t [Pt+1 ¡ Pt] by extrapolating

past prices changes according to (3). Thus:

³c;t =
Ãt;t+1 ¡ gt

®cvc

.

Unlike the fundamentalists, the chartists change their estimate vc of the con-
ditional variance according to the magnitude of jÃt;t+1 ¡ gtj. As this quantity
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becomes larger they expect greater volatility and increase their estimate vc,
hence lowering the slope of their demand function. It is this behaviour that
explains the levelling o® of the slope of chartist demand as jÃt;t+1 ¡ gtj be-
comes larger, and hence we derive the chartist demand function (2).
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FIGURE CAPTIONS
Fig. 1. The dark grey regions in Figs. 1a and 1b show the domain of

stability of the equilibrium point O in the plane of the parameters c (speed
of adjustment of chartists' expectations) and a (strength of fundamentalists'
demand). The light grey regions represent the domain of noninvertibility of
the map T in the same (c; a) parameter plane. Fig. 1a is obtained with
values of the parameters ¯p, ®, g such that ¯pk0(0) = ¯p®=(1 + g2) · 1: in
this case the domain of stability includes any value c 2 (0; 1) for su±ciently
low values of a (i.e. for a < 2=¯p), and the stability can be lost only via
a Flip bifurcation as a is increased. Fig. 1b describes the opposite case,
¯pk0(0) > 1, where stability can be lost also via a Neimark-Hopf bifurcation
at low values of a. Fig. 1 also shows that for su±ciently low values of a (i.e.
for a < 1=¯p) the map is invertible for any value c 2 (0; 1). In the case of
Fig. 1b the noninvertibility region is wider than in Fig. 1a.
Fig. 2. Di®erent dynamic phenomena observed for values of the para-

meters for which the equilibrium point O is stable. Figs. 2a, 2c and 2e
represent the dynamics in the phase-plane (Ã; p), while Figs. 2b, 2d and 2f
show, for each case (and the initial values indicated), the state variable p as
a function of time. In the case of Figs. 2a and 2b the equilibrium point O
is an attracting focus with a wide basin of attraction. In Fig. 2c the stable
equilibrium point (whose basin is the white region) coexists with a 4-cycle
(whose basin is the non-connected light grey region): Fig. 2d shows the tra-
jectories of two nearby initial conditions (but in di®erent basins), one giving
damped oscillations towards O, the other converging to the 4-cycle. In Fig.
2e the stable ¯xed point coexists with a strange repellor, whose e®ect on the
transient part of the trajectory is shown in Fig. 2f.
Fig. 3. For ¯p = 2:6, g = 1, ® = 2:5, a = 1:5, c = 0:48 the ¯xed point

O is the only attractor, but it may be considered as \practically unstable"
due to the structure of its basin of attraction, which is very small and multi-
connected (Fig. 3a). Two nearby initial conditions, even very close to O, may
lead to very di®erent dynamic behaviour: starting from the point (0; ¡1:25)
in the phase-plane we observe convergence to the equilibrium, while starting
from the point (0; ¡1) we observe divergence (Fig. 3b).
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Fig. 4. Dynamic behaviour observed for ¯p = 2:6, g = 1, ® = 2:5, a = 0:8
and by increasing c starting from outside the stability region of O, on the
right of the Neimark-Hopf bifurcation curve in Fig. 1b: an attracting closed
invariant curve (Fig. 4a), a chaotic attractor of \annular shape" (Fig. 4b),
an attracting 4-cycle appearing after the chaotic regime (Fig. 4c).
Fig. 5. With a value of c slightly increased with respect to the situation

represented in Fig. 2c, i.e. for ¯p = 2:6, g = 1, ® = 2:5, a = 1, c =
0:539, we observe coexistence of a 4-cycle with a closed invariant curve ¡,
created through a supercritical Hopf bifurcation (Fig. 5a). However ¡ is very
close to the boundary of its basin of attraction and, by increasing c further,
the closed invariant curve disappears as soon as it has a contact with this
boundary, leaving the 4-cycle as the only surviving attractor (whose basin is
the white region in Fig. 5b). As c is further increased, we observe a 4-piece
chaotic attractor (Fig. 5c), and the reunion of the chaotic pieces into a single
attractor (Fig. 5d).
Fig. 6. For ¯p = 2:6, g = 1, ® = 2:5, a = 1:25, as in Fig. 2e, but

with a value of c slightly increased (c = 0:594), the only attractor is a closed
invariant curve ¡ which, di®erently from Fig. 5a, is now quite far from
@B(1) (Fig. 6a). As c is slightly increased from 0:594 to 0:595 (Fig. 6b)
we observe the destruction of ¡ due to the contact with a coexisting strange
repellor: this contact causes the transformation of the strange repellor into
a strange attractor (homoclinic explosion).
Fig. 7. For ¯p = 2:6, g = 1, ® = 2:5, a = 1:64, c = 0:52 the only

attractor is the equilibrium point O with a small (and multi-connected) basin
of in°uence ((Fig. 7a). By increasing a so that the Flip-curve in Fig. 1b is
crossed we observe a °ip bifurcation that creates an attracting 2-cycle but
the usual °ip-cascade cannot occur because the basin boundary approaches
the cycles of period 2k (Fig. 7b, where we see the case k = 3).
Fig. 8 . For ¯p = 2:6, g = 1, ® = 2:5, a = 0:8, and by increasing c

starting from outside the stability region of O, on the right of the Neimark-
Hopf bifurcation curve in Fig. 1b, we observe a closed invariant curve ¡
which increases in size. Since in this regime the map T is noninvertible, the
crossing of LC¡1 causes the appearance of \oscillations" in the shape of ¡,
due to the \folding" on LC and its further images (Fig. 8a). More crossings
are the cause of more oscillations (Fig. 8b). However an absorbing area of
\annular" shape enclosing ¡ can be completely de¯ned by iterating a suitable
piece of LC¡1. ¡ is tangent both to the external and internal boundaries of
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that area (see the enlargement of part of the absorbing area in Fig. 8c).
Fig. 9 . An absorbing area of annular shape, de¯ned by means of the

critical curves (Fig. 9a), encloses the attracting set represented in Fig. 9b.
The critical curves also allow us to detect the occurrence of global bifurca-
tions, as the one caused by the contact of the boundary of the absorbing area
with a strange repellor existing outside and leading to an explosion of the
attracting set (Figs. 9c, 9d).
Fig. 10 . In the situation already shown in Fig. 6a, i.e. for ¯p = 2:6,

g = 1, ® = 2:5, a = 1:25, c = 0:594 the shape of the absorbing area enclosing
the closed invariant curve ¡ allows us to predict the drastic change in the
structural shape of the attractor observed in Fig. 6 by slightly increasing the
value of c.
Fig. 11 . For ¯p = 2:6, g = 1, ® = 2:5, a = 0:8, c = 0:5298 we observe

a chaotic attractor, enclosed into an annular absorbing area, bounded by
critical curves. These critical curves leave an empty hole around the repelling
¯xed point O and correspondingly the preimages of any rank of O are outside
the absorbing area (Figs. 11a, 11b). When, by increasing c, one of the rank-1
preimages of the ¯xed point O (say O¡1) falls on some critical curve on the
boundary of the absorbing area and crosses it (at c ' 0:5335), we observe the
¯rst homoclinic bifurcation of the repelling ¯xed point O, indicated also by
the crossing through O of all the images of the critical curve (Fig. 11d). Soon
after the bifurcation in¯nitely many homoclinic orbits of O exist, and the
hole surrounding O disappears (Fig. 11c). On increasing further c a reverse
bifurcation occurs (at c ' 0:562), causing the disappearance of homoclinic
orbits: O¡1 crosses again the boundary of the absorbing area, now from
inside to outside (Fig. 11e), and a new hole appears around O (Fig. 11f).
Fig. 12 . Numerical results obtained by introducing stochastic factors

into the model. Assuming ¯p = 2:6, g = 1, ® = 2:5, a = 1:25, c stochastic
and uniformly distributed on the interval [0:55; 0:63] the resulting stochastic
trajectory converges to the stable ¯xed point and its representation in the
phase-plane is similar to a \cloud" around O (Fig. 12a). Fig. 12d shows a
stochastic trajectory obtained for ¯p = 2:6, ® = 2:5, g = 1, a = 0:8 and under
the assumption that c is uniformly distributed on the interval [0:49; 0:55],
while Figs. 12b and 12c show the attractors and the absorbing areas existing
in the deterministic limiting cases c = 0:49 and c = 0:55, respectively.
Fig. 13. The knowledge of the structure of the basins of attraction

in the deterministic case helps us to predict whether we are in a \stable"
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regime for the stochastic model or not. Assuming ¯p = 2:6, g = 1, ® = 2:5,
a = 1:25 and c uniformly distributed on the interval [0:55; 0:64], we obtain
stochastic divergent trajectories, after a chaotic transient, as shown in Fig.
13c. Figs. 13a and 13b show the attractors existing in the deterministic
limiting cases c = 0:49 and c = 0:55, respectively, together with their basins
of attraction. We note in particular that the basin of the attractor shown
in Fig. 13b is multi-connected with in¯nitely many \holes" of points with
divergent trajectories.
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