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Abstract

Many empirical analysis suggest that market prices dynamics are not well
captured by Black and Scholes model. A valid generalization is attained by
allowing volatility to change randomly and di®erent approaches have been
proposed in literature since the pioneering model by Hull and White [11].
The aim of this paper is to compare di®erent volatility speci¯cations

focusing on their capability in pricing options.

1 Volatility Models

A wide number of volatility models is described in [1] and [16]. In Figure 1
some of the most important models are summed up. They are collected into
three classes.
One speci¯c model in each class is analyzed: the complete model recently

proposed by Hobson and Rogers in [10], the bivariate model by Heston [9]
and the Garch model as in [3].

1.1 Endogenous Source of Risk

In the endogenous or univariate case the volatility is allowed to depend also on
the underlying security price, i.e. ¾ (t; S (t)). Among the univariate volatility
models, the model recently suggested by Hobson and Rogers in [10] seems
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Figure 1: Survey of volatility models

particularly interesting. In such a model Pt is the price process and Zt is the
discounted log-price process given by:

Zt = log (Pt exp (¡rt)) (1)

Under some technical condition the ¯rst order o®set function is de¯ned as:

X (1)
t =

1Z

0

º exp (¡ºu) (Zt ¡ Zt¡u)1 du (2)

where the constant º is a parameter of the model describing the rate at which
past information is discounted.
Volatility depends only on the ¯rst order o®set X (1)

t and the dynamics
for ¾ (x) are given by:

¾ (x) = ´
p
1 + ²x2 (3)

This choice is justi¯ed in terms of some useful properties of ¾ (x): it is
even, bounded and the model itself captures the fact that volatility changes
are correlated with price changes.
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The relation of Zt with the o®set function is:

dZt = dXt ¡ ºXtdt (4)

and Xt itself is supposed to be driven by a general SDE:

dXt = ¡´2
2

¡
1 + ²X2

t

¢
dt+ ´

p
1 + ²X2

t dBt (5)

The call option price can be written as usual as

call(Pt; Xt; T ¡ t) = e¡r(T¡t)E
£
(PT ¡K; 0)+

¤
(6)

1.2 Exogenous Source of Risk

When the source of risk is exogenous, volatility is assumed to evolve as a
stochastic process. The standard framework assumes a bivariate di®usion
process in which the processes of the underlying asset S and the volatility ¾
have to be jointly speci¯ed.
In the model suggested by Heston in [9], the stock price and the volatility

are assumed to be driven by the following bivariate SDE:

dSt = ÁStdt+ ¾tStdB
1
t (7)

dVt = k(µ ¡ Vt)dt+ c
p
VtdB

2
t (8)

where Vt = ¾2t and k; µ; c are positive constants. The positivity of the variance
process Vt is guaranteed by suitable constraints on parameters.
The derivation of option prices depends upon the parameters values which

thus have to be estimated.
The estimation of k; µ and c is particularly di±cult since there is no asset

that is clearly instantaneously perfectly correlated with the variance process
¾2t ; i.e. the volatility is neither directly observable or deducible from market
data.

1.3 Garch Option Pricing

Duan's discrete time model for option pricing (see [3] and [4]) is brie°y de-
scribed.
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Let St be the asset price at time t for t = 1; 2; ::::T:
The log-returns of the asset are supposed to evolve according to a linear

model with Garch innovations, that is:

log(
St
St¡1

) = r + ¸
p
Vt ¡

Vt
2
+ ²t (9)

where ²t, conditionally on the information until time t ¡ 1; is a centered
normal random variable with variance Vt; r is the constant risk-free rate in
the market and ¸ can be interpreted as a "risk premium".
The conditional variance is described by the following garch relationship:

Vt = ° + ®²
2
t¡1 + ¯Vt¡1 (10)

where parameters are non negative and ®+¯ < 1 guarantees the stationarity
of the process.
Duan's model can be seen as an extension of a discrete time Black and

Scholes model, when imposing ® = ¯ = 0 and ° = ¾2:
In this setting Duan generalizes the traditional risk neutral valuation

principle de¯ning the "locally risk neutral valuation relationship" and the
corresponding su±cient conditions on the agent's preferences. By this local
relationship, Duan obtains an option pricing formula which is locally, but
not globally, independent on the agent's preferences.
Under a local risk neutral probability measure Q the log-return of the

asset follows the following discrete time process:

log(
St
St¡1

) = r ¡ Vt
2
+ »t (11)

where »t, conditionally on the information until time t ¡ 1; is a centered
normal random variable with variance Vt:
The conditional variance is here described by the following modi¯ed garch

relationship:

Vt = ° + ®(»t¡1 ¡ ¸
p
Vt¡1)

2 + ¯Vt¡1 (12)

where the parameters are the same as in (10). This process correspond to a
non-linear asymmetric garch speci¯cation (NGARCH) introduced in [6].
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The price process, under the modi¯ed measure Q; is thus given by:

ST = St exp

(
(T ¡ t)r ¡ 1

2

TX

s=t+1

Vs +
TX

s=t+1

»s

)

and e¡rtt S is a Q¡martingale.
By the local risk neutral principle, the price of an European call option

with expiration date T and strike price K is given by:

Ct = e
¡r(T¡t)Et [max(XT ¡K; 0)] (13)

Siamo sicuri che in questa call ci deve essere Xt???? Nel caso endogeno
Xt µe l'o®set!!
It does not exist a closed expression for the price in (13) and it can be

obtained by simulation methods. In this paper the alternative approach of
giving an analytical approximation to the pricing formula is used, as sug-
gested in [5].

2 Estimation's Methodologies

Parameter estimation is carried out according to a suitable methodology for
each one of the analyzed stochastic volatility models.
The usual Garch maximum likelihood procedure is applied for the esti-

mation of Duan's option pricing model while two recent techniques, which
deserve a brief description, are used for estimating Hobson-Rogers and Hes-
ton models.
For the Hobson-Rogers' case the di®usion coe±cient is ¯rst estimated

following the procedure proposed in [2], and the corresponding parameter
estimates are then derived. More precisely, given a general di®usion process
St; de¯ned as a solution to the SDE:

dSt = ¹ (t; St) dt+ ¾ (t; St) dBt (14)

after many computations Chesney, Elliott, Madan and Yang (brie°y called
Cemy) obtain the estimation of ¾ (t; st)

2 in the general form:
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b¾2t =
2f 0 (yt)

f 00 (yt) yt

�
f (yt+4t)¡ f (yt)

f 0 (yt) yt
¡ yt+4t ¡ yt

yt

¸
1

4t (15)

where yt = exp (st) :
Cemy consider then the particular function:

f (y) = y1+³ ; (16)

so that the equation (15) becomes:

b¾2t;³ =
2

³

"
y1+³t+4t ¡ y1+³t

(1 + ³) y1+³t

¡ yt+4t ¡ yt
yt

#
1

4t: (17)

Pastorello in [15] corrects the value of the parameter ³ that minimizes
the conditional variance of b¾2t;³, it is:

³ = ¡19
11

¡ 12¹ (t; st)

11¾ (t; st)
2 (18)

In Hobson-Rogers model the Cemy equation (17) becomes:

³
´
p
1 + ²X2

t

´2
=
2

³

"
y1+³t+4t ¡ y1+³t

(1 + ³) y1+³t

¡ yt+4t ¡ yt
yt

#
1

4t (19)

The solution (b́;b²) represents the estimated values of the two parameters
and it

min
´;²

Ã³
´
p
1 + ²X2

t

´2
¡ 2

³

"
y1+³t+4t ¡ y1+³t

(1 + ³) y1+³t

¡ yt+4t ¡ yt
yt

#
1

4t

!2

(20)

A pair (b́;b²) is computed for every t 2 [t0; T ].
The estimation procedure for the bivariate Heston model is based on some

limit results in [7].
By introducing the "log-prices" Yt = logSt, Heston model can be speci¯ed

by means of the following bivariate SDE:
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dYt = (¹¡ Vt
2
)dt+

p
VtdBt; (21)

dVt = k(µ ¡ Vt)dt+ c
p
VtdWt:

Under some technical conditions, the estimation procedure suggested in
the quoted paper provides consistent estimates of the variance parameters.
Suppose that the available dataset for the log-prices is given by Yt1;Yt2; :::; Ytn,

equally spaced by ¢:
De¯ne the variables:

Xi = X
n
i =

1p
¢
(Yti ¡ Yti¡1) (22)

where ti = t
n
i = i¢; i = 1; 2; n:

Conditionally on F = ¾(Vs; s ¸ 0) the distribution function of the
"rescaled returns" (X1; X2; :::; Xn) is known to be n-dimensional Gaussian
with zero mean and covariance matrix:

§ =

2
6664

V1 0 ¢ ¢ ¢ 0
0 V2 ¢ ¢ ¢ 0
...

...
. . .

...
0 ¢ ¢ ¢ 0 Vn

3
7775 (23)

where

Vi :=
1

¢

Z ¢i

¢(i¡1)
Vsds; i = 1; 2; :::n: (24)

Vector (X1; X2; :::; Xn) is thus a variance Gaussian mixture with the sta-
tionary distribution of vector (V1; V2; :::Vn): Using the same notation as in
[7], we denote this mixture distribution, depending on µ; with Qnµ .
Setting

Qµ(f) : =

Z

Rd
f(u1; u2; :::; ud)Qµ(du1du2 ¢ ¢ ¢ dud)

P̂n(f) : =
1

n

n¡dX

i=0

f (Xn
i+1; X

n
i+2; :::; X

n
i+d)

with f in a speci¯c class of functions on Rd, the following main results are
proved in [7]:
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A)

P̂n(f )
a:s:! Qµ(f); (25)

as n goes to in¯nity;

B)

p
n

³
P̂n(f )¡Qµ(f)

´
d! N (0; Vµ(f; f )) ; (26)

as n goes to in¯nity.

For estimation purposes function f is essentially chosen as some mixed
moment, that is "power functions", of the variables Xi, which belong to the
class for which the stated results hold.
In particular A) implies that:

1

n

nX

1

X2
i
a:s:! E( ¹V1) (27)

1

n

nX

1

X4
i
a:s:! 3E( ¹V 21 )

1

n

n¡1X

1

X2
iX

2
i+1

a:s:! E( ¹V1 ¹V2)

Since the "stationary" moments of variables Vi can be expressed depend-
ing explicitly on the value of the variance process parameters, their estimates
are obtained through the solution of a non-linear system of equation based
on the convergence results stated above. The limit results guarantee that
the parameters estimates are consistent and have an asymptotic Gaussian
distribution.

3 Numerical Results: a comparison

The market data1taken into account are call options prices on the FTSE100
Index and on the exchange rate SF/USD, with di®erent strike prices and

1Market data has been provided by Datastream

8



di®erent maturities. To obtain parameters estimation, ¯ve years of FTSE100
Index and SF/USD data have been considered.
The price of a European call option is thus computed according to the

di®erent stochastic volatility model assumed for the dynamics of the under-
lying.
In the models by Hobson-Rogers and Duan option prices are obtained

trough Monte Carlo simulation of 1000 di®erent price trajectories and Mil-
stein scheme is adopted for the discretization of the continuous model.
On the contrary, Heston provides a closed formula for the computation

of option prices, which depends only upon the estimated parameters.
Some results are summed up in the next table, which reports Market

Prices for a call option on the FTSE100 Index, with 1-month time to matu-
rity, for di®erent values of the strike price2. The corresponding Model Prices,
also collected in the table, are derived according to four di®erent model as-
sumptions: Black and Scholes, Hobson and Rogers, Heston and Duan3.

K Market BS HOB-ROG HES TON DUAN

5825 360,5 365,835 313,0511 343,0252 361,145

5925 277 292,94 224,4709 264,8033 285,083

5975 238,5 259,71 182,5812 229,384 250,447

6025 202 228,778 137,4089 196,709 218,348

6075 168,5 200,196 117,8864 166,9251 188,441

6125 138 174,002 98,356 140,1161 160,926

6175 111 150,193 67,985 116,2987 136,306

6225 87 128,732 55,443 95,4228 114,396

6275 67 109,553 33,848 77,3763 94,976

6325 50 92,562 22,464 61,9939 78,708

6375 36,5 77,637 14,427 49,0681 64,681

6425 23 64,644 10,183 / 52,791

Figure 2: FTSE100 Call: one month to maturity

2Call Option prices on March, twenty-sixth 1999 , matutity April 1999. The strike
prices reported in the table are those for wich call options have been e®ectively traded

3The risk-free rate r is ¯xed at 0% and the parameter º in (2)) is ¯xed equal to 5

9



0

50

100

150

200

250

300

350

400

5825 5925 5975 6025 6075 6125 6175 6225 6275 6325 6375 6425

M a rket

BS

HOB-ROG

HESTON

DUAN

Figure 3: FTSE100 Call: comparing model and market prices

10



Di®erent results are summed up in the next table, which reports Mar-
ket Prices for a call option on the SF/USD change, with 3-months time to
maturity, for di®erent values of the strike price

K Market B S HOB-ROG HESTON DUAN

66 2,71 2,919 1,543 1,828 1,492

67 2,67 3,689 1,279 2,519 2,134

68 2,0 4,572 0,845 3,361 2,959

69 1,66 5,563 1,731 4,351 3,969

70 2,81 6,657 2,954 5,481 5,151

71 2,83 7,843 3,701 6,737 6,69

72 0,52 9,111 4,602 8,101 7,939

Figure 4: Call Option SF/USD Maturity: June 1999

4 Conclusions

The analysis given in this paper suggests some important considerations.
First of all the necessity of further investigations in volatility modelling due
to the fact that real data exhibit special features like: almost no correlation,
heavy tail and high threshold exceedances in clusters.
These observations becomes particularly true when looking back at the

"hot" period from August to October 1998: no one of models suggested
could forecast the occurrence of those events. More in practice, the empirical
comparison has to be done with very di®erent real data to understand if
there exists some relationship between a special kind of model and certain
data type.
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