

| ELSEVIER SCIENCE LTD., [DTD 4.1.0]<br>JOURNAL CHAOS ARTICLE No. 1738 | CHAOS 1738            | Δ  |
|----------------------------------------------------------------------|-----------------------|----|
| PAGES 1-21 DISPATCH 25 January 2001                                  | PROD. TYPE: FROM DISK | 11 |

Chaos, Solitons and Fractals 000 (2001) 000-000

CHAOS SOLITONS & FRACTALS

www.elsevier.nl/locate/chaos

# Nonlinear duopoly games with positive cost externalities due to spillover effects

Gian-Italo Bischi<sup>a,\*</sup>, Fabio Lamantia<sup>b</sup> <sup>a</sup> Istituto di Scienze Economiche, University of Urbino, via Saffi, 61026 Urbino, Italy <sup>b</sup> Facoltà di Economia, University of Catania, Italy Accepted 3 January 2001

# 8 Abstract

4 5

6

7

20

9 A Cournot duopoly game is proposed where the interdependence between the quantity-setting firms is not only related to the selling 10 price, determined by the total production through a given demand function, but also on cost-reduction effects related to the presence of 11 the competitor. Such cost reductions are introduced to model the effects of know-how spillovers, caused by the ability of a firm to take 12 advantage, for free, of the results of competitors' Research and Development (R&D) results, due to the difficulties to protect intel-13 lectual properties or to avoid the movements of skilled workers among competing firms. These effects may be particularly important in 14 the modeling of high-tech markets, where costs are mainly related to R&D and workers' training. The results of this paper concern the 15 existence and uniqueness of the Cournot-Nash equilibrium, located at the intersection of non-monotonic reaction curves, and its 16 stability under two different kinds of bounded rationality adjustment mechanisms. The effects of spillovers on the existence of the Nash 17 equilibrium are discussed, as well as their influence on the kind of attractors arising when the Nash equilibrium is unstable. Methods 18 for the global analysis of two-dimensional discrete dynamical systems are used to study the structure of the basins of attrac-19 tion. © 2001 Elsevier Science Ltd. All rights reserved.

# 21 1. Introduction

An *oligopoly* is a market structure where a few producers, each of appreciable size, manufacture the same commodity, or homogeneous commodities (i.e. perfect substitutable goods). The fewness of firms gives rise to *interdependencies*, that is, each producer must take into account the actions of the competitors in choosing its own action.

26 In the industrial organization literature, one of the most widely used mathematical representations of 27 oligopoly competition is the Cournot model, first introduced by the French Mathematician Cournot about 160 years ago, which describes a market where N quantity-setting firms, producing homogeneous goods, 28 29 update their production strategies in order to maximize their profits. In the original work of Cournot, as 30 well as in many of the subsequent papers, the above-mentioned interdependence only depends on the fact that the retail price p is determined by the total supply on the market,  $Q = q_1 + q_2 + \cdots + q_N$ , according to 31 a given inverse demand function, p = f(Q). But also other sources of interdependencies can be considered, 32 33 for example originated by positive cost externalities, i.e. a reduction of production cost due to the presence 34 of competitors. This may appear rather paradoxical, but several reasons can be given to support such a 35 cost-reduction effect, due to technological and intellectual spillovers between companies, related to ex-36 changes of information on technological innovations, skilled labor, results of Research and Development

\* Corresponding author.

E-mail addresses: bischi@econ.uniurb.it (G.-I. Bischi), lamantia@unict.it (F. Lamantia).



(R&D) investments. Indeed, as stressed by many authors, see e.g. [4,5,36,19], information may spill from 37 38 one firm to another, due to the difficulties of protecting intellectual properties. Moreover, when a firm 39 operates in a district where other firms producing the same goods already exist, it is more easy to find skilled 40 workers (thus giving a reduction of costs for workers training) and the presence of suitable structures for 41 transportation and other services may contribute to lower the costs for goods delivery. In particular, we 42 consider the fact that a firm producing goods for high-tech markets must invest a lot in R&D issues, and 43 when it increases its production it often dedicates more resources to R&D. But information may spill from 44 one firm to another, due to the difficulties of protecting intellectual properties, so it often happens that such 45 results on technological innovations become common industrial knowledge. This fact can be seen as a 46 positive cost externality, which can be used to model the trivial statement that successful inventions of rivals can be imitated by a firm at lesser cost than if they are reinvented by itself (see e.g. [19]). 47

All these facts introduce cost externalities which change the standard way of modeling Cournot oligopoly competition. In this paper we consider the simplest oligopoly market, where just two producers are present, called *duopoly*, and in order to model the presence of spillover effects we assume that the cost function of firm *i* has the form:

$$c_i(q_1, q_2) = \frac{k_i q_i + s_i(q_i)}{1 + \gamma_{ij} q_j}, \quad i, j = 1, 2, \ j \neq i,$$
(1)

where the parameter  $\gamma_{ii} \ge 0$  characterizes the positive cost externality in the cost of producer *i* related to the 53 54 presence of producer j,  $k_i \ge 0$  represent the unitary cost of firm i without taking into account the presence of 55 the spillovers and the function  $s_i(q_i)$  incorporates the extra costs (if any) which firm i pay to avoid spillovers. In fact, as stressed by some authors (see e.g. [3,34]) a firm may adopt some actions to avoid that its 56 57 R&D results, as well as its skilled workers, can spill over the competitors, and we assume that these costs 58 can be represented as an additive cost proportional to its own firm's production. Indeed, if R&D efforts of a 59 firm are proportional to its own production also the costs to protect them will be proportional to the 60 production, and the same can be said for the salary increases necessary to avoid the movement of skilled workers towards competing firms. For sake of simplicity we assume a linear function  $s_i(q_i)$ , so that these 61 costs can be included in a unique linear function at the numerator. Moreover, in order to focus our at-62 63 tention to the role of positive externalities due to spillover effects, we shall assume a linear demand function, expressed by  $p = a - b(q_1 + q_2)$ , where a and b are positive parameters. So, the profit of firm i becomes 64

$$\pi_i(q_1, q_2) = q_i[a - b(q_1 + q_2)] - \frac{c_i q_i}{1 + \gamma_{ij} q_j}, \quad i, j = 1, 2, \ i \neq j.$$
<sup>(2)</sup>

Our goal is to investigate the effect of increasing values of the spillover parameters  $\gamma_{ii}$  on the existence and 66 stability of the Nash equilibria<sup>1</sup> of the duopoly game. The assumption of a linear demand function, to-67 gether with the fact that also the cost functions become linear if spillover effects are neglected, i.e. 68  $\gamma_{12} = \gamma_{21} = 0$ , allow us to obtain linear reaction functions, <sup>2</sup> which is the simplest case proposed by all the 69 standard textbooks. In other words, the only cause for the non-linearity and (as we shall see in Section 2) of 70 71 non-monotonicity of the reaction curves is due to the presence of cost externalities due to spillover effects. 72 Other papers where cost externalities are considered in duopoly games are [28,36]. In both cases mul-73 tiplicity of Nash equilibria is obtained (see also [13]). Indeed, in our simple Cournot duopoly game, even if the introduction of spillover effects, in the form of cost externalities, has the effect of changing the reaction 74 curves from lines to strictly concave curves, which are unimodal for sufficiently high values of spillover 75 parameters, it is easy to see that at most one Nash equilibrium exists. This is proved in Section 2, where we 76 77 also show that the conditions to ensure the existence of a Nash equilibrium are weaker than in the linear 78 case.

 $<sup>^{1}</sup>$  A Nash equilibrium is a profile of strategies such that each firm's strategy is an optimal response to the other firms' strategies. In the Nash equilibrium none of the firms has an incentive to deviate, since each firm's strategy is that firm's best response to the other firms' predicted strategies.

 $<sup>^{2}</sup>$  A *reaction function* describes the profit-maximizing production of a firm given the production decision of the other firms. A Nash equilibrium can be defined as an intersection point of the reaction functions of the oligopolists.

In Sections 3 and 4, in order to investigate the effects of the spillovers on the stability of the Nash equilibrium, we analyze the Nash Equilibrium from an evolutionary point of view, i.e. we consider how the equilibrium arises as the outcome of a dynamic adjustment process occurring when less that fully rational players play the game repeatedly (see e.g. [22], or [7, Chapter 9).

83 Several kinds of boundedly rational adjustment processes may be considered, all sharing the same Nash 84 equilibrium but with different methods to update productions when the system is out of it. Of course, these 85 boundedly rational games are based on some kinds of profit increasing mechanism adopted by the firms, but no fully rational optimization solutions are obtained. This means that the players generally do not 86 reach a Nash equilibrium immediately, but play the game repeatedly in order to approach it. In Section 3 a 87 88 kind of boundedly rational adjustment mechanism is proposed, known in the literature as gradient dynamics (or myopic adjustment, see [9,21,40,41]). In this section we give results on the stability of the Nash 89 equilibrium and the local bifurcations through which it becomes unstable, and we also investigate on the 90 kind of attractors arising and the structure of their basins of attraction. In Section 4 we propose another 91 92 classical dynamic adjustment, which was originally proposed by Cournot himself, known as best reply with 93 naive expectations, and we show that in this case the Nash equilibrium is always stable. We end the paper 94 with a discussion in Section 5.

# 95 2. The reaction curves and the Nash equilibrium

As explained in Section 1, a Cournot duopoly game is based on the assumption that each player decides,
 given the competitor's action, its own production in order to maximize the expected profit

$$\max_{q_i} \pi_i(q_1, q_2), \quad i = 1, 2, \tag{3}$$

99 where  $\pi_i$  is the profit that firm *i* expects by selling a production of  $q_i$  units of good and assuming that the 100 competitor decides to produce a quantity  $q_i$ .

From the first-order conditions  $\partial \pi_i / \partial q_i = 0$ , we can easily get the solution of (3) with profit functions given by (2), expressed by the reaction functions

$$q_{i} = r_{i}(q_{j}) = \frac{1}{2b} \left( a - bq_{j} - \frac{c_{i}}{1 + \gamma_{ij}q_{j}} \right).$$
(4)

A simple check of the second derivatives testifies that these solutions indeed represent local profit maxima, provided that the quantities are non-negative. Accordingly, in the following we shall call reaction curves  $R_1$ and  $R_2$  the portions, inside the positive orthant, of the functions  $q_1 = r_1(q_2)$  and  $q_2 = r_2(q_1)$ , respectively. Hence, for a given expected production of the competitor,  $R_i$  represents the "Best Reply" of the quantitysetting firm *i* according to the optimization problem (3).

Every intersection between the two reaction curves, being an optimal choice for both firms, is characterized by the fact that no firm has an incentive to unilaterally deviate from its chosen strategy given the choice of its rival. As mentioned above, such a point is called a Cournot–Nash equilibrium in the economics literature. A Nash equilibrium might then serve as a prediction of what outcome will be observed in an oligopoly market with fully rational players.

For  $\gamma_{12} = \gamma_{21} = 0$  the reaction functions become linear, so the well-known case of linear reaction curves is obtained, for which the unique Nash equilibrium

$$E_* = \left(\frac{a + c_2 - 2c_1}{3b}, \frac{a + c_1 - 2c_2}{3b}\right)$$
(5)

117 exists, provided that the constant unitary costs are not too high, namely

$$2c_1 - c_2 < a \quad \text{and} \quad 2c_2 - c_1 < a.$$
 (6)

119 A necessary condition for (6) to be satisfied is that  $c_i < a$ , i = 1, 2, which, in the case of a linear cost 120 function, corresponds to the trivial statement that each unitary production cost must be less than the



maximum selling price. In the following we shall assume that this condition is always satisfied in order to rule out uninteresting situations.

123 In the presence of spillovers, i.e. with  $\gamma_{ij} > 0$ , the reaction curves are concave branches of hyperbolae. Let

124 us consider, for example,  $R_2$ . It is strictly concave, intersects the  $q_2$  axis in  $r_2(0) = (a - c_2)/2b$  (as in the 125 linear case), the  $q_1$  axis in  $q_1 = q_1^0$ , with

$$q_1^0 = \frac{a\gamma_{21} - b + \sqrt{(a\gamma_{21} - b)^2 + 4b\gamma_{21}(a - c_2)}}{2b\gamma_{21}}$$
(7)

127 and has a maximum for  $q_1 = \hat{q}_1 = (\sqrt{\gamma_{21}c_2/b} - 1)/\gamma_{21}$  provided that  $\gamma_{21} > b/c_2$ . Of course, the same de-128 scription also holds for the reaction curve  $R_1$  just swapping the indexes 1 and 2 (see Fig. 1).

129 So, in this simple Cournot game, the introduction of spillover effects in the form of cost externalities has 130 the effect of changing the reaction curves  $R_i$ , i = 1, 2, from straight lines to strictly concave curves, which are unimodal for sufficiently high values of spillover parameters  $\gamma_{ij}$ . We now show that in the presence of 131 spillovers the conditions on the parameters  $c_i$  (now representing the maximum unitary costs) in order to 132 ensure the existence of a Nash equilibrium  $E_*$  are weaker than in the linear case and, like in the linear case, 133 134 when  $E_*$  exists it is unique. This result is not obvious at a first sight, because in the presence of non-135 monotonic reaction curves multiple Nash equilibria may exist, see e.g. [13,28,39]. In [36] the fact that cost externalities may give multiplicity of Nash equilibria is extensively discussed. However, in our case, even if 136 137 an analytical computation of the positive solutions of the equations  $q_1 = r_1(q_2)$  and  $q_2 = r_2(q_1)$  is not easy, the following proposition can be proved. 138

139 **Proposition 1.** Let  $c_i < a$ , i = 1, 2. A unique Nash equilibrium  $E_* = (q_1^*, q_2^*)$  exists with  $0 < q_1^* < q_1^0$  and 140  $q_2^* = r_1(q_1^*)$ , where  $q_1^0$  is given in (7) if and only if

$$\gamma_{21} > \frac{2b(2c_2 - c_1 - a)}{a^2 - c_1^2}, \quad \gamma_{12} > \frac{2b(2c_1 - c_2 - a)}{a^2 - c_2^2}.$$
(8)

142 The proof is in Appendix A.

143 Notice that if

$$\gamma_{21} > \frac{2b(2c_2 - c_1 - a)}{a^2 - c_1^2}$$
 and  $\gamma_{12} = \frac{2b(2c_1 - c_2 - a)}{a^2 - c_2^2}$ 



Fig. 1. Graph of the reaction curves  $R_1$  and  $R_2$  of equation  $q_1 = r_1(q_2)$  and  $q_2 = r_2(q_1)$ , respectively.

145 then the Nash equilibrium collapses to a monopoly situation given by  $E_* = (0, (a - c_2)/2b)$ , where only 146 firm 2 produces, whereas if

$$\gamma_{21} = \frac{2b(2c_2 - c_1 - a)}{a^2 - c_1^2}$$
 and  $\gamma_{12} > \frac{2b(2c_1 - c_2 - a)}{a^2 - c_2^2}$ 

then the Nash equilibrium collapses into a monopoly situation given by  $E_* = ((a - c_1)/2b, 0)$ , where only firm 1 produces.

The presence of spillover effects enlarges, in the space of parameters, the region of existence of the Nash equilibrium. In fact, positive parameters  $\gamma_{ij}$  ensure the positivity of  $E_*$  even when conditions (6) are not satisfied. Moreover, a simple analysis of the reaction curves reveals that if  $\gamma_{ij}$  is increased then (ceteris paribus)  $q_i^*$  also increases, that is, as expected, a greater ability to take advantage of competitor's results allows one to improve production (and profits).

- The arguments given above only concern the existence of the Nash equilibrium, but nothing is said about its stability. In order to investigate the effects of the spillovers on the stability of the Nash equilibrium we must consider how the equilibrium arises as the outcome of a dynamic adjustment process occurring when less than fully rational players play the game repeatedly (see e.g. [22], or [7], Chapter 9). This "evolutionary" concept of the stability of a Nash equilibrium was already stated by Nash himself: we can attain such a optimal equilibrium solution not as a result of a fully rational choice (i.e. with the help of Adam Smith "invisible hand") but as the asymptotic (i.e. long-run) outcome of a repeated game played by boundedly rational players (see e.g. [31]).
- 163 Indeed, a fully rational game is based on the following assumptions:
- (i) each firm, in taking its optimal production decision, knows beforehand its rival's production decision;
- 165 (ii) each firm has a complete knowledge of the profit function.
- 166 Under these conditions of full information, the system moves straight (in one shot) to a Nash equilibrium, if
- 167 it exists, independently of the initial status of the market, so that no dynamic adjustment process is needed.
  168 However, it seems unlikely that firms would immediately coordinate on such an equilibrium. Indeed, as
- 169 stressed by many authors, firms are not so rational and often use simpler (and less expensive) "rules of
- 170 thumb" in their decision-making processes (see e.g. [6]). Nevertheless, even a not fully rational game may
- gradually move to a Nash equilibrium if it is played many and many times, so that the long-run outcome is
- 172 the same as if the player were fully rational. This idea has been largely confirmed after the advent of ex-
- 173 perimental economics, where human agents typically find their way to a Nash equilibrium by using trial and
- 174 error methods. So, it is interesting to ask if, even relaxing assumptions (i) and/or (ii) competitors would
- 175 learn to play according to a Nash equilibrium profile over time. This naturally leads to an analysis of the
- 176 stability properties of the Nash equilibria and to the consideration of various dynamic adjustment pro-
- 177 cesses.
- Of course, several kinds of boundedly rational adjustment processes may be considered, by weakening assumptions (i) and (ii).

# 180 3. Bounded rationality adjustment based on marginal profits

In this section we propose a repeated Cournot duopoly game where two boundedly rational players update their production strategies at discrete time periods by an adjustment mechanism based on a local estimate of the marginal profit  $\partial \pi_i / \partial q_i$ : At each time period t a firm decides to increase (decrease) its production for period t + 1 if it perceives positive (negative) marginal profit on the basis of information held at time t, according to the following dynamic adjustment mechanism (see e.g. [9]):

$$q_i(t+1) = q_i(t) + \alpha_i(q_i(t)) \frac{\partial \pi_i}{\partial q_i}(q_1(t), q_2(t)); \quad i = 1, 2,$$
(9)

187 where  $\alpha_i(q_i)$  is a positive function which gives the extent of production variation of *i*th firm following a 188 given profit signal. With this kind of adjustment dynamics both the assumptions (i) and (ii) are relaxed: in 189 fact, in order to follow this local adjustment mechanism the two producers are not requested to have a

5

complete knowledge of the demand and cost functions, since they only need to infer how the market will respond to small production changes by an estimate of the marginal profit, which may be obtained by brief experiments of small (or local) production variations performed at the beginning of period t (see e.g. [41]). Of course, this local estimate of expected marginal profits is much easier to obtain than a global knowledge of the demand function (involving values of  $q_i$  that may be very different from the current ones).

We also notice that a Nash equilibrium, defined by the first order conditions  $\partial \pi_i / \partial q_i = 0$  is a stationary point of the dynamical system defined by (9), but the converse is not necessarily true, as we shall see below. This adjustment mechanism, which is sometimes called *myopic* (see [20,21]) has been recently proposed by many authors, see e.g. [6,14,15,23,40,41], mainly with continuous time and constant  $\alpha_i$ . However, following [9,12], we believe that a discrete time decision process is more realistic since in real economic systems production decisions cannot be revised at every time instant. Moreover, we assume linear functions  $\alpha_i(q_i) = v_i q_i$ , i = 1, 2, since this assumption captures the fact that *relative* production variations are proportional to marginal profits, i.e.

$$\frac{q_i(t+1)-q_i(t)}{q_i(t)}=v_i\left(\frac{\partial\pi_i}{\partial q_i}\right),$$

where  $v_i$  is a positive *speed of adjustment*, which represents firm's *i* speed of reaction to profit signals per unitary production. With these assumptions, together with the profit functions given in (2), we obtain a discrete dynamical system of the form  $(q_1(t+1), q_2(t+1)) = T(q_1(t), q_2(t))$ , with the map  $T : \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$q_{1}' = q_{1} + v_{1}q_{1}\left[a - 2bq_{1} - bq_{2} - \frac{c_{1}}{1 + \gamma_{12}q_{2}}\right]$$

$$q_{2}' = q_{2} + v_{2}q_{2}\left[a - 2bq_{2} - bq_{1} - \frac{c_{2}}{1 + \gamma_{21}q_{1}}\right],$$
(10)

where ' denotes the unit-time advancement operator, that is, if the right-hand side variables represent the productions at time period t then the left-hand side represents the productions at time (t + 1). Of course, only non-negative trajectories obtained by the iteration of (10) are interesting from the point of view of economic applications.

Besides the Equilibrium point  $E_*$ , located at the intersections of the reaction curves (4), the map (10) has three boundary equilibria located along the coordinate axes

$$E_0 = (0,0), \quad E_1 = \left(\frac{a-c_1}{2b}, 0\right), \quad E_2 = \left(0, \frac{a-c_2}{2b}\right).$$
 (11)

216 The fixed points  $E_1$  and  $E_2$  can be denoted as monopoly equilibria provided that  $c_i < a, i = 1, 2$ .

It is worth to note that the coordinate axes  $q_i = 0$ , i = 1, 2, are invariant submanifold, i.e. if  $q_i = 0$  then 218  $q'_i = 0$ . This means that starting from an initial condition on a coordinate axis (*monopoly case*) the dynamics 219 are trapped into the same axis for each *t*, thus giving *monopoly dynamics*, governed by the restriction of the 220 map T to that axis. Such a restriction is given by the following one-dimensional map, obtained from (10) 221 with  $q_i = 0$ 

$$q_j = (1 + v_j(a - c_j))q_j - 2bv_j q_j^2 \quad j \neq i.$$
(12)

223 This map is conjugate to the standard logistic map  $x' = \mu x(1-x)$  through the linear transformation

$$q_j = \frac{1 + v_j(a - c_j)}{2bv_j} x \tag{13}$$

225 from which we obtain the relation  $\mu = 1 + v_i(a - c_i)$ .



If  $\gamma_{12} = \gamma_{21} = 0$  the dynamic game (10) reduces to the one studied in [9], which may be considered as a benchmark case in this context. As shown in [9], unbounded trajectories are obtained if the initial condition is taken sufficiently far from the Nash equilibrium, <sup>3</sup> hence  $E_*$  cannot be globally stable. Moreover, even if bounded trajectories are obtained, they may fail to converge to the Nash equilibrium since they may continue to move around it, on some more complex (periodic or chaotic) attractor or converge to the boundary equilibria.

## 232 3.1. Local stability analysis for boundary (monopoly) equilibria and the Nash equilibrium

In this section we perform the standard study of the local stability of the fixed points of the map (10), based on the localization, on the complex plane, of the eigenvalues of the Jacobian matrix

$$DT(q_1, q_2) = \begin{bmatrix} 1 + av_1 - 4v_1bq_1 - v_1bq_2 - \frac{v_1c_1}{1 + \gamma_{12}q_2} & v_1q_1\left(\frac{c_1\gamma_{12}}{(1 + \gamma_{12}q_2)^2} - b\right) \\ v_2q_2\left(\frac{c_2\gamma_{21}}{(1 + \gamma_{21}q_1)^2} - b\right) & 1 + av_2 - 4v_2bq_2 - v_2bq_1 - \frac{v_2c_2}{1 + \gamma_{21}q_1} \end{bmatrix}.$$
 (14)

236 The main results are summarized in the following proposition:

- 237 **Proposition 2.** Let  $c_i < a, i = 1, 2$ . Then
- (i) the fixed point  $E_0 = (0,0)$  is a repelling node;
- (ii) the monopoly equilibrium  $E_1$  is stable if

$$v_1(a-c_1) < 2 \quad \text{and} \ \gamma_{21} < \frac{2b(2c_2-c_1-a)}{a^2-c_1^2},$$
(15)

241 where the first inequality corresponds to the condition for attractivity along the invariant axis  $q_2 = 0$  and the 242 second inequality is the condition for attractivity along a direction transverse to the invariant axis. At 243  $v_1(a - c_1) = 2$  a flip bifurcation occurs which creates a cycle along the  $q_1$  axis, at

$$\gamma_{21} = \frac{2b(2c_2 - c_1 - a)}{a^2 - c_1^2}$$

245 a transcritical bifurcation occurs at which  $E_1$  and  $E_*$  merge and exchange the stability along the transverse 246 direction.

247 (iii) the monopoly equilibrium  $E_2$  is stable if

$$v_2(a-c_2) < 2$$
 and  $\gamma_{12} < \frac{2b(2c_1-c_2-a)}{a^2-c_2^2}$ , (16)

249 where the first inequality corresponds to the condition for attractivity along the invariant axis  $q_1 = 0$  and the 250 second inequality is the condition for attractivity along a direction transverse to the invariant axis. At 251  $v_2(a - c_2) = 2$  a flip bifurcation occurs which creates a cycle along the  $q_2$  axis, at

$$\gamma_{12} = \frac{2b(2c_1 - c_2 - a)}{a^2 - c_2^2}$$

253 a transcritical bifurcation occurs at which  $E_2$  and  $E_*$  merge and exchange the stability along the transverse 254 direction.

(iv) the fixed point  $E_*$  is a stable node if conditions (8) are satisfied and  $v_1$ ,  $v_2$  are sufficiently small; it

256 becomes a saddle point, through a supercritical flip bifurcation, as  $v_1$  or  $v_2$  are increased, or for increasing

257 values of  $\gamma_{12}$  or  $\gamma_{21}$  provided that  $v_1$  and  $v_2$  are not too small. For

<sup>&</sup>lt;sup>3</sup> From an economic point of view, diverging trajectories do not represent interesting evolutions, as they can be interpreted as an irreversible departure from optimality.



G.-I. Bischi, F. Lamantia / Chaos, Solitons and Fractals 000 (2001) 000-000

$$\gamma_{12} = \frac{2b(2c_1 - c_2 - a)}{a^2 - c_2^2}, \quad \left(\gamma_{21} = \frac{2b(2c_2 - c_1 - a)}{a^2 - c_1^2}\right)$$

# 259 a transcritical bifurcation occurs at which $E_* = E_2$ ( $E_* = E_1$ ).

260 The proof, based on the standard analysis of the eigenvalues, is given in Appendix A.

From the Proposition 2 we can deduce that whenever the Nash equilibrium exists, i.e.  $E_*$  is inside the positive orthant, the monopoly equilibria are transversely unstable (saddle points or repelling nodes according to the first inequalities in (15) and (16) are satisfied or not). This implies that when the Nash equilibrium exists then the duopoly does not collapse into a monopoly, i.e. coexistence of firms is preserved. Of course, coexistence in the long run does not necessarily mean that the game will converge to  $E_*$ , since  $E_*$ may be a saddle point and some non-stationary dynamics of the game may be observed around it.

This proposition also confirms the role of spillovers to help the coexistence in the market of the two firms involved in the duopoly competition, in the sense that greater spillover effects not only contribute to ensure the existence of the positive Nash equilibrium, where both the firms produce and share the market, but also contribute to make the monopoly equilibria more repelling in the direction transverse to the coordinate axes. This means that if, at a certain time period, the production of a firm is close to zero, say  $q_i \simeq 0$ , then a sufficiently high  $\gamma_{ij}$  helps this firm to increase its production for the next period. By using a term from ecology, we may say that spillovers help the *persistence* of producers in the market.

## 274 3.2. Effects of the spillovers on global dynamics

Up to now, we only considered questions related to the existence and local stability of the equilibria. However, other issues are important in the study of long-run dynamic behavior of the duopoly game considered. Firstly, the question of what happens when the positive equilibrium exists, but it is not stable. Do the trajectories starting near the unstable Nash equilibrium remain close to it, thus giving some kind of bounded and positive dynamics (characterized, for example, by periodic or chaotic oscillations) or do they irreversibly depart from optimality?

Secondly, the question of the extension, in the strategy space  $\mathbb{R}^2_+$ , of the set of initial conditions which generate *economically feasible trajectories* (i.e. bounded and positive trajectories, which may or not converge to the Nash equilibrium). Does every initial condition generate an economically feasible time evolution of the game (10) or only a subset of points located around the Nash equilibrium?

Both these questions require a global analysis of the dynamical system represented by the iteration of the map (10). As we shall see, this study can be performed through a continuous dialogue between analytic, geometric and numerical methods. This is typical of the study of the global properties of non-linear dynamical systems of dimension greater than one, as clearly emphasized, among others, in [16,32,38].

If  $\gamma_{12} = \gamma_{21} = 0$  the dynamic game (10) reduces to the one studied in [9], which will constitute our 289 290 benchmark (no-spillovers) case in this section. So, for both the questions outlined above, the effect of the spillovers will be evaluated in comparison with the results given in [9], where it is shown that when the Nash 291 292 equilibrium is unstable, feasible attractors may still exist around it, on which the productions of the two 293 firms exhibit periodic or chaotic time paths. In the following we shall see that similar dynamic situations are 294 still present with spillover effects, but changes in the spillover parameters may have remarkable effects on 295 the creation and the structure of the complex attractors, and consequently on the qualitative properties of 296 the time evolutions of the duopoly game. Concerning the second question, in [9] it is proved that diverging 297 and negative trajectories (hence economically unfeasible) are obtained if the initial condition is taken sufficiently far from the Nash equilibrium. Moreover, the boundary which separates the set of initial 298 299 strategies giving feasible trajectories from the complementary set is studied, and it is proved that in the 300 simplest case such boundary is a quadrilateral whose sides are given by portions of the invariant coordinate 301 axes and their rank-one preimages. However, global bifurcations are detected which lead to more complex 302 structures of the boundary as the speeds of adjustment  $v_i$  are varied. As we shall see below, similar results 303 hold with positive spillover parameters, and we shall evaluate the main differences caused by the increase of 304 these parameters.



## 305 3.2.1. Effects of spillovers on the properties of complex attractors

As stated in Proposition 2, with the dynamic adjustment considered in this section, based on gradient dynamics, the introduction of spillover effects has a destabilizing role, in the sense that starting from situations in which the game has a stable Nash equilibrium with  $\gamma_{12} = \gamma_{21} = 0$ , it may lose stability and become a saddle point for increasing values of one (or both)  $\gamma_{ij}$ , and more complex attractors appear around  $E_*$ . Moreover, when the duopoly dynamics fail to converge to  $E_*$ , an increase in the spillover parameters may have some particular effects on the kind of oscillatory dynamics of the duopoly game.

We now show some of the numerical experiments which support the statements given above. In Fig. 2(a), obtained with parameters a = 10, b = 0.5,  $v_1 = v_2 = 0.23$ ,  $c_1 = c_2 = 2$ , we consider the benchmark case of no spillover effects, i.e.  $\gamma_{12} = \gamma_{21} = 0$ . With this set of parameters, the Nash equilibrium

$$E_* = \left(\frac{a + c_2 - 2c_1}{3b}, \frac{a + c_1 - 2c_2}{3b}\right) = (5.\overline{3}, 5.\overline{3})$$

316 is stable, because the stability condition given in [9] for the no-spillovers case, i.e. 317  $3b^2q_1^*q_2^*v_1v_2 - 4bq_1^*v_1 - 4bq_2^*v_2 + 4 < 0$ , holds true. Its basin is represented by the white region, whereas the 318 grey region represents the basin of infinity, i.e. the set of initial conditions which generates unbounded 319 trajectories. As proved in [9], the basin of  $E_*$  is the interior of the quadrilateral  $OO_{-1}^{(1)}O_{-1}^{(3)}O_{-1}^{(2)}$ , where 320 O = (0,0) and the other three vertexes are its rank-1 preimages, i.e. the points such that  $T(O_{-1}^{(i)}) = O$ , 321 i = 1, 2, 3, given by

$$O_{-1}^{(1)} = \left(\frac{1 + v_1(a - c_1)}{2bv_1}, 0\right), \quad O_{-1}^{(2)} = \left(0, \frac{1 + v_2(a - c_2)}{2bv_2}\right)$$
(17)

323 and

$$O_{-1}^{(3)} = \left(\frac{v_1 v_2 (a + c_2 - 2c_1) + 2v_2 - v_1}{3bv_1 v_2}, \frac{v_1 v_2 (a + c_1 - 2c_2) + 2v_1 - v_2}{3bv_1 v_2}\right).$$
(18)

We now increase  $\gamma_{21}$  with  $\gamma_{12} = 0$ , in order to model an asymmetric situation where only one firm (firm 2 in this case) is able to take advantage from the rival's developments by exploiting its know-how. We obtain that the Nash equilibrium flip bifurcates as  $\gamma_{21}$  is increased, and in the situation shown in Fig. 2(b), obtained with  $\gamma_{21} = 1$  and all the other parameters with the same values as in Fig. 2(a), the Nash equilibrium  $E_* = (4.25, 7.49)$  is a saddle point. The generic feasible trajectory is attracted by a stable cycle of period two,



Fig. 2. Numerical representation of the attractors and the basins of attraction for the duopoly game with myopic adjustment. (a) For the benchmark (no spillover) case with parameters a = 10, b = 0.5,  $v_1 = v_2 = 0.23$ ,  $c_1 = c_2 = 2$ ,  $\gamma_{12} = \gamma_{21} = 0$ , the Nash equilibrium  $E_*$  is stable (a stable node). (b) With the same parameters a, b,  $v_i$ ,  $c_i$  as in (a) and asymmetric spillover parameters  $\gamma_{12} = 0$  and  $\gamma_{21} = 1$  the Nash equilibrium is unstable (a saddle point) and the generic trajectory starting from the white region converges to a stable cycle of period 2. The two figures are obtained by taking a grid of initial conditions and generating, for each of them, a numerically computed trajectory of the duopoly map. If the trajectory is diverging then a grey dot is painted in the point corresponding to the initial condition, otherwise a white dot is painted.

330 given by  $\mathscr{C}_2 = ((3.81, 6.46), (4.64, 8.27))$ . It can be noticed that the increase of  $\gamma_{21}$  induces an increase of  $q_2^*$ , 331 as remarked in Section 2, and the same is true "on the average" during the long-run periodic motion on the 332 cycle  $\mathscr{C}_2$ . Another effect which can be noticed in Fig. 2b concerns a change of the shape of the boundary 333 which separates the basin  $\mathscr{B}$  of the feasible trajectories from the basin of infinity, denoted by  $\mathscr{B}(\infty)$ . Indeed, 334  $\mathscr{B}$  becomes larger in the direction of  $q_2$ , so that the duopoly system seems to be less vulnerable with respect 335 to perturbations of  $q_2$ . We shall analyze this question in the next subsection where we shall give the analytic 336 expression of the boundary.

337 Here we are interested in the numerical exploration of the effects of the spillover parameters on the 338 qualitative properties of the complex attractors which exist around the unstable Nash equilibrium. In Fig. 339 3a we consider a different set of parameters, with slightly higher values of the speeds of adjustment, given by  $v_1 = v_2 = 0.32$  and, again, an asymmetric situation for the spillover parameters, given by  $\gamma_{12} = 0$  and 340  $\gamma_{21} = 0.25$ . So, the two firms only differ in the asymmetric behavior with respect to spillovers. Due to the 341 342 higher values of  $v_i$ , in this case the Nash equilibrium becomes unstable for smaller values of  $\gamma_{21}$  with respect to the case analyzed in Fig. 2. Indeed, in the situation shown in Fig. 3a chaotic dynamics occur, but the 343 344 shape of the chaotic area implies a certain degree of correlation, in the sense that high (low) productions of firm 1 are associated with high (low) productions of firm 2 in the same period. An increase in the asym-345 metric spillover leads to a progressive loss of correlation, as it can be seen in Fig. 3b, obtained with  $\gamma_{21} = 1$ . 346 347 In fact, in this case the large chaotic area suggests a very low correlation between the two production 348 choices, in the sense that low production of a firm may be associated with low or high production of its 349 competitor. So, even if in both the cases shown in Fig. 3 chaotic time series are obtained for the production 350 choices of the two competitors, an higher asymmetry in spillover parameters introduces a loss of pre-351 dictability because any correlation between the two production strategies is lost.

It can also be noticed that in Fig. 3b the boundary of the chaotic area is rather close to the basin boundary. Indeed a further increase of  $\gamma_{21}$  will lead to a contact between the chaotic area and the basin boundary which will cause the disappearance of the chaotic area (see [25,26]) and after the contact the generic trajectory will be divergent. Such a global bifurcation is called *final bifurcation* in [1,32] or *boundary crisis* in [24]. This confirms the destabilizing effects of too high spillover parameters.

357 We now consider, again, the set of parameters  $a, b, v_i$ , and  $c_i$  as in Fig. 3, and a more symmetric situation with respect to spillover parameters, namely  $\gamma_{12} = 0.2$  and  $\gamma_{21} = 0.25$ . In this case the chaotic area becomes 358 larger, as shown in Fig. 4a, but the density of the iterated points inside the chaotic area is mainly con-359 360 centrated along the diagonal  $q_1 = q_2$ , i.e. a generic trajectory inside the chaotic area visits much more often 361 the region around the diagonal with respect to the portions of the chaotic area which are far from the diagonal. This property reveals the occurrence of so-called on-off intermittency dynamics (see [35]) which 362 363 typically arise in symmetric and quasi-symmetric dynamic duopoly games, see [10,12,29]. In order to explain better the kind of dynamics occurring in such a situation we show, in Fig. 4b, the versus time plot of 364



Fig. 3. (a) For a = 10, b = 0.5,  $v_1 = v_2 = 0.32$ ,  $c_1 = c_2 = 2$ ,  $\gamma_{12} = 0$ ,  $\gamma_{21} = 0.25$ , the Nash equilibrium  $E_*$  is unstable and an attracting chaotic area exists around it. (b) With the same parameters a, b,  $v_i$ ,  $c_i$  as in (a) and  $\gamma_{12} = 0$ ,  $\gamma_{21} = 1$  a larger chaotic area exists around the unstable Nash equilibrium



G.-I. Bischi, F. Lamantia / Chaos, Solitons and Fractals 000 (2001) 000–000



Fig. 4. (a) With the same parameters a, b,  $v_i$ ,  $c_i$  as in Fig. 3 and  $\gamma_{12} = 0.2$ ,  $\gamma_{21} = 0.25$  the portion of the chaotic area close to the diagonal is more frequently visited by the iterated point. (b) With the same set of parameters as in (a) the versus time representation of the difference  $q_1(t) - q_2(t)$  is represented along a generic chaotic trajectory.

the difference  $q_1(t) - q_2(t)$  along a typical trajectory inside the chaotic area of Fig. 4a. It can be seen that the 365 two productions are almost synchronized, i.e.  $q_1(t) \simeq q_2(t)$ , for several time periods, but sudden bursts occur 366 sometimes at which some periods are characterized by very different production choices, which may be 367 368 called periods of *asynchronous* production. The time periods at which such asynchronous bursts occur are 369 randomly distributed along the time axis, so it is very difficult to make forecastings about their occurrence. 370 However, their maximum amplitude can be determined through the study of critical curves of the noninvertible map (10) as described in [11] and [10] (see Appendix B for a definition of critical curve). Indeed, as 371 372 shown in [11], the critical curves can be used to obtain the boundary of the chaotic area, so they define a 373 sort of bounded vessel inside which the asymptotic dynamics are trapped, thus giving an upper bound for 374 the on-off intermittency phenomena (see also [29]).

# 375 3.2.2. Effects of spillovers on the boundary of the set of feasible trajectories

In the following we denote by  $\mathcal{B}$  the set of points which generate feasible trajectories, i.e. trajectories 376 which are constituted by sequences of positive and bounded values of the state variables  $q_1$  and  $q_2$ . A 377 feasible trajectory may converge to the Nash equilibrium  $E_*$ , to another more complex attractor <sup>4</sup> inside  $\mathscr{B}$ 378 379 or to a one-dimensional invariant set embedded inside a coordinate axis. The last occurrence means that 380 one of the two competitors exits the market, i.e. a monopoly situation is reached. However, we already 381 know that when the Nash equilibrium exists, i.e. conditions (8) are satisfied, the coordinate axes are transversely unstable, so they behave as repelling sets with respect to trajectories approaching them from 382 the interior of the non-negative orthant, and consequently evolutions of the duopoly game toward mo-383 384 nopoly situations are excluded. Trajectories starting outside the set *B* represent exploding (or collapsing) evolutions of the economic system, because trajectories which start out of *B* always involve negative values 385 and diverge.<sup>5</sup> In other words, the iterated map (10) has an attractor at infinite distance, and we denote the 386 complementary of the set  $\mathscr{B}$  as  $\mathscr{B}(\infty)$ . This can be interpreted by saying that the adjustment mechanism 387 388 expressed by the dynamical system (10) is not suitable to model the time evolution of a duopoly system with 389 initial productions outside the set  $\mathcal{B}$ .

An exact determination of the boundary  $\partial \mathscr{B}$  which separates  $\mathscr{B}$  from  $\mathscr{B}(\infty)$ , and the study of the qualitative changes of its structure as some parameters are let to vary, are important in the understanding of the dynamic behavior of the duopoly game proposed. This is the main goal of this subsection. The same problem has been studied in [9] in the case  $\gamma_{12} = \gamma_{21} = 0$ , where it is shown that  $\partial \mathscr{B}$  is included in the set formed by the union of the coordinate axes and all their preimages, i.e. the set of all the points which are

<sup>&</sup>lt;sup>4</sup> Several attractors may coexist inside  $\mathscr{B}$ , each with its own basin of attraction, although this has not been observed in our numerical explorations.

<sup>&</sup>lt;sup>5</sup> This has been proved in [9] for the benchmark case with no spillovers, but similar arguments also apply to the model with spillovers.



mapped into the coordinate axes after a finite number of iterations of the map T. Indeed, the same result also applies to our case, as we explain below.

Let us first consider the dynamics of *T* restricted to the invariant axis  $q_2 = 0$ . From the one-dimensional restriction defined in (12), we can deduce that bounded trajectories along that invariant axis are obtained for  $v_1(a - c_1) \leq 3$  (corresponding to  $\mu \leq 4$  in (13)), provided that the initial conditions are taken inside the segment  $\omega_1 = OO_{-1}^{(1)}$ , where  $O_{-1}^{(1)}$  is the rank-1 preimage of the origin *O* computed according to the restriction (12), i.e.

$$O_{-1}^{(1)} = \left(\frac{v_1(a-c_1)}{2bv_1}, 0\right)$$
(19)

403 and divergent trajectories along the invariant  $q_1$  axis are obtained starting from an initial condition out of 404 the segment  $\omega_1$ . Analogously, when  $v_2(a - c_2) \leq 3$ , bounded trajectories along the invariant  $q_2$  axis are 405 obtained provided that the initial conditions are taken inside the segment  $\omega_2 = OO_{-1}^{(2)}$ , where

$$O_{-1}^{(2)} = \left(0, \frac{v_2(a-c_2)}{2bv_2}\right)$$
(20)

407 and, also in this case, divergent trajectories along the  $q_2$  axis are obtained starting from an initial condition 408 out of the segment  $\omega_2$ .

409 Consider now the region bounded by the segments  $\omega_1$  and  $\omega_2$  and their rank-1 preimages, say  $\omega_1^{-1}$  and 410  $\omega_2^{-1}$ , respectively. Such preimages can be analytically computed as follows. Let X = (x, 0) be a point of  $\omega_1$ . 411 Its preimages are the real solutions  $(q_1, q_2)$  of the algebraic system obtained from (10) with  $(q'_1, q'_2) = (x, 0)$ :

$$q_{1}\left[1+v_{1}\left(a-2bq_{1}-bq_{2}-\frac{c_{1}}{1+\gamma_{12}q_{2}}\right)\right]=x,$$

$$q_{2}\left[1+v_{2}\left(a-2bq_{2}-bq_{1}-\frac{c_{2}}{1+\gamma_{21}q_{1}}\right)\right]=0.$$
(21)

413 From the second equation it is easy to see that the preimages of the points of  $\omega_1$  are either located on the 414 same invariant axis  $q_2 = 0$  or on the curve of equation

$$q_2 = r_2(q_1) + \frac{1}{2bv_2},\tag{22}$$



Fig. 5. (a) The reaction curves  $R_i$ , i = 1, 2, and the lines  $\omega_i^{-1}$ , i = 1, 2, of Eqs. (22) and (23), respectively, are represented for the benchmark (no spillover) case with parameters a = 10, b = 0.5,  $v_1 = v_2 = 0.25$ ,  $c_1 = 3$ ,  $c_2 = 4$ ,  $\gamma_{12} = \gamma_{21} = 0$ . (b) The reaction curves  $R_i$ , i = 1, 2, and the lines  $\omega_i^{-1}$ , i = 1, 2, are represented for the same parameters a, b,  $v_i$ ,  $c_i$  as in (a) and asymmetric spillover parameters  $\gamma_{12} = 0$  and  $\gamma_{21} = 3$ .

416 where  $r_2$  is the reaction function defined in (4). Analogously, the preimages of a point Y = (0, y) of  $\omega_2$ 417 belong to the same invariant axis  $q_1 = 0$  or to the curve of equation

$$q_1 = r_1(q_2) + \frac{1}{2bv_1},\tag{23}$$

where  $r_1$  is the reaction function defined in (4). It is straightforward to see that curve (22) intersects the  $q_2$ 419 axis in the point  $O_{-1}^{(2)}$  and curve (23) intersects the  $q_1$  axis in the point  $O_{-1}^{(1)}$ . Moreover, the two curves in-420 tersect at a point  $O_{-1}^{(3)}$ , which is another rank-1 preimage of O = (0,0). These four rank-1 preimages of the 421 origin are the vertexes of a "quadrilateral"  $OO_{-1}^{(1)}O_{-1}^{(3)}O_{-1}^{(2)}$ , whose sides are  $\omega_1, \omega_2$  and their rank-1 preimages 422 located on the curves of Eqs. (22) and (23), respectively, denoted by  $\omega_1^{-1}$  and  $\omega_2^{-1}$  in the Figs. 5 and 6. It is 423 evident that the sides  $O_{-1}^{(2)}O_{-1}^{(3)}$  and  $O_{-1}^{(3)}O_{-1}^{(1)}$ , given by  $\omega_1^{-1}$  and  $\omega_2^{-1}$  of Eqs. (22) and (23), respectively, are 424 parallel translations of the reaction curves  $R_2$  and  $R_1$ , shifted of  $1/2bv_i$ , i = 2, 1, respectively. All the points 425 outside this quadrilateral cannot generate feasible trajectories. In fact, the points located on the right of  $\omega_2^{-1}$ 426 are mapped into points with negative  $q_1$  after one iteration, as can be easily deduced from the first com-427 ponent of (10), and the points located above  $\omega_1^{-1}$  are mapped into points with negative  $q_2$  after one iter-428 429 ation, as can be deduced from the second component of (10).

For  $\gamma_{12} = \gamma_{21} = 0$  the curves  $\omega_1^{-1}$  and  $\omega_2^{-1}$  reduce to straight lines, as already proved in [9]. This situation 430 431 is shown in Fig. 5(a), obtained with  $v_1 = 0.2$ ,  $v_2 = 0.25$ ,  $c_1 = 3$ ,  $c_2 = 4$  and  $\gamma_{12} = \gamma_{21} = 0$ . With this set of parameters the Nash equilibrium  $E_*$  is stable, and the set  $\mathcal{B}$  coincides with the basin of  $E_*$ . As it can be seen 432 433 in Fig. 5(a), where the numerically computed basin of  $E_*$  is represented by the white region and the basin of 434 infinity by the grey one, the boundary  $\partial \mathcal{B}$  is formed by  $\omega_1, \omega_2$  and their rank-1 preimages  $\omega_1^{-1}$  and  $\omega_2^{-1}$  of Eqs. (22) and (23), respectively, which are parallel to the reaction curves  $R_2$  and  $R_1$  (shown in Fig. 5). In Fig. 435 5(b) one of the spillover parameters is positive, namely  $\gamma_{21} = 3$ , and the other parameters are the same as in 436 Fig. 5(a). It can be noticed that in this case the upper boundary, belonging to the curve  $\omega_1^{-1}$ , is concave. 437 438 As proved in [9], the boundary of  $\partial \mathcal{B}$  is given, in general, by the union of all the preimages, of any rank,

439 of the segments  $\omega_1$  and  $\omega_2$ 

$$\partial \mathscr{B}(\infty) = \left(\bigcup_{n=0}^{\infty} T^{-n}(\omega_1)\right) \cup \left(\bigcup_{n=0}^{\infty} T^{-n}(\omega_2)\right),\tag{24}$$

441 where  $T^{-n}(\omega_i)$  represents the set of all the points which are mapped into a point of  $\omega_i$  after *n* iterations of 442 the map  $T(T^0(\omega_i))$  represents  $\omega_i$ ). However, the simple shape of  $\partial \mathcal{B}$  shown in Fig. 5 is due to the fact that 443 only preimages of rank-1 of  $\omega_i$  exist. In fact,  $\omega_1^{-1}$  and  $\omega_2^{-1}$  are entirely included inside a region of the plane 444 whose points have no preimages. The situation is different when the values of the parameters are such that 445 some portions of these curves belong to regions whose points have preimages, which constitute preimages



Fig. 6. (a) For a = 10, b = 0.5,  $v_1 = 0.25$ ,  $v_2 = 0.3$ ,  $c_1 = 4$ ,  $c_2 = 3$ ,  $\gamma_{12} = 2$ ,  $\gamma_{21} = 4$  the critical curves  $LC_{-1}$  and LC are represented, together with the boundaries which separate  $\mathscr{B}$  from  $\mathscr{B}(\infty)$ . (b) With the same parameters a, b,  $v_i$ ,  $c_i$  as in (a) and  $\gamma_{12} = 3$ ,  $\gamma_{21} = 7$  a portion of  $\mathscr{B}(\infty)$  belongs to the region  $Z_2$ , and consequently "lakes" of  $\mathscr{B}(\infty)$  are nested inside  $\mathscr{B}$ .



of rank higher than one of the segments  $\omega_i$ . In this case the set  $\mathscr{B}$  has a more complex topological structure, 447 due to the fact that the map T is non-invertible (see Appendix B). The transitions between qualitatively 448 different structures of the boundary  $\partial \mathscr{B}$ , as some parameters are varied, occur through so-called *contact* 449 *bifurcations* (see e.g. [32]) which can be described in terms of contacts between  $\partial \mathscr{B}$  and arcs of *critical curves*, 450 as described below.

451 The map *T* defined in (10) is a non-invertible map (see Appendix B for definitions). In fact, given a point 452  $(q'_1, q'_2) \in \mathbb{R}^2$  its preimages are computed by solving, with respect to  $q_1$  and  $q_2$ , the following sixth degree 453 algebraic system obtained from (10)

$$q_{1}\left[1+v_{1}\left(a-2bq_{1}-bq_{2}-\frac{c_{1}}{1+\gamma_{12}q_{2}}\right)\right] = q'_{1},$$

$$q_{2}\left[1+v_{2}\left(a-2bq_{2}-bq_{1}-\frac{c_{2}}{1+\gamma_{21}q_{1}}\right)\right] = q'_{2},$$
(25)

which may have up to six real solutions. For example, as shown above, the origin O = (0,0) can have four 456 rank-1 preimages, given by O itself and  $O_{-1}^{(i)}$ , i = 1, 2, 3.

For a given set of parameters, the critical curves of the map (10) can be easily obtained numerically 457 458 following the procedure outlined in Appendix B. In fact, being the map (10) continuously differentiable, the set  $LC_{-1}$  can be obtained numerically as the locus of points  $(q_1, q_2)$  for which the Jacobian determinant 459 det DT vanishes, where DT is given in (14). Then the critical curves LC, which separate regions  $Z_k$  whose 460 points have different numbers of preimages, are obtained by computing the images of the points of  $LC_{-1}$ , 461 i.e.  $LC = T(LC_{-1})$ . For example, for the set of parameters used to obtain Fig. 6(a), i.e.  $v_1 = 0.25$ ,  $v_2 = 0.3$ , 462 463  $c_1 = 4$ ,  $c_2 = 3$  and  $\gamma_{12} = 2$ ,  $\gamma_{21} = 4$ , the numerically computed set of points at which the Jacobian vanishes is formed by the union of two branches, denoted by  $LC_{-1}^{(a)}$  and  $LC_{-1}^{(b)}$  in Fig. 6(a). Also  $LC = T(LC_{-1})$  is formed by two branches, denoted in Fig. 6(a) by  $LC^{(a)} = T(LC_{-1}^{(a)})$  and  $LC^{(b)} = T(LC_{-1}^{(b)})$ . By definition (see Ap-464 465 pendix B) each branch of the critical curve LC separates the phase plane of T into regions whose points 466 have the same number of distinct rank-1 preimages: in our case  $LC^{(b)}$  separates the region  $Z_0$ , whose points 467 have no preimages, from the region  $Z_2$ , whose points have two distinct rank-1 preimages, and  $LC^{(a)}$  sep-468 469 arates the region  $Z_2$  from  $Z_4$ , whose points have four distinct preimages.

470 The curve  $LC_{-1}^{(b)}$  intersects the  $q_i$  axis at the point of maximum of restriction (12), given by 471  $M_{-1}^i = 1 + v_i(a - c_i)/4bv_i$ , and the curve  $LC^{(b)}$  intersects the  $q_i$  axis at the corresponding maximum value 472  $M^i = [1 + v_i(a - c_i)]^2/8bv_i$  of restriction (12).

As it can be seen in Fig. 6(a), the simple structure of the set  $\mathcal{B}$ , which is a simply connected set with the 473 474 boundary  $\partial \mathscr{B}$  having the "quadrilateral shape" described above, is due to the fact that the preimages  $\omega_i^{-1}$ , i = 1, 2, of the invariant axes, are entirely included inside the region  $Z_0$ , so that no preimages of higher rank 475 476 exist. The situation would be different if some portions of these lines were inside the regions  $Z_2$  or  $Z_4$ . Indeed, the fact that a portion of  $LC^{(b)}$  is close to  $\partial \mathscr{B}$  suggests that a contact bifurcation may occur if some 477 parameter is varied. In fact, if a portion of  $\mathscr{B}(\infty)$  enters  $Z_2$  after a contact of  $\partial \mathscr{B}$  with  $LC^{(b)}$ , then new 478 preimages of that portion will appear near  $LC_{-1}^{(b)}$  and such preimages must belong to  $\mathscr{B}(\infty)$ . This is the 479 480 situation illustrated by Fig. 6(b), obtained after an increase of the spillover parameters, i.e.  $\gamma_{12} = 3$  and  $\gamma_{21} = 7$ . In fact, after a contact between  $\partial \mathscr{B}$  and  $LC^{(b)}$ , a portion of  $\mathscr{B}(\infty)$ , say  $H_0$  (bounded by a portion of 481  $\omega_1^{-1}$  and LC) which was in region  $Z_0$  before the bifurcation, enters inside  $Z_2$ . The points belonging to  $H_0$ 482 have two distinct preimages, located at opposite sides with respect to the line  $LC_{-1}$ , with the exception of the 483 points of the curve  $LC^{(b)}$  inside  $B(\infty)$  whose preimages, according to the definition of LC, merge on  $LC^{(b)}_{-1}$ . 484 485 Since  $H_0$  is part of  $\mathscr{B}(\infty)$  also its preimages belong to  $\mathscr{B}(\infty)$ . In other words, the rank-1 preimages of  $H_0$  are formed by two areas joining along  $LC_{-1}$  and constitutes a hole of  $\mathscr{B}(\infty)$  nested inside  $\mathscr{B}$  (this hole is also 486 487 called "lake" in [33]). This is the largest hole appearing in Fig. 6(b), and is called the main hole. It lies inside 488 region  $Z_2$ , hence it has 2 preimages, which are smaller holes bounded by preimages of rank 3 of  $\omega_1$ . Even 489 these are both inside  $Z_2$ , so each of them has two further preimages inside  $Z_2$ , and so on. Now the boundary 490  $\partial \mathcal{B}$  is formed by the union of an external part, given by the coordinate axes and their rank-1 preimages (22) 491 and (23), and the boundaries of the holes, which are sets of preimages of higher rank of  $\omega_1$ . So, the global bifurcation just described transforms a simply connected basin into a multiply connected one, with a 492 493 countable infinity of holes, called *arborescent sequence of holes*, inside it (see [32,33] for a rigorous treatment 494 of this type of global bifurcation, or [1] for a simpler and charming exposition).

15

To sum up, our numerical results show that the structure of the basins may become more complex as the spillover parameters  $\gamma_{ij}$  are increased. Moreover, the size of the holes of  $\mathscr{B}(\infty)$  increases as one or both  $\gamma_{ij}$ become larger and larger. This leads to a higher probability of obtaining unfeasible trajectories, and this indicates that we are moving to unrealistic values of the spillover parameters.

We end this section by stressing that both in Figs. 6(a) and (b) segments of *LC* bound the upper portion of the chaotic area. Indeed, by drawing images of *LC* of higher rank, i.e.  $LC_k = T^k(LC)$ , an exact delimitation of the chaotic attractor can be obtained (see e.g. [1,32] or [38]), but we do not exploit such a property in this paper.

#### 503 4. Best reply dynamics with naive expectations

We now consider a different kind of boundedly rational dynamic adjustment, based on the assumption that the two firms have a global knowledge of the profit function, so that they are able to compute their best reply to the expected production choice of the competitor, given by

$$q_i(t+1) = r_i \left( q_j^{(e)}(t+1) \right) \, i, j = 1, 2 \quad i \neq j,$$
(26)

where  $q_j^{(e)}$  represents the expectation of producer *i* about the next period production of producer *j*. However, we assume that the two firms are not so rational to be able to know in advance the competitor's choices, and like in the original Cournot paper [17], we assume that each firm adopts a very simple (or *naive*) expectation, by guessing that the production of the other firm will remain the same as in current period, i.e.  $q_i^{(e)}(t+1) = q_i(t)$ . This assumption, together with (26), leads to the following dynamical system  $(q_1(t+1), q_2(t+1)) = T(q_1(t), q_2(t))$  where the map *T* is now given by

$$T: \begin{cases} lq_1' = r_1(q_2), \\ q_2' = r_2(q_1). \end{cases}$$
(27)

515 This dynamical system describes the so-called *best reply dynamics with naive expectations*. With this kind of 516 dynamic adjustment, only the assumption (i), given in Section 2, is relaxed, whereas (ii) is now assumed to 517 hold.

The equation  $q_i(t+1) = q_i(t)$ , which defines the steady states, is only satisfied at the intersections between the two reaction curves, hence the positive fixed points of the map (27) are Nash equilibria and vice versa. The stability properties of the Nash equilibrium, as well as the global dynamics of the dynamical system (27), are very simple. Indeed, due to the simple structure of the Jacobian matrix of (27), given by

$$DT(q_1, q_2) = \begin{bmatrix} 0 & r'_1(q_2) \\ r'_2(q_1) & 0 \end{bmatrix}$$

523 it is rather easy to prove, after some algebraic manipulations, that the eigenvalues,

$$z_{1,2} = \pm \sqrt{r_1'(q_2^*)r_2'(q_1^*)} = \pm \frac{1}{2}\sqrt{\frac{\left(b(1+q_2^*\gamma_{12})^2 - c_1\gamma_{12}\right)\left(b(1+q_1^*\gamma_{21})^2 - c_2\gamma_{21}\right)}{b^2(1+q_2^*\gamma_{12})^2(1+q_1^*\gamma_{21})^2}}$$

525 have modulus less than 1 whenever a positive Nash equilibrium  $E_* = (q_1^*, q_2^*)$  exists.

526 Moreover, in this case also the delimitation of the feasible set  $\mathscr{B}$  is quite straightforward: a feasible 527 trajectory is generated if and only if the initial condition is taken in the rectangle

 $\mathscr{B} = [0, q_1^0] \times [0, q_2^0], \tag{28}$ 

529 where  $q_1^0$  and  $q_2^0$  are the intersections of the reaction curves with the axes  $q_1$  and  $q_2$ , respectively given by (7) 530 and the expression obtained from it just swapping the indexes 1 and 2. In fact, from (27) follows that for 531  $0 < q_2 < q_2^0$  we have  $q'_1 > 0$  and for  $0 < q_1 < q_1^0$  we have  $q'_2 > 0$ , and all the successive iterations give 532 positive values being  $\max q'_1 = \max r_1(q_2) = r_1(\hat{q}_2) < q_1^0$  and, symmetrically,  $\max q'_2 = \max r_2(q_1) =$ 



G.-I. Bischi, F. Lamantia / Chaos, Solitons and Fractals 000 (2001) 000-000

533  $r_2(\hat{q}_1) < q_2^0$ . Instead, for  $q_1 > q_1^0$  we have  $q_2' < 0$ , i.e. a non-feasible trajectory, and, symmetrically, for 534  $q_2 > q_1^0$  we have  $q_1' < 0$ .

However, we may assume that whenever  $q_i(t) < 0$  a zero production decision occurs, i.e. we put  $q_i(t) = 0$ . With this assumption the best-reply dynamics gives  $q_j(t+1) = r_j(0) = (a - c_j)/2b$  and  $q_i(t+2) = r_i(q_j(t+1) = r_i((a - c_j)/2b) > 0$ . In other words, with this kind of adjustment the coordinate axes are not trapping, so that the duopoly market is maintained even if some periods of no-production choices occur. On the basis of the reasoning given above, and supported by numerical explorations, we can say that the generic trajectory starting from a positive initial condition converges to the unique Nash equilibrium  $E_*$  provided that it exists, i.e. (8) hold.

542 This behavior is very similar to the one observed in the benchmark game without spillover effects, which 543 in this case is given by the classical linear Cournot game with naive expectations, that is, the standard example considered in any elementary textbooks. However, the result was not obvious. In fact, when 544 spillovers are considered, and the parameters  $\gamma_{ij}$  are sufficiently large so that non-monotonic reaction 545 546 functions are got (as explained in Section 2) things could be not so trivial. In fact, best reply dynamics with 547 unimodal reaction functions may exhibit very complex behaviors, as was clearly proved in [39]. Indeed, as 548 shown in [8], the dynamics of discrete dynamical systems of form (27) with non-monotonic functions  $r_i$  may be extremely rich, being characterized by the coexistence of many periodic and chaotic attractors with very 549 550 intermingled basins of attraction. Particular economic situations where unimodal reaction functions are 551 obtained as a consequence of non-linearities in demand or cost functions have been described by Dana and 552 Montrucchio (see [18,28,37]). So, our assumption on cost externalities may be seen as a straightforward way 553 to obtain unimodal reaction functions starting from a simple economic situation, but our conclusions show 554 that no complexity is introduced if best reply dynamics with naive expectations is considered.

# 555 5. Conclusions

556 Starting from a standard Cournot duopoly game, we introduced positive cost externalities in order to 557 investigate, in a simple and well-known framework, the effects of spillovers in a high-tech market. These 558 effects are mainly related to the fact that firms which invest in R&D are not able to exclude that the benefits 559 obtained by their own research spill over to competitors, due, for example, to employees which change firms 560 or informal communication occurring during the innovation processes. From the analysis of the reaction 561 curves of the game, our results indicate that the presence of spillovers generally helps coexistence at (or 562 around) a Nash equilibrium, in the sense that they may contribute to avoid that a duopoly collapses into a 563 monopoly.

564 If we extend these results to an oligopoly situation, where more than two firms producing homogeneous 565 goods are present in the same district, the fact that spillover effects help to avoid the elimination of firms may be stated by saying that the existence of spillover effects may help the formation of clusters of firms 566 567 producing a given good in the same district. Indeed, it is well known that flow of informations and facilities among firms of the same region is one of the main reasons for the creation of clusters of competing firms 568 569 which operate in the same district, and *regional planners* interested in building up a certain industry cluster 570 can help this process by providing infrastructure and incentives for the emergence of spillovers (see e.g. 571 [4,5]).

572 In the spirit of the evolutionary games, we have also considered the problem of stability of the Nash 573 equilibrium of the duopoly game under two different adjustment processes with boundedly rational players, 574 both extensively supported by the current literature: one based on local (or myopic) profit maximization, 575 obtained by following the direction of increasing marginal profits, and one based on the best reply dy-576 namics with naive expectations (à la Cournot). With the first kind of dynamic adjustment we have shown that the introduction of spillover effects has a destabilizing role, in the sense that starting from situations in 577 578 which the game has a stable Nash equilibrium, it fails to converge for increasing values of spillover parameters, and more complex attractors are obtained. Moreover, also the structure of the basins may be-579 580 come more complex as the spillover effects increase.

Instead, with the second type of adjustment, the Nash equilibrium remains stable even in the presence of spillovers. The fact that the stability under bounded rationality depends on the kind of adjustment con-

sidered is well known, and our results confirm this. Of course, the type of adjustment process which is suitable to describe a given duopoly depends on the market one is considering. In the recent literature many authors stress that firm behaviors in real markets (and in experimental economics) are often characterized by myopic strategies, like the one modeled by gradient dynamics (see e.g. [6,21,40] to cite a few).

587 This paper also collocates in the stream of non-linear duopoly games with non-monotonic reaction 588 curves, which starting from the paper by Rand [39] gave rise to a flourishing literature (see e.g. [18,28,37] to 589 cite a few).

# 590 6. Uncited reference

591 [2]

## 592 Acknowledgements

We thank the participants to the Workshop MDEF-2000 in Urbino for their interesting comments and suggestions, in particular Luca Colombo and Laura Gardini. This work has been performed under the auspices of CNR, Italy, and under the activity of the national research project "non-linear Dynamics and Stochastic Models in Economics and Finance", MURST, Italy.

#### 597 Appendix A. Proofs

**Proof of Proposition 1.** In order to prove that there can be at most one Nash equilibrium, let us assume that a Nash equilibrium  $E_* = (q_1^*, q_2^*)$  exists, and let us consider the line *l* through  $E_*$  with slope -1, i.e. the line of equation  $q_1 + q_2 = q_1^* + q_2^*$ , which can be written as

$$q_2 = l(q_1) = -q_1 + \frac{1}{2}q_1^* + \frac{a}{2b} - \frac{c_2}{2b(1 + \gamma_{21}q_1^*)}$$

602 being  $q_2^* = r_1(q_1^*)$ . We now prove that the points of  $R_2$  with  $0 < q_1 < q_1^*$  lie below the line *l* and the points of 603  $R_2$  with  $q_1 > q_1^*$  lie above that line. In fact,  $r_2(q_1) < l(q_1)$  if and only if

$$\frac{1}{2}q_1 + \frac{c_2}{2b(1+\gamma_{21}q_1)} > q_1 - \frac{1}{2}q_1^* + \frac{c_2}{2b(1+\gamma_{21}q_1^*)}$$

605 which is true for  $0 < q_1 < q_1^*$  being, in this case,

$$\frac{c_2}{2b(1+\gamma_{21}q_1)} > \frac{c_2}{2b(1+\gamma_{21}q_1^*)} \quad \text{and} \quad \frac{1}{2}q_1 = q_1 - \frac{1}{2}q_1 > q_1 - \frac{1}{2}q_1^*$$

607 and the reverse inequalities hold if  $q_1 > q_1^*$ . Symmetrically, every point of  $R_1$  is below the line *l* for 608  $0 < q_2 < q_2^*$  and above *l* for  $q_2 > q_2^*$ . Therefore, there cannot be another point of intersection between  $R_1$ 609 and  $R_2$ .

610 In order to prove that at least one equilibrium exists if and only if conditions (8) hold, we recall that a 611 Nash equilibrium  $E_* = (q_1^*, q_2^*)$  exists if and only if  $q_1^*$  is a positive solution of  $F_1(q_1) = q_1$ , where 612  $F_1(q_1) = r_1(r_2(q_1))$ , and  $q_2^*$  is a positive solution of  $F_2(q_2) = q_2$ , where  $F_2(q_2) = r_2(r_1(q_2))$ . Let us first 613 consider the equation  $F_1(q_1) - q_1 = 0$ . We have  $F_1(0) \ge 0$  iff

$$\gamma_{12} \ge \frac{2b(2c_1 - c_2 - a)}{a^2 - c_2^2}$$
 and  $F_1(q_1^0) - q_1^0 \le 0$ 

615 iff  $\gamma_{21} \ge 2b(2c_2 - c_1 - a)/a^2 - c_1^2$ . So, if (8) hold then a solution  $q_1^* \in (0, q_1^0)$  exist and vice versa (due to the 616 already proved uniqueness). Symmetrically,  $F_2(0) \ge 0$  iff



G.-I. Bischi, F. Lamantia | Chaos, Solitons and Fractals 000 (2001) 000-000

$$\gamma_{21} \ge \frac{2b(2c_2 - c_1 - a)}{a^2 - c_1^2}$$
 and  $F_2(q_2^0) - q_2^0 \le 0$ 

618 iff  $\gamma_{12} \ge 2b(2c_1 - c_2 - a)/a^2 - c_2^2$ . This proves the statement on existence.

619 **Proof of Proposition 2.** We first consider the boundary equilibria  $E_i$ , i = 0, 1, 2. At  $E_0 = (0, 0)$  the Jacobian 620 matrix (14) becomes diagonal

$$DT(0,0) = \begin{bmatrix} 1 + v_1(a - c_1) & 0\\ 0 & 1 + v_2(a - c_2) \end{bmatrix}$$

whose eigenvalues, given by the diagonal entries, are greater than 1 if  $c_1 < a$  and  $c_2 < a$ . Thus, under the given assumptions,  $E_0$  is a repelling node with eigendirections along the coordinate axes.

624 At  $E_1 = (\frac{a-c_1}{2b}, 0)$  the Jacobian matrix is given by the triangular matrix

$$DT(E_1^*) = \begin{bmatrix} 1 - v_1(a - c_1) & v_1 \frac{a - c_1}{2b}(c_1 \gamma_{12} - b) \\ 0 & 1 + v_2 \left(\frac{(a + c_1)}{2} - \frac{c_2}{1 + \gamma_{21} \left(\frac{a - c_1}{2b}\right)}\right) \end{bmatrix}$$

626 whose eigenvalues, given by the diagonal entries, are  $z_1 = 1 - v_1(a - c_1)$ , with eigenvector  $\mathbf{r}_1^{(1)} = (1, 0)$  along

627 the  $q_1$  axis, and

$$z_{2} = 1 + v_{2} \left( \frac{(a+c_{1})}{2} - \frac{c_{2}}{1 + \gamma_{21}(\frac{a-c_{1}}{2b})} \right)$$

629 with eigenvector

$$\mathbf{r}_{1}^{(2)} = \left(1, \frac{2b(\lambda_{2} - \lambda_{1})}{v_{1}(a - c_{1})(c_{1}\gamma_{12} - b)}\right).$$

631 So, the condition for the stability along the invariant axis  $q_2 = 0$  is  $v_1(a - c_1) < 2$ , and when the reverse 632 inequality holds the well-known bifurcation scenario of a logistic map occurs, as can be easily deduced from 633 the topological conjugacy given in (13). The stability condition  $z_2 < 1$  can be written as the second of the 634 (15). Moreover, it is straightforward to see that for  $\gamma_{21} = 2b(2c_2 - c_1 - a)/a^2 - c_1^2$  we have  $z_2 = 1$  and 635  $q_1^{(0)} = (a - c_1)/2b$ , so that  $E_* = E_1$ . Hence, this corresponds to a typical transcritical bifurcation (see e.g. 636 [27] or [30]).

637 For  $E_2$  symmetric considerations hold just swapping the indexes 1 and 2.

To study the local stability of the fixed point  $E_* = (q_1^*, q_2^*)$ , we consider the Jacobian matrix (14) which, by using the fact that  $E_* \in R_1 \cap R_2$ , i.e.

$$2bq_i^* = a - bq_j^* - \frac{c_i}{1 + \gamma_{ij}q_j^*} \ i, j = 1, 2, \quad i \neq j,$$

641 becomes

$$DT(E_*) = \begin{bmatrix} 1 - 2v_1 bq_1^* & v_1 q_1^* \left(\frac{c_1 \gamma_{12}}{\left(1 + \gamma_{12} q_2^*\right)^2} - b\right) \\ v_2 q_2^* \left(\frac{c_2 \gamma_{21}}{\left(1 + \gamma_{21} q_1^*\right)^2} - b\right) & 1 - 2v_2 bq_2^* \end{bmatrix}$$
(A.1)

643 Let Tr<sup>\*</sup> and Det<sup>\*</sup> be, respectively, the trace and the determinant of the matrix A.1. Then the characteristic 644 equation becomes

$$P(z) = z^2 - \mathrm{Tr}^* \cdot z + \mathrm{Det}^* = 0$$

and a set of sufficient conditions for the stability of  $E_*$ , i.e. for the eigenvalues to be inside the unit circle of the complex plane, is given by

$$P(1) = 1 - \mathrm{Tr}^* + \mathrm{Det}^* > 0; \ P(-1) = 1 + \mathrm{Tr}^* + \mathrm{Det}^* > 0; \ 1 - \mathrm{Det}^* > 0$$
(A.2)

649 From the analysis of the boundary equilibria we already know that when one of conditions (8) becomes an 650 equality then we have P(1) = 0, i.e. z = 1 is an eigenvalue, and these equalities correspond to the occurrence 651 of transcritical bifurcations related to the merging of  $E_*$  with  $E_1$  and  $E_2$ , respectively. After some algebraic 652 manipulations <sup>6</sup> it is possible to show that when conditions (8) hold the eigenvalues are real, i.e. 653  $\text{Tr}^* - 4\text{Det}^* > 0$ , P(1) > 0 whereas P(-1) may change its sign. In particular, P(-1) > 0 is satisfied for 654 sufficiently small values of  $v_1$  or  $v_2$ , since P(1) > 0 as at least one of the  $v_i$  tends to zero, whereas it changes 655 sign if one of them is increased with the other one fixed at a positive value. Moreover, for fixed positive 656 values of both  $v_1$  and  $v_2$ , P(-1) becomes negative as one of the parameters  $\gamma_{ii}$  are increased. These sign

657 changes of P(-1) give rise to flip (or period doubling) bifurcations (see e.g. [27] or [30]).

#### 658 Appendix B. Non-invertible maps and critical curves

In this appendix, we give some basic definitions and a minimal vocabulary concerning non-invertible maps of the plane and the method of critical curves.  $^7$ 

661 Let us consider a two-dimensional map  $T: (x, y) \rightarrow (x', y')$  written in the form

$$(x',y') = T(x,y) = (f(x,y),g(x,y))$$
(A.3)

663 where  $(x, y) \in \mathbb{R}^2$  and f, g are assumed to be real valued continuous functions. The point  $(x', y') \in \mathbb{R}^2$  is 664 called rank-1 image of the point (x, y) under T, and (x, y) is called rank-1 preimage of the point (x', y'). The 665 point  $(x_t, y_t) = T^t(x, y), t \in \mathbb{N}$ , is called image of rank-t of the point (x, y), where  $T^0$  is identified with the 666 identity map and  $T^t(\cdot) = T(T^{t-1}(\cdot))$ . A point (x, y) such that  $T^t(x, y) = (x_t, y_t)$  is called rank-t preimage of 667  $(x_t, y_t)$ .

668 The map *T* is said to be non-invertible (or "many-to-one") if distinct points  $(x_a, y_a) \neq (x_b, y_b)$  exist which 669 have the same image,  $T(x_a, y_a) = T(x_b, y_b) = (x, y)$ . This can be equivalently stated by saying that points 670 (x, y) exist which have several rank-1 preimages, i.e. the inverse relation  $T^{-1}(x, y)$  is multivalued.

As the point (x, y) varies in the plane, the number of its rank-1 preimages can change, and according to 671 the number of distinct rank-1 preimages associated with each point of  $\mathbb{R}^2$ , the plane can be subdivided into 672 regions, denoted by  $Z_k$ , whose points have k distinct preimages. Generally pairs of real preimages appear or 673 disappear as the point (x', y') crosses the boundary separating regions characterized by a different number 674 of rank-1 preimages. Accordingly, such boundaries are generally characterized by the presence of two 675 coincident (merging) preimages. This leads us to the definition of *critical curves*, one of the distinguishing 676 677 features of non-invertible maps. The critical curve of rank-1, denoted by LC (from the French "Ligne Critique") is defined as the locus of points having two, or more, coincident rank-1 preimages. These 678 preimages are located in a set called critical curve of rank-0, denoted by  $LC_{-1}$ . The curve LC is the two-679 dimensional generalization of the notion of critical value (local minimum or maximum value) of a one-680 dimensional map, and  $LC_{-1}$  is the generalization of the notion of critical point (local extremum point). 681 682 From the definition given above it is clear that the relation  $LC = T(LC_{-1})$  holds, and the points of  $LC_{-1}$  in 683 which the map is continuously differentiable are necessarily points where the Jacobian determinant van-684 ishes:

$$LC_{-1} \subseteq \left\{ (x, y) \in \mathbb{R}^2 | \det DT = 0 \right\}$$
(A.4)

In fact, as  $LC_{-1}$  is defined as the locus of coincident rank-1 preimages of the points of LC, in any neighborhood of a point of  $LC_{-1}$  there are at least two distinct points mapped by T in the same point near LC. This means that the map T is not locally invertible in the points of  $LC_{-1}$  and, if the map T is continuously differentiable, it follows that det DT necessarily vanishes along  $LC_{-1}$ .

19

<sup>&</sup>lt;sup>6</sup> The algebraic calculations, performed by the package Mathematica, are available from the authors.

<sup>&</sup>lt;sup>7</sup> For a deeper treatment see [32]; see also [38] for several applications of the method of critical curves to non-invertible maps arising in dynamic economic modeling.



G.-I. Bischi, F. Lamantia / Chaos, Solitons and Fractals 000 (2001) 000-000

Portions of *LC* separate regions  $Z_k$  of the phase space characterized by a different number of rank - 1preimages, for example  $Z_k$  and  $Z_{k+2}$  (this is the standard occurrence). This property is at the basis of the contact bifurcations which give rise to complex topological structures of the basins, like those formed by non-connected sets or multiply connected sets. In fact, if a parameter variation causes a crossing between a basin boundary and a critical set which separates different regions  $Z_k$  so that a portion of a basin enters a region where an higher number of inverses is defined, then new components of the basin may suddenly appear at the contact.

Geometrically, the action of a non-invertible map T can be expressed by saying that it "folds and pleats" the plane, so that two or more distinct points are mapped into the same point, or, equivalently, that several inverses are defined which "unfold" the plane.

500 So, the backward iteration of a non-invertible map *repeatedly unfolds* the phase plane, and this implies that a basin may be non-connected, i.e. formed by several disjoint portions.

Instead, the fact that the forward iteration of a non-invertible map *repeatedly folds* the phase plane along the critical curves and their images, gives the property that segments of the critical curves *LC*, together with a suitable number of their images  $LC_k = T^k(LC)$ , may be used to bound a trapping regions, called absorbing areas in [32], which act like a bounded vessels inside which the asymptotic dynamics of the bounded trajectories are ultimately confined. In particular, this property of the critical curves allows one to obtain the boundaries of the chaotic areas, and practical procedures are given in the literature in order to obtain the

708 boundary of a chaotic area by segments of critical curves (see e.g. [1,11,32,38].

#### 709 References

- 710 [1] Abraham R, Gardini L, Mira C. Chaos in discrete dynamical systems. New York: Springer; 1997.
- 711 [2] Ashwin P, Buescu J, Stewart I. From attractor to chaotic saddle: a tale of transverse instability. Nonlinearity 1996;9:703–37.
- 712 [3] Acemoglu D. Why do new technologies complement skills? directed technical changes and wage inequality. Q J Econ 1998;113(4):1055-89.
- 714 [4] Audretsch DB, Feldman MP. R&D spillovers and the geography of innovation and production. Amer Econ Rev 1996;86:630–40.
- 715 [5] Aitken B, Hanson GH, Harrison AE. Spillovers, foreign investment, and export behavior. J Internat Econ 1997;43:103–32.
- 716 [6] Baumol WJ, Quandt RE. Rules of thumb and optimally imperfect decisions. Amer Econ Rev 1964;54:23-46.
- 717 [7] Binmore K. Fun and games. D.C. Heath; 1992.
- 718 [8] Bischi GI, Mammana C, Gardini L. Multistability and cyclic attractors in duopoly games. Chaos, Solitons & Fractals 2000;11:543-64.
- [9] Bischi GI, Naimzada A. Global analysis of a duopoly game with bounded rationality. Adv Dyn Games Appl 1999;5:361–85
   Birkhauser.
- [10] Bischi GI, Stefanini L, Gardini L. Synchronization, intermittency and critical curves in duopoly games. Math Comput Simul 1998;44:559–85.
- 724 [11] Bischi GI, Gardini L. Role of invariant and minimal absorbing areas in chaos synchronization. Phys Rev E 1998;58:5710-9.
- 725 [12] Bischi GI, Gallegati M, Naimzada A. Symmetry-breaking bifurcations and representative firm in dynamic duopoly games. Ann
   726 Oper Res 1999;89:253–72.
- 727 [13] Bischi GI, Kopel M. Equilibrium selection in a non-linear duopoly game with adaptive expectations. J Econ Behav Organ, 728 forthcoming.
- 729 [14] Bonanno G. Oligopoly equilibria when firms have local knowledge of demand. Internat Econ Rev 1998;29:45–55.
- 730 [15] Bonanno G, Zeeman C. Limited knowledge of demand and oligopoly equilibria. J Econ Theory 1985;35:276–83.
- 731 [16] Brock WA, Hommes CH. A rational route to randomness. Econometrica 1997;65:1059–95.
- 732 [17] Cournot A. Récherches sur les principes matématiques de la théorie de la richesse. Paris: Hachette; 1838.
- 733 [18] Dana RA, Montrucchio L. Dynamic complexity in duopoly games. J Econ Theory 1986;40:40–56.
- 734 [19] D'Aspremont C, Jaquemin A. Cooperative and non-cooperative R&D in duopoly with spillovers. Amer Econ Rev 1988;78:1133– 735 7.
- 736 [20] Dixit A. Comparative statics for oligopoly. Internat Econ Rev 1986;27:107–22.
- Flam SD. Oligopolistic Competition: from Stability to Chaos. In: Gori F, Geronazzo L, Galeotti M. editors. Non-linear dynamics
   in economics and social sciences. Lecture Notes in Economics and Mathematical Systems, vol. 399. Berlin: Springer; 1993. p. 232– 37.
- 740 [22] Fudenberg D, Levine D. The theory of learning in games. Cambridge, MA: MIT Press; 1998.
- 741 [23] Furth D. Stability and instability in oligopoly. J Econ Theory 1986;40:197–228.
- 742 [24] Grebogi C, Ott E, Yorke JA. Crises, sudden changes in chaotic attractors, and transient chaos. Physica D 1983:181-200.
- 743 [25] Gumowski I, Mira C. Bifurcation déstabilisant une solution chaotique d'un endomorphisme du 2nd ordre. Comptes Rendus Acad
   744 Sci Paris, Série A 1978;286:427–31.
- 745 [26] Gumowski I, Mira C. Dynamique Chaotique. Toulose: Cepadues Editions; 1980.

- 21
- 746 [27] Guckenheimer J, Holmes T. Non-linear oscillations, dynamical systems, and bifurcations of vector fields. New York: Springer; 747 1983.
- 748 [28] Kopel M. Simple and complex adjustment dynamics in cournot duopoly models. Chaos, Solitons & Fractals 1996;7(12):2031-41.
- 749 [29] Kopel M, Bischi GI, Gardini L. On new phenomena in dynamic promotional competition models with homogeneous and quasi 750 homogeneous firms. In: Delli Gatti D, Gallegati M, Kirman A. editors. Market structure, aggregation and heterogeneity. Berlin:
   751 Springer; 2000 p. 57–87.
- 752 [30] Lorenz HW. Non-linear dynamical economics and chaotic motion. 2nd ed. New York: Springer; 1993.
- 753 [31] Milnor J. John Nash and a beautiful mind. Notices Amer Math Soc 1998;45(10).
- 754 [32] Mira C, Gardini L, Barugola A, Cathala JC. Chaotic dynamics in two-dimensional non-invertible maps. Singapore: World 755 Scientific; 1996.
- [33] Mira C, Fournier-Prunaret D, Gardini L, Kawakami H, Cathala JC. Basin bifurcations of two-dimensional non-invertible maps:
   fractalization of basins. Internat J Bifure Chaos 1994;4:343–81.
- 758 [34] Nadiri MI. Innovations and technological spillovers. NBER Working Paper No. 4423, 1993.
- 759 [35] Ott E, Sommerer JC. Blowout bifurcations the occurrence of riddled basins and on-off intermittency. Phys Lett A 1994;188:39-47.
- 760 [36] Puhakka M., Wissink JP. Strategic complementarity, multiple equilibria and externalities in Cournot competition. Center for
- 761 Analytic Economics WP\#95-18, Cornell University, New York, 1995.
- 762 [37] Puu T. Chaos in duopoly pricing. Chaos, Solitons & Fractals 1991;1(6):573-81.
- 763 [38] Puu T. Attractors, bifurcations, and chaos. New York: Springer; 2000.
- 764 [39] Rand D. Exotic phenomena in games and duopoly models. J Math Econ 1978;5:173–84.
- 765 [40] Sacco PL. Adaptive response and cournotian behavior. Econ Notes 1991;20(1991):474-496,.
- 766 [41] Varian HR. Microeconomic analysis. 3rd ed. W.W. Norton; 1992.