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- description of the model;

- fixed points, 2-cycles, chaotic intervals; critical flip bif. and homoclinic bif.;

- classificaiton of border-collision bifurcations.



The growth model (Matsuyama,1999)
Piecewise smooth unimodal map xt1  xt, where

x 
fx  Gx1−1/, 0  x  1 Solow regime
gx  Gx

1x−1 , x  1 Romer regime

  1 − 1/1−,   1.
xt  Kt/NtF;
Kt - capital;
Nt - number of type of intermediate goods introduced up to time t;
F - some constant.
The output Yt is related to Kt and Ns, 0  s  t, through a production function.
A const. proportion of Yt is left to be used as capital in the next period.
 denotes the demand elasticity of the intermediate good.



Matsuyama, 1999:
- the model may have stable equilibria or unstable ones;
- the dynamics may oscillate alternatively between the Solow regime and the Romer
regime, when there is a stable 2-cycle;
- the 2-cycle may loose its stability, leading to different dynamic behaviors, when the
parameter G belongs to the range 1,  − 1;
- complex dynamic behaviors may occur, although a 3-cycle cannot exist.
Mitra, 2001:
- chaos may occur, at least when the parameter  is quite high (  50);
- The suf. cond.: the third iterate of the maximum is a point below the fixed point of
the Romer regime (exactly the cond. for which the fix. p. has homoclinic trajectories).
Mukherjy, 2005:
- the cond. for chaos may be satisfied also at lower values of ,   22;
- the transition to chaos may occur via the per.-doubling bif. sequence (while this is
not possible).



Attacting fixed points, absorbing interval
fx has a unique fix. p. xL

∗  G which exists (x  1) for G  1, and when it
exists, it is always globally attracting.

For G  1 −  the fix. p. xR
∗  1  G−1

 in the Romer regime is globally

asymptotically stable (x  1).

∃ absorbing interval gG,G : gG,G ⊆ gG,G.



Two-dimensional bifurcation diagram in the G,-parameter plane



Cycle of period 2
Let   2 be fixed and G decrease, starting from some G   − 1 for which xR

∗

is stable. Then the loose of stability of xR
∗ occurs via a critical bifurcation: At

G   − 1 all the points of a segment are 2-cycles (in particular, 1,G).

A unique 2-cycle exists, after the bifurcation, for G   − 1, say xL,xR :
xL  1 and xR  1.



The 2-cycle becomes unstable as G decreases reaching the value G  G4.

Proposition 1. The stability region of the 2-cycle for any fixed value   2, is
bounded by the curves of implicit equations g21  1 (which corresponds explicitly
to G   − 1 and g ∘ f ∘ g21  1 (implicit equation for G  G4.



Chaotic intervals
Cycles of period three cannot exist, but the chaotic regimes exists anyhow. The
sufficient condition stated by Mitra can be enforced in terms of homoclinic trajectories:
(Devaney 1987, Gardini 1994):

Proposition 2. Let m be the unique critical point of a continuous piecewise
smooth unimodal map of an interval into itself, say F : I → I, Fm maximum
(resp. minimum), with a unique unstable fixed point x∗, and a sequence of preimages
of m tends to x∗. Then the first homoclinic orbits (all critical) of the fixed point x∗
occur when the critical point satisfies F3m  x∗. When the critical point is a local
maximum (resp. minimum) then for F3m  x∗ (resp. F3m  x∗ infinitely
many (noncritical) homoclinic orbits of the fixed point exist, and thus there is a closed
invariant set X ⊆ F2m,Fm (resp. X ⊆ Fm,F2m) on which the map
is topologically conjugate to the shift automorphism, and thus F is chaotic, in the
sense of topological chaos (with positive topological entropy).



Proposition 3. For any fixed value   2 when the fixed point and the 2-cycle of
the map are unstable, the attractors are full measure chaotic intervals.

The bifurcation I4  I2 is the homoclinic bifurcation of the repelling 2-cycle. The
condition to detect this homoclinic bifurcation (Proposition 2 applied to 2) is
51  xR, which corresponds to g2 ∘ f ∘ g21  xR.
The bifurcation I2  I1 occurs when the fix. p. in the Romer regime becomes
homoclinic (by Proposition 2): 31  xR

∗ that corresponds to f ∘ g21  xR
∗ , or

more explicitly reads as follows:

G G2

1  G − 1

1− 1


 1  G − 1
 .





Border-collision bifurcation at G  1

Theorem. The border-collision bifurcation of the fixed point x∗  1 of the map ,
occurring at G  1 for any   1, gives rise to

∙ an attracting fixed point xR
∗ if 1    2;

∙ an attracting cycle of period 2 if 2    4 ≃ 3.825;
∙ attracting 4-cyclical chaotic intervals if 4    2 ≃ 6.123;
∙ attracting 2-cyclical chaotic intervals if 2    1 ≃ 21.231;
∙ an attracting chaotic interval if   1.



Proof. The result of the border-collision bifurcation of the fixed point depends on the
left and right side derivatives of x evaluated at x  1 for G  1, here denoted
 and , respectively:

  lim
x→1−

d
dx x,   lim

x→1
d
dx x.

The related normal form is given by the skew-tent map  : y  y defined by
the function

y 
y  , y ≤ 0,
y  , y ≥ 0.



The coefficients of the normal form in terms of the parameter  :
  1 − 1

 ,   1 − , (0    1, 1 − e    0
The border-collision curve B of x∗  1 in terms of  and  :   1 − /−1.



B intersects
1) the straight line   −1 (critical flip bif. of y∗);
2) S :   −1/, (critical flip bif. of the 2-cycle);

3) H2 :   −1 − 1  44 /23, (hom. bif. of the 2-cycle);

4) H1 :   −1  1  42 /2, (hom. bif. of y∗).
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