Effort Dynamics in Supervised Workgroups

Arianna Dal Forno, Ugo Merlone

Department of Statistic and Applied Mathematics, University of Torino

MDEF2008, Urbino, 25-27 September 2008

Literature and Motivation

- Holmstrom (1982), Moral hazard in teams. BJE.
- Adams (1965), Inequity in social exchange. AESP.
- Dal Forno & Merlone (2007), Incentives in supervised teams: an experimental and computational approach. JSC.
- Dal Forno & Merlone (2008), Individual incentive in workgroups.
 From human subject experiments to agent-based simulation IJIEM.
- Dal Forno & Merlone (2008), Individual-based versus group-based incentives in supervised workgroups. The role of individual motivation. Submitted.

The Supervised Workgroup

subordinates

- a supervisor
- two subordinates

The Supervised Workgroup

- a supervisor
- two subordinates
- *u_i* effort with the supervisor
- \bullet I_i effort with the partner

The Supervised Workgroup

- a supervisor
- two subordinates
- u_i effort with the supervisor
- I_i effort with the partner

•
$$u_i + l_i \leq c_i$$

The production function

The production function is

$$(u_1 + u_2)^{\alpha} (I_1 + I_2)^{\beta}$$

where

- α: output elasticity with respect to the joint effort with the supervisor
- ullet eta: output elasticity with respect to the joint effort with the partner
- $0 \le \alpha \le 1$ and $\beta = 1 \alpha$

We assume that the production is sold at unitary price

The supervisor's problem

Agents' compensation is:

$$w_i = s + b_i u_i + b_t (u_1 + u_2)^{\alpha} (l_1 + l_2)^{\beta}$$

where:

- s is a base salary sufficient to meet the participation constraint of the agent
- b_i is the incentive given to subordinate i for its individual effort with supervisor
- b_t is the incentive given both for team output.

We assume that:

- the supervisor declares the bonuses
- the subordinates decide their efforts in order to maximize their wage.

The Supervisor's Problem

The supervisor can only observe u_i : She must design a linear compensation scheme (b_t, b_1, b_2) to maximize net production (bilevel programming problem)

$$\max_{b_{t},b_{1},b_{2}}\left(1-2b_{t}\right)\left(u_{1}+u_{2}\right)^{\alpha}\left(\mathit{I}_{1}+\mathit{I}_{2}\right)^{\beta}-b_{1}u_{1}-b_{2}u_{2}$$

s.t. given b_t , b_1 , b_2 the subordinates solve:

$$\max_{u_1, l_1} \quad w + b_t (u_1 + u_2)^{\alpha} (l_1 + l_2)^{\beta} + b_1 u_1$$

$$\max_{u_2, l_2} \quad w + b_t (u_1 + u_2)^{\alpha} (l_1 + l_2)^{\beta} + b_2 u_2$$

The Agent's Problem

Assume agents maximize the gross production

$$\max_{u_1,\,u_2,\,l_1,\,l_2} \; (u_1+u_2)^{\alpha} \, (l_1+l_2)^{\beta} \quad \text{sub} \quad u_i+l_i \leq c_i, \quad i=1,2$$

$$\begin{cases} u_1 + u_2 &= \frac{\alpha}{\alpha + \beta} (c_1 + c_2) \\ l_1 + l_2 &= \frac{\beta}{\alpha + \beta} (c_1 + c_2) \end{cases}$$

$$(u_i, l_i) = (\frac{\alpha}{\alpha + \beta} c_i, \frac{\beta}{\alpha + \beta} c_i), \quad i = 1, 2$$

The Agent's Problem

Assume agents maximize the gross production

$$\max_{u_1, u_2, l_1, l_2} (u_1 + u_2)^{\alpha} (l_1 + l_2)^{\beta}$$
 sub $u_i + l_i \leq c_i$, $i = 1, 2$

There is a continuum of solutions

$$\begin{cases} u_1 + u_2 &= \frac{\alpha}{\alpha + \beta} (c_1 + c_2) \\ l_1 + l_2 &= \frac{\beta}{\alpha + \beta} (c_1 + c_2) \end{cases}$$

$$(u_i, l_i) = (\frac{\alpha}{\alpha + \beta} c_i, \frac{\beta}{\alpha + \beta} c_i), \quad i = 1, 2$$

The Agent's Problem

Assume agents maximize the gross production

$$\max_{u_1, u_2, l_1, l_2} (u_1 + u_2)^{\alpha} (l_1 + l_2)^{\beta}$$
 sub $u_i + l_i \leq c_i$, $i = 1, 2$

There is a continuum of solutions

$$\begin{cases} u_1 + u_2 &= \frac{\alpha}{\alpha + \beta} (c_1 + c_2) \\ l_1 + l_2 &= \frac{\beta}{\alpha + \beta} (c_1 + c_2) \end{cases}$$

a rather natural effort allocation is

$$(u_i, l_i) = (\frac{\alpha}{\alpha + \beta} c_i, \frac{\beta}{\alpha + \beta} c_i), \quad i = 1, 2$$

which is focal in the sense of Schelling (1960)

The Supervisor's Problem

With fully rational agents the solution is obvious

$$\begin{cases} b_t = \varepsilon > 0 \\ b_1 = 0 \\ b_2 = 0 \end{cases}$$

Formalization

The simpler dynamics: the rational case \Rightarrow focal equilibrium

$$\begin{cases} I_1^* = \frac{\beta c_1}{\alpha + \beta} \\ I_2^* = \frac{\beta c_2}{\alpha + \beta} \end{cases}$$

This equilibrium cannot hold in the long run when the subordinates have different capacities: individuals with different capacity but same reward may experience inequity (Adams, 1965):

" Inequity exists for Person whenever he perceives that the ratio of his outcomes to the inputs and the ratio of Other's outcomes to Other's input are unequal."

$$\frac{O_P}{I_P}
eq \frac{O_a}{I_a}$$

Formalization

The simpler dynamics: the rational case \Rightarrow focal equilibrium

$$\begin{cases} I_1^* = \frac{\beta c_1}{\alpha + \beta} \\ I_2^* = \frac{\beta c_2}{\alpha + \beta} \end{cases}$$

This equilibrium cannot hold in the long run when the subordinates have different capacities: individuals with different capacity but same reward may experience inequity (Adams, 1965):

" Inequity exists for Person whenever he perceives that the ratio of his outcomes to the inputs and the ratio of Other's outcomes to Other's input are unequal."

$$\frac{O_P}{I_P}
eq \frac{O_a}{I_a}$$

Formalization

The simpler dynamics: the rational case \Rightarrow focal equilibrium

$$\begin{cases} I_1^* = \frac{\beta c_1}{\alpha + \beta} \\ I_2^* = \frac{\beta c_2}{\alpha + \beta} \end{cases}$$

This equilibrium cannot hold in the long run when the subordinates have different capacities: individuals with different capacity but same reward may experience inequity (Adams, 1965):

"Inequity exists for Person whenever he perceives that the ratio of his outcomes to the inputs and the ratio of Other's outcomes to Other's input are unequal."

$$\frac{O_P}{I_P}
eq \frac{O_a}{I_a}$$

Formalization

The simpler dynamics: the rational case ⇒ focal equilibrium

$$\begin{cases} I_1^* = \frac{\beta c_1}{\alpha + \beta} \\ I_2^* = \frac{\beta c_2}{\alpha + \beta} \end{cases}$$

This equilibrium cannot hold in the long run when the subordinates have different capacities: individuals with different capacity but same reward may experience inequity (Adams, 1965):

" Inequity exists for Person whenever he perceives that the ratio of his outcomes to the inputs and the ratio of Other's outcomes to Other's input are unequal."

$$\frac{O_P}{I_P} \neq \frac{O_a}{I_a}$$

Formalization

Two-dimensional map $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$T(l_1, l_2): \begin{cases} l'_1 = r_1(l_2) \\ l'_2 = r_2(l_1) \end{cases}$$

Reaction functions: $r_1: L_2 \to L_1$ and $r_2: L_1 \to L_2$

Strategy sets: $L_1 = [0, c_1] \subseteq \mathbb{R}$ and $L_2 = [0, c_2] \subseteq \mathbb{R}$

Trajectory: given an initial condition $(l_1^0, l_2^0) \in L_1 \times L_2$

$$\forall t \geq 0, \qquad \left\{\mathit{I}_{1}^{t},\mathit{I}_{2}^{t}\right\} = \mathit{T}^{t}\left(\mathit{I}_{1}^{0},\mathit{I}_{2}^{0}\right)$$

Formalization

Formalization

Formalization

Formalization

Family of feasible functions:

$$\left(\begin{array}{c} t + 1 \\ t \end{array} \right) \left(\begin{array}{c} t \\ 2 \end{array} \right)^{k_1 - 1} 2^{-\frac{t^2}{2t}}$$

$$\left\{ \begin{array}{l} I_1^{t+1} = \lambda_1 \left(\frac{I_2^t}{\theta_1}\right)^{k_1 - 1} e^{-\frac{I_2^t}{\theta_1}} \\ \\ I_2^{t+1} = \lambda_2 \left(\frac{I_1^t}{\theta_2}\right)^{k_2 - 1} e^{-\frac{I_1^t}{\theta_2}} \end{array} \right.$$

$$\lambda_i = \frac{\beta c_i}{\alpha + \beta} \left(\frac{e}{k_i - 1} \right)^{k_i - 1}$$

$$\theta_i = \frac{\beta c_i}{(\alpha + \beta)(k_i - 1)}$$

$$\begin{cases} I_1^{t+1} = \frac{\beta c_1}{\alpha + \beta} \left(\frac{(\alpha + \beta)I_2^t}{\beta c_1} \right)^{k_1 - 1} e^{(k_1 - 1) \left(1 - \frac{(\alpha + \beta)I_2^t}{\beta c_1} \right)} \\ I_2^{t+1} = \frac{\beta c_2}{\alpha + \beta} \left(\frac{(\alpha + \beta)I_1^t}{\beta c_2} \right)^{k_2 - 1} e^{(k_2 - 1) \left(1 - \frac{(\alpha + \beta)I_1^t}{\beta c_2} \right)} \end{cases}$$

Formalization

Family of feasible functions:

Conditions on parameters:

$$\begin{cases} I_1^{t+1} = \lambda_1 \left(\frac{I_2^t}{\theta_1}\right)^{k_1 - 1} e^{-\frac{I_2^t}{\theta_1}} \\ I_2^{t+1} = \lambda_2 \left(\frac{I_1^t}{\theta_2}\right)^{k_2 - 1} e^{-\frac{I_1^t}{\theta_2}} \end{cases}$$

$$\lambda_i = \frac{\beta c_i}{\alpha + \beta} \left(\frac{e}{k_i - 1} \right)^{k_i - 1}$$

$$\theta_i = \frac{\beta c_i}{(\alpha + \beta)(k_i - 1)}$$

$$\begin{cases} I_1^{t+1} = \frac{\beta c_1}{\alpha + \beta} \left(\frac{(\alpha + \beta) I_2^t}{\beta c_1} \right)^{k_1 - 1} e^{(k_1 - 1) \left(1 - \frac{(\alpha + \beta) I_2^t}{\beta c_1} \right)} \\ I_2^{t+1} = \frac{\beta c_2}{\alpha + \beta} \left(\frac{(\alpha + \beta) I_1^t}{\beta c_2} \right)^{k_2 - 1} e^{(k_2 - 1) \left(1 - \frac{(\alpha + \beta) I_1^t}{\beta c_2} \right)} \end{cases}$$

Formalization

Family of feasible functions:

Conditions on parameters:

$$\begin{cases} I_1^{t+1} = \lambda_1 \left(\frac{I_2^t}{\theta_1}\right)^{k_1 - 1} e^{-\frac{I_2^t}{\theta_1}} & \lambda_i = \frac{\beta c_i}{\alpha + \beta} \left(\frac{e}{k_i - 1}\right)^{k_i - 1} \\ I_2^{t+1} = \lambda_2 \left(\frac{I_1^t}{\theta_2}\right)^{k_2 - 1} e^{-\frac{I_1^t}{\theta_2}} & \theta_i = \frac{\beta c_i}{(\alpha + \beta)(k_i - 1)} \end{cases}$$

Reaction functions:

$$\begin{cases} I_1^{t+1} = \frac{\beta c_1}{\alpha + \beta} \left(\frac{(\alpha + \beta) I_2^t}{\beta c_1} \right)^{k_1 - 1} e^{(k_1 - 1) \left(1 - \frac{(\alpha + \beta) I_2^t}{\beta c_1} \right)} \\ I_2^{t+1} = \frac{\beta c_2}{\alpha + \beta} \left(\frac{(\alpha + \beta) I_1^t}{\beta c_2} \right)^{k_2 - 1} e^{(k_2 - 1) \left(1 - \frac{(\alpha + \beta) I_1^t}{\beta c_2} \right)} \end{cases}$$

MDEF2008

Formalization

Family of feasible functions:

Conditions on parameters:

$$\begin{cases} I_1^{t+1} = \lambda_1 \left(\frac{I_2^t}{\theta_1}\right)^{k_1 - 1} e^{-\frac{I_2^t}{\theta_1}} & \lambda_i = \frac{\beta c_i}{\alpha + \beta} \left(\frac{e}{k_i - 1}\right)^{k_i - 1} \\ I_2^{t+1} = \lambda_2 \left(\frac{I_1^t}{\theta_2}\right)^{k_2 - 1} e^{-\frac{I_1^t}{\theta_2}} & \theta_i = \frac{\beta c_i}{(\alpha + \beta)(k_i - 1)} \end{cases}$$

$$k_1 = k_2 = 1$$
 \rightarrow Tolerant agents

$$\begin{cases} I_1^{t+1} = \frac{\beta c_1}{\alpha + \beta} \\ I_2^{t+1} = \frac{\beta c_2}{\alpha + \beta} \end{cases}$$

Unique (stable) fixed point. The production is maximized.

$$k_1=1$$
 , $k_2>1$ \rightarrow Only one tolerant agent

$$\left\{ \begin{array}{l} I_1^{t+1} = \frac{\beta c_1}{\alpha + \beta} \\ \\ I_2^{t+1} = \frac{\beta c_2}{\alpha + \beta} \left(\frac{(\alpha + \beta)I_1^t}{\beta c_2} \right)^{k_2 - 1} \mathrm{e}^{\left(k_2 - 1\right)\left(1 - \frac{(\alpha + \beta)I_1^t}{\beta c_2}\right)} \end{array} \right.$$

Unique (stable) fixed point. If $c_1 = c_2$ then the production is maximized.

Efficiency

Proposition

Assume that one subordinate is tolerant and the other is not:

$$k_1 = 1, k_2 > 1.$$

Then:

- the production is maximized when their capacities are identical.
- for any fixed capacity gap, the intolerant agent reduces the effort with the colleague to a greater extent if his capacity is the largest; yet, in this case, the production variation is not necessarily the greatest.

$k_1 > 1$, $k_2 > 1 \rightarrow No$ tolerant agents

$$\left\{ \begin{array}{l} l_1^{t+1} = \frac{\beta c_1}{\alpha + \beta} \left(\frac{(\alpha + \beta)l_2^t}{\beta c_1} \right)^{k_1 - 1} e^{\left(k_1 - 1\right) \left(1 - \frac{(\alpha + \beta)l_2^t}{\beta c_1}\right)} \\ \\ l_2^{t+1} = \frac{\beta c_2}{\alpha + \beta} \left(\frac{(\alpha + \beta)l_1^t}{\beta c_2} \right)^{k_2 - 1} e^{\left(k_2 - 1\right) \left(1 - \frac{(\alpha + \beta)l_1^t}{\beta c_2}\right)} \end{array} \right) \end{array} \right.$$

One, two, or three fixed points.

Eigenvalues:

$$\lambda_{1} = -\sqrt{e^{\frac{\beta c_{1} - l_{1}}{\beta c_{1}}\left(k_{1} - 1\right) + \frac{\beta c_{2} - l_{2}}{\beta c_{2}}\left(k_{2} - 1\right)}\left(\frac{l_{1}}{\beta c_{1}}\right)^{k_{1} - 2}\left(k_{1} - 1\right)\frac{\beta c_{1} - l_{1}}{\beta c_{1}}\left(\frac{l_{2}}{\beta c_{2}}\right)^{k_{2} - 2}\left(k_{2} - 1\right)\frac{\beta c_{2} - l_{2}}{\beta c_{2}}}$$

$$\lambda_{2} = \sqrt{e^{\frac{\beta c_{2} - \frac{1}{2}}{\beta c_{2}}\left(k_{2} - 1\right) + \frac{\beta c_{1} - l_{1}}{\beta c_{1}}\left(k_{1} - 1\right)\left(\frac{l_{2}}{\beta c_{2}}\right)^{k_{2} - 2}\left(k_{2} - 1\right)\frac{\beta c_{2} - l_{2}}{\beta c_{2}}\left(\frac{l_{1}}{\beta c_{1}}\right)^{k_{1} - 2}\left(k_{1} - 1\right)\frac{\beta c_{1} - l_{1}}{\beta c_{1}}\left(k_{1} - 1\right)\frac{\beta c_{2} - l_{2}}{\beta c_{1}}\left(k_{2} - 1\right)\frac{\beta c_{2} - l_{2}}{\beta c_{2}}\left(\frac{l_{1}}{\beta c_{1}}\right)^{k_{1} - 2}\left(k_{1} - 1\right)\frac{\beta c_{2} - l_{2}}{\beta c_{1}}\left(k_{2} - 1\right)\frac{\beta c_{2} - l_{2}}{\beta c_{2}}\left(\frac{l_{1}}{\beta c_{1}}\right)^{k_{1} - 2}\left(k_{1} - 1\right)\frac{\beta c_{2} - l_{2}}{\beta c_{1}}\left(k_{2} - 1\right)\frac{\beta c_{2} - l_{2}}{\beta c_{2}}\left(\frac{l_{1}}{\beta c_{1}}\right)^{k_{1} - 2}\left(k_{1} - 1\right)\frac{\beta c_{2} - l_{2}}{\beta c_{1}}\left(k_{1} - 1\right)\frac{\beta c_{2} - l_{2}}{\beta c_{2}}\left(\frac{l_{1}}{\beta c_{1}}\right)^{k_{1} - 2}\left(k_{1} - 1\right)\frac{\beta c_{2} - l_{2}}{\beta c_{1}}\left(k_{1} - 1\right)\frac{\beta c_{2} - l_{2}}{\beta c_{2}}\left(\frac{l_{1}}{\beta c_{1}}\right)^{k_{1} - 2}\left(k_{1} - 1\right)\frac{\beta c_{2} - l_{2}}{\beta c_{1}}\left(k_{1} - 1\right)\frac{\beta c_{2} - l_{2}}{\beta c_{2}}\left(k_{2} - 1\right)\frac{\beta c_{2} - l_{2}}{\beta c_{2}}\left(k_{2} - 1\right)\frac{\beta c_{2} - l_{2}}{\beta c_{1}}\left(k_{2} - 1\right)\frac{\beta c_{2} - l_{2}}{\beta c_{2}}\left(k_{2} - 1\right)\frac{\beta c_{2}}{\beta c_{2}}\left(k$$

$$k_1 = k_2 = k$$
 \rightarrow bifurcation diagram

$$(I_1^0, I_2^0) = (0.7, 0.5)$$

$$k_1 \neq k_2$$
 , $k_1, k_2 > 1$ \rightarrow bifurcation diagram

$$k_2 = 7.5$$
 , $c_1 = 18$, $c_2 = 6$

$$k_1 \neq k_2$$
 , $k_1, k_2 > 1$ \rightarrow bifurcation diagram

$$k_2 = 7.5$$
 , $c_1 = 18$, $c_2 = 6$

$$k_1 \neq k_2$$
 , $k_1, k_2 > 1$ \rightarrow Cycles and Chaos

$$\left(\mathit{l}_{1}^{0},\mathit{l}_{2}^{0} \right) = (1.12,0.17) \quad , \quad \mathit{k}_{2} = 7.5 \quad , \quad \mathit{c}_{1} = 18 \quad , \quad \mathit{c}_{2} = 6$$

$$k_1 = 1.39$$

 $k_2 = 7.5$
 $c_1 = 18$
 $c_2 = 6$

Other results: bifurcation on the capacity c_1

5) (0.5, 0.5)

$$k_1 = 1.39$$
 , $k_2 = 7.5$, $c_2 = 6$

Other results: bifurcation on the capacity c_1

(0.5, 0.5)

$$k_1 = 1.39$$
 , $k_2 = 7.5$, $c_2 = 6$

Other results: bifurcation on the capacity c_2

, 0.5)

(0.5, 0.5)

 $k_1 = 1.39$, $k_2 = 7.5$, $c_1 = 18$

Coexistence of finite period attractors

(4.49, 1.70)

$$k_1 = 1.39$$
 , $k_2 = 7.5$, $c_1 = 18$, $c_2 = 6$

Coexistence of chaotic attractors

(0.7, 0.7)

Basin of attraction of the origin

Basin of attraction of the origin

Basin of attraction of the origin

Conclusion

$c_1=c_2$

- $k_1 = k_2 = 1 \rightarrow \text{rational workgroup, efficiency}$
- $k_1 = 1, k_2 > 1 \to \text{efficiency}$
- $k_1, k_2 > 1 \rightarrow$ coexistence of attractors (with retaliation)

$c_1 \neq c_2$

- $k_1 = k_2 = 1 \rightarrow \text{rational workgroup, efficiency}$
- $k_1 = 1, k_2 > 1 \rightarrow loss$ of efficiency, but no retaliation
- $k_1, k_2 > 1 \rightarrow$ coexistence of cycles (with retaliation), chaos, expansion of the (non connected) basin of the origin

Conclusion

$c_1 = c_2$

- $k_1 = k_2 = 1 \rightarrow \text{rational workgroup, efficiency}$
- $k_1 = 1, k_2 > 1 \to \text{efficiency}$
- $k_1, k_2 > 1 \rightarrow$ coexistence of attractors (with retaliation)

$c_1 \neq c_2$

- $k_1 = k_2 = 1 \rightarrow \text{rational workgroup, efficiency}$
- $k_1 = 1, k_2 > 1 \rightarrow loss$ of efficiency, but no retaliation
- $k_1, k_2 > 1 \rightarrow$ coexistence of cycles (with retaliation), chaos, expansion of the (non connected) basin of the origin

