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Abstract

In this paper we develop a simple analytical solution for studying

optimal consumption with ¯nancing constraints and uncertain income.

We show that when utility depends on money holdings, ¯nancing con-

straints do not invalidate the Euler Equation up to the bound. This

happens because household selects at once the consumption path that
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assures the optimality of his intertemporal decisions even when the

constraint binds. Of course, the behavior of such a consumer di®ers

markedly from the standard consumption model with constraints: the

main result of the present analysis is that the Euler equation is al-

ways respected not only in the unconstrained status, but also in the

constrained one.

JEL classi¯cation:D11;D81;D91.

Keywords: Consumption; Uncertainty; Monetary resources; Fi-

nancing constraints.
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1 Introduction

Mathematical convenience, rather than innate plausibility, has always been

the main rationale of the standard consumption model (SCM) in which utility

solely depends on consumption. However, a great deal of empirical evidence

suggests that this framework may be inadequate, in practice, to capture the

main characteristics of the consumption-saving behavior. For example, tests

of the stochastic intertemporal Euler equation have typically produced strong

statistical rejections, leading researchers to look for explanations of these fail-

ures (Flavin, 1981; Campbell, 1987; Jappelli, 1990; Runkle, 1991; Deaton,

1992; Jappelli and Pagano, 1994; Carroll, 1994; Browning and Lusardi, 1996;

Attanasio, 1999; Carroll, 2001). One of the most common answer to this

breakdown asserts that ¯nancing constraints can induce a one-side violation

of the Euler equation, causing the failure of the intertemporal optimal con-

sumption condition (Flavin, 1985; Hubbard and Judd, 1986; Hayashi, 1985).

This strand of research recognizes that ¯nancing constraints can a®ect con-

sumption in two di®erent ways. Firstly, corner solutions can inform the

allocation of consumption when constraints are actually binding. In this sce-

nario, the Euler equation is violated because the consumer cannot anticipate

the services of future labor income in order to equate the weighted marginal
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utilities of consumption over time. Then, as Hayashi (1987), Zeldes (1989)

and Deaton (1991) have emphasized, current consumption can be a®ected by

future restrictions even when such ¯nancing constraints are actually slack.

The basic idea of all these papers is the following. The fact that the ¯nancial

constraint is (or has some probability of being) binding in a future period

should not cause a violation of the intertemporal ¯rst order condition be-

cause as long as the consumer is not up again the restriction, it is possible

to reallocate total resources, period by period, in order to satisfy the Eu-

ler equation. Thus, in the intermediate phases the intertemporal ¯rst-order

conditions hold regardless of the presence of liquidity constraints. But, when

the constraint is currently binding, this process is interrupted, and the upper

bound leads to a violation of the Euler equation.1 We call this approach

`standard expectation view'.2

Now, although this anticipative behavior seems to capture all the inter-

1The main implication of this dynamic process is that when constraint is ine®ective, so
that the Euler equation looks like the standard one, optimal behavior will not generally
be the same as for an agent who will never be constrained.

2A second, related issue is stressed by Ja®ee and Stiglitz (1990). These authors ob-
serve that one of the main limitations of models with borrowing constraints is the use of
comparative statics to analyze the relationship between aggregate demand and ¯nancial
resources. This approach, they argue, makes it di±cult to focus on inter-period issues af-
fecting the investment process. More speci¯cally, Ja®ee e Stiglitz asserts that anticipated
future credit rationing can have e®ects on current aggregate demand, \even when there is
no credit rationing at present. Thus the impact of the credit rationing can not be assessed
just by looking at those periods in which there is direct evidence for its presence" (p.874).
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period features a®ecting the optimal consumption plan, it fails to attach

su±cient importance to the way in which expectations concerning future

monetary resources can a®ect current consumption decisions. In this per-

spective, one would expect that consumers should anticipate at the current

time the future constraint, selecting immediately the optimizing expected

consumption path which provides the maximized value function, given the

uncertain income and the loosest constraint. In other words, the forward-

looking consumer who wants to smooth his consumption should change his

policy at the initial time, choosing at once the optimal trajectory that assures

the respect of the Euler equation, even when the constraint is binding.3

One way to formalize this `augmented expectation view' is to relax the re-

strictive assumption on preferences, thereby allowing the marginal utility of

consumption to change not only with consumption but also with total money

holdings. More precisely, we build up a model where the marginal utility of

current consumption is a®ected by both the level of consumption and mone-

tary resources. If, in some future period, consumption is constrained because

3Coherent with this view is the analysis of Rabault (2002) who sustains that \despite
the attention that income °uctuation problem have received in the past, and despite
the empirical role of the Euler equation, conditions under which the optimal policy of
such models leads the agent to exhaust his borrowing capacity have not been throughly
explored" (p.218).
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of limited ¯nancial resources, the household will anticipate this restriction

immediately selecting the path that assures the optimality of consumption

policy at any time. According to this latter arrangement, we introduce a

`state' variable such as monetary resources in the utility function. This state

variable a®ects the utility function in two di®erent ways: it is assumed that

money yields both a direct marginal utility to the consumer and an indirect

utility which is determined by the relationship of money with consumption,

through the intertemporal budget constraint.

Using this framework, we demonstrate that ¯nancing constraints do not

invalidate the Euler Equation up to the bound because the household se-

lects at once the consumption-saving plan that assures the optimality of his

intertemporal decisions even when the constraint binds. Of course, the be-

havior of such a consumer di®ers markedly from the standard consumption

model with constraints: the main result that comes out of the present analysis

is that the Euler equation is always respected not only in the unconstrained

status but also in the constrained one.

We start from a simple stochastic process for labor income. As in Hayashi

(1985), Zeldes (1989) and Deaton (1991), a signi¯cant result is that ¯nancial

constraints do not need to be currently binding in order to a®ect current
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consumption. But, in contrast with them, the constraint does not invalidate

the intertemporal ¯rst order condition when the constraint binds. From

this point of view, our model is coherent with the problem discussed by

Rabault (2002) where in a discrete time context, and in presence of latent

borrowing constraints, the consumer might systematically avoid exhausting

his borrowing capacity. It is, however, di®erent from Rabault's problem

because our set-up is developed in a continuous time framework with an

explicit state variable (monetary resources) in the utility function.

Our analysis has important implications also to the many empirical stud-

ies which have used the Euler equation for testing the constrained behavior

of agents. First, since in our framework the Euler equation characterizes the

optimal dynamic behavior of both constrained and unconstrained consumers,

the empirical analyses on consumption and ¯nancing restrictions employing

this relationship may be biased, because this structural equation cannot dis-

criminate among individuals with di®erent ¯nancing constraints.

Second, this forward-looking behavior allows the consumer to optimize

his sequential choices along the entire time horizon, selecting the optimal

consumption trajectory even when the constraints are eventually binding.

Hence, the present model of consumption with imperfect capital markets and
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uncertainty is consistent with the SCM where the rational agents attempt

to keep the marginal utility of consumption constant over time (Browning-

Crossley, 2001).

The paper is organized as follows. In the next section we explain the

assumptions of the model. In section 3 we solve the intertemporal consump-

tion problem with ¯nancing constraints, discussing the properties of the Euler

equation. Section 4 concludes.

2 The assumptions

In this section, we discuss the assumptions characterizing our model of con-

strained consumption under uncertainty. It has the following features:

(1) Household acts in an imperfect capital market, where ¯nancing con-

straints are simple quantity restrictions.

(2) Consumption in each period is a function of both ¯nancial assets and

current income. Indeed, since money is fungible between ¯nancial assets and

income, consumption will be a function of only their sum.

(3) The evolution of labor income follows a continuous-time random walk.

Of course, this dynamics a®ects the evolution of the monetary resources.
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(4) The household derives his expected utility from both consumption and

monetary resources. The intertemporal co-evolution of them is the result of

the interrelation between consumption decisions and budget constraint.

(5) Utility function is assumed to be quadratic in both the arguments.

(6) The individual rate of time preference is bigger than the real interest

rate, that is ± > r: For simplicity we assume that r is constant over time.

2.1 Financing constraints

The label `¯nancing constraints' includes both borrowing and liquidity re-

strictions. Indeed, for consumers who cannot borrow, or can only do so at

penal rates of interest, consumption expenditures are likely to be closely tied

to current income receipts. So, the ¯rst step in the integration of ¯nancing

constraints in the present model must be their exact de¯nition. We make

the assumption that net wealth wt cannot be smaller than a lower constant

bound, that is:

wt ¸ ¡D (1)
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and, further, that labor income can °uctuate randomly until it reaches re-

spectively either the lower bound y or the upper bound Y . This means that:

y � yt � Y (2)

Equation (1) is the borrowing constraint. If D = 0; the consumer is fully ra-

tioned in credit market; whereas if D > 0 the consumer is partially rationed

and the net wealth can be negative. Equation (2) identi¯es the liquidity

constraint. The set of restrictions on equations (1) and (2) constitutes what

we refer to as ¯nancing constraints throughout this paper. Note that the

inability to borrow does not imply inability to save. In fact, liquidity con-

strained consumer can have good reasons to shift consumption forward in

time by saving.

Obviously, the sum of wealth and labor income gives the maximum amount

of money holds by the agent in each period:

xt = wt + yt (3)

Following Deaton (1991), we can call xt as cash in hand. It identi¯es the

total resources that, in any period t; the household can use for consumption.
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Finally, to simplify algebra we assume that D = 0 and y = 0. Hence, the

dynamics of xt is comprised in the interval:

0 � xt � ¯ (4)

where ¯ is the higher attainable level of monetary resources. Its value is given

at any time by the sum of the accumulated wealth with current income.

2.2 Uncertainty

To incorporate uncertainty in our model it is su±cient to assume that the

stochastic evolution of labor income, under a free °oat, is described by the

continuous-time random walk:

dyt = ¾dz (5)

where ¾ is the (constant) variance parameter. The term dz is the increment of

the standard Wiener process, with mean E(dz) = 0; and variance E(dz)2 =

dt: Now, since the evolution of wealth can be written as:

dwt = r (wt + yy ¡ ct) dt (6)
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where ct is the istantaneous consumption, substituting expression (3) in (6)

we get the intertemporal budget constraint for cash in hand:

dxt = r (xt ¡ ct) dt+ dyt (7)

because dwt = dxt ¡ dyt: We impose that consumption be positive at all

times, to avoid that consumer can choose a negative level of consumption to

cover his debt in period t. In this perspective the condition xt ¸ ct can be

seen as the ¯nancing constraint of the model. Then, substituting for (5) in

(7) we obtain the stochastic dynamics of xt:

dxt = r (xt ¡ ct) dt+ ¾dz (8)

which describes the unpredictable pattern of the cash in hand, given income

uncertainty. If ¾ = 0 then equation (8) becomes:

dxt = r (xt ¡ ct) dt

meaning that, with certainty and free °oat the accumulation saving rate

depends only on control variable ct: However, since we are considering the
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case ¾ > 0 with ¯nancing constraints, uncertainty on monetary resources

must a®ect the evolution of consumption over time: within the interval,

de¯ned by the ¯nancing constraint (4), the variable xt can change freely;

once, however, it has reached one of the two boundary values, its dynamics

changes in an unpredictable manner a®ecting consumption.

2.3 Utility function

The integration of consumption goods and monetary resources in the utility

function is the most signi¯cant novelty of the model. Traditionally, we refer

to Pigou (1941) and Patinkin (1965) as the ¯rst authors introducing real

money balances in the felicity function. According to Patinkin, real balances

can provide some precautionary services to consumers, implying that mon-

etary resources can have their own utility, and, thus, must be introduced

as an explicit argument in the utility function. Of course, this way to treat

monetary resources can have important economic implications. For example,

in Patinkin's model the channel of transmission between real and monetary

markets is determined, among other factors, by the so called real balance ef-

fect. Then, other important contributions within the in¯nite horizon model

with real balances in utility function are in Sidrausky (1967), Brock (1974),
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Fisher (1979), and more recently in Obstfeld and Rogo® (1983, 1985), and

Obstfeld (1984).

The use of monetary resources in the utility function has been, however,

criticized by Clower (1967) who argued that, to study the role of money

in carrying out real transactions, one should introduce a sort of `transac-

tion technology' for money in the consumption process. He modeled this

technology as a cash-in-advance constraint. But, recently this criticism ap-

pears to have been muted because of an important paper by Feenstra (1986).

He showed that under certain regularity conditions, the maximization prob-

lem with money, modeled using a cash-in-advance constraint with liquidity

costs, is equivalent to a maximization problem with monetary resources in

the utility function. This result is derived from conventional model of money

demand, such as the transaction and the precautionary models. Thus, the

procedure of introducing monetary resources in the utility function seems to

be generally viewed as being as an acceptable approximation.

In what follows we introduce monetary resources together with real ex-

penditures in the utility function. It will be shown that, in a continuous-time

model, the relationship between money and consumption has important im-

plications for the Euler equation in the constrained scenario. In particular,
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we employ the following quadratic utility function:

u (ct; xt) = a

µ
ct ¡

1

2
c2t

¶
+ b

µ
xt ¡

1

2
x2t

¶
(9)

where a and b are parameters that measure the relative importance that

household assigns to consumption, ct; and cash in hand, xt: The function

u (ct; xt) is concave and continuously di®erentiable in both the arguments.

We require that household's resources are such that consumption is always

in the range where the marginal utility is positive. Equation (9) is non-

standard, but it has a pregnant meaning: according to investment models,

we are assuming that the value function u (ct; xt) is a®ected by both the

control variable ct and the state variable xt: From this perspective, equation

(9) is a more general speci¯cation of the traditional quadratic form which

depends only on control ct.
4

Of course, the assumption of quadratic utility function is stringent, but

it is required for deriving a closed form solution.5 We have, however, two

4It is important to stress that this kind of felicity function is often used in generalized
consumption model. For example, Bernanke (1985) employes a quadratic utility function
on both durables and non-durable goods with adjustment costs to show that with non-
separability in utility the transactionn costs may a®ect the time series properties of both
components of expenditure.

5As usual, we can interpret the quadratic function as a local approximation of the
underlying utility function.
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main reasons to employ this speci¯cation. First of all, using this formulation

we can compare our results with those of the SCM which are often based on

a quadratic form (Hall, 1978; Flavin, 1981; Deaton 1992). Second, and in

common with Besley (1995) and Romer (1996) using this quadratic speci¯ca-

tion we can induce local risk-aversion that is a precautionary saving behavior

that traditionally is incompatible with a linear marginal utility. As it will

be explained, this behavior is caused by the anticipation of the future bound

when the ¯nancing constraint is currently slack. This forward-looking be-

havior produces a non linear dynamics for consumption over time, so that,

for a given value of consumption, an increase in uncertainty about future

monetary resources may cause a decrease in current consumption, that we

can interpret as precautionary demand for saving.

Finally, for ¯nancing constraints to be relevant the household must be

inpatient enough to want to bring money from the future to the present

to smooth consumption. For this reason, we require that ± > r: In this

scenario, ¯nancing constraints interact with precautionary motives because

\the inability to borrow when times are bad provides an additional motive

for accumulating assets when times are goods, even for inpatient consumer"

(Deaton, 1991, p.1222).
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3 The optimality criterion and the Euler equa-

tion

To study the optimal behavior of potentially constrained households we em-

ploy a partial equilibrium approach, where the interest rate r is given, and

where time horizon is in¯nite. We assume that consumer maximizes his ex-

pected utility. To solve such optimization problem we employ a two stage

procedure: we solve the unconstrained problem; then, we impose the bound-

ary values of the state variable in the solution to obtain the constrained

allocation.6

The consumer has to ¯nd the solution to the following problem:

max
ct
Et (U0) = Et

Z 1

0

�
a

µ
ct ¡

1

2
c2t

¶
+ b

µ
xt ¡

1

2
x2t

¶¸
e¡±tdt

6This is a standard way to solve problems of dynamic optimization under uncertainty
and exogenous constraints. A similar procedure has been used, for example, in Krugman
(1991), and Froot and Obstfeld (1991) for problems of exchange rate dynamics with tar-
get zones; the case of optimal consumption and portfolio rules is discussed in a series of
papers by Merton (1990). Bertola (1994) provides an excellent discussion of these tech-
niques, in the presence of certainty and uncertainty. Finally, this kind of methodology has
also been used in models of labor demand with costs for ¯ring and hiring (Bentolila and
Bertola (1990). Recently, Saltari and Travaglini (2001) employ this procedure to study
the interrelation between investment decisions and ¯nancing constraints.
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subject to the intertemporal budget constraint:

dxt = r (xt ¡ ct) dt+ ¾dz

where ± is the individual rate of time preference.

To solve this problem we can set up the corresponding current Hamilto-

nian:

Ht = Et

½
a

µ
ct ¡

1

2
c2t

¶
+ b

µ
xt ¡

1

2
x2t

¶
+ ¸t

�
r (xt ¡ ct) + ¾

dz

dt

¸¾
e¡±t

(10)

where ¸t is the costate variable, that is the actualized shadow value of future

resources. From Ht we obtain the ¯rst order conditions:

a (1¡ ct) = ¸tr (10.1)

r (xt ¡ ct) + ¾
dz

dt
=

dx

dt
(10.2)

Et

µ
d¸

dt

¶
¡ ¸t± = ¡b (1¡ xt)¡ ¸tr (10.3)

Equations (10.1) is the ¯rst order condition for consumption. In the un-

constrained case, it states that discounted value of the marginal utility for
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consumption is equal to the marginal utility ¸t of monetary resources at time

t: Then, the maximum principle involves two equations of motion. Equation

(10.2) is nothing but a restatement of the equation for the stochastic budget

constraint.

In turn, equation (10.3) is the Euler equation which states that the in-

tertemporal maximization problem (10) implies that the marginal utility of

cash in hand is kept constant over time. To see this implication rearrange

(10.3) in the form:

¸t =
b (1¡ xt)
(± ¡ r) +

Et
¡
d¸
dt

¢

(± ¡ r) (11)

Expression (11) is an intertemporal equilibrium condition. The left-hand side

denotes the shadow value of xt over time. This equation requires that ¸t is

equal in magnitude to the sum of the two terms on the right hand side of

(11). The ¯rst of these, b(1¡xt)
(±¡r) ; represents the direct marginal contribution

of the actualized cash in hand to current utility, whereas the second Et(d¸=dt)
(±¡r)

identi¯es the marginal contribution of xt to the enhancement of future wealth.

Of course, this latter factor measures the indirect e®ect of monetary resources

on consumption through the intertemporal budget constraint. Note that by
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assumption (± ¡ r) is positive: For then, substituting by ¸t; the ¯rst order

condition can be written as:

ct = 1¡ r

a

"
b (1¡ xt)
± ¡ r +

Et
¡
d¸
dt

¢

± ¡ r

#
(12)

This expression says that the forward-looking behavior on Et
¡
d¸
dt

¢
is a nec-

essary condition to drive the consumption ct along the optimal path. This

suggests that households need to form expectations on future ¯nancing re-

sources in making his current consumption decisions. This latter statement

can be, further, clari¯ed di®erentiating the ¯rst order condition (10.1) with

respect to time:

Et

µ
d¸

dt

¶
= ¡a

r
Et

µ
dc

dt

¶

and substituting this expression in (12) to obtain the Euler equation for the

level of consumption:

ct = µ + °xt + ½Et
dc (xt)

dt
(13)

To simplify the notation we write ° = rb
a(±¡r) ; µ = 1¡ °; and ½ = 1

(±¡r) .
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Using this ¯rst order di®erential equation for ct; we can re°ect on the

implicit assumption of the model. The household controls ct to maximize

his expected utility. Nonetheless, because of the intertemporal relation (13),

there is the need for the household to take into account the whole planning

problem. In fact, equation (13) implies that at each point in time the level

of ct is determined by the istantaneous cash in hand xt plus the expected

consumption Et
dc(xt)
dt
, which is itself function of future monetary resources.

Thus, the maximization of the felicity function requires to select initially

the optimal consumption-saving plan which satis¯es the ¯rst order condition

(10.1). It is clear from equations (13) that consumers cannot plan optimally

without knowing the entire expected path of the future monetary resources.

Hence, the key of this model is that consumption decisions are based not

only on the contribution of monetary resources, at a point in time, but also

on the expectations of the consumer in order to avoid large adjustments in

current consumption which would violate the intertemporal Euler equation

(13). Given this expectations view, how can the future ¯nancing constraints

a®ect current consumption?
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3.1 The optimal expected consumption with ¯nancing

constraints

To analyze the relationship between current consumption and future con-

straints assume that xt follows the stochastic dynamics de¯ned by (8).

Given that from the Euler equation (13) ct is a function of t, the dynamic

relationship between ct and t can be expressed through the variable xt; that

is c = c (x) : Applying Ito's Lemma to c(x) we obtain an explicit expression

for Et
dc(x)
dt

:

dc (x) = cx (dx) +
1

2
cxx (dx)

2

Substituting by (8) and taking expectations we get:

Et
dc (x)

dt
= [r (x¡ c)] cx +

1

2
¾2cxx

Hence, at any time, we can express changes in c as a function of x:

c(x) = µ + °x+ ½ [r (x¡ c)] cx +
1

2
½¾2cxx (14)

Equation (14) has no general analytical solution because of the stochastic
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drift ½ [r (x¡ c)], but we can solve analytically in particular cases and char-

acterize the form of the solution elsewhere.

3.1.1 Case 1: c = x

As ¯rst point, note that if c = x; appropriate if household has a propensity

to spend money equal to one, the drift is equal to zero. For coherence, this

condition requires also that ° = 1 and µ = 0: In this scenario, the e®ective

dynamics of current consumption is determined by the unexpected evolution

of stochastic income. Indeed, since equation (14) reduce to:

c(x) = x+
1

2
½¾2cxx (15)

the optimal consumption rule would say that if cash in hand is uncertain, it

will be optimal to take immediately into account its variance. Indeed, vari-

ability (¾2) on future resources a®ects current consumption, and, as equation

(15) illustrates, the correlation between current consumption and ¾2 depends

on the sign of the second derivative of c(x): For example, only if cxx < 0 we

have precautionary saving.

To characterize the solution note that equation (15) is a second order

homogeneous di®erential equation in c(x), and its general solution can be
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expressed as a linear combination of any two independent components. We

try the guess c(x) = Ae¼x to obtain:

1

2

¡
½¾2

¢
¼2 ¡ 1 = 0

This is the characteristic equation with roots:

¼1;2 = §
µ
2

½¾2

¶ 1
2

with ¼1 > 0 and ¼2 = ¡¼1 < 0: Hence, the general solution of this di®erential

equation is:

c(x) = x+A1 exp (¼1x) +A2 exp (¼2x) (16)

As this expression illustrates c(x) has two components: the fundamental

x; and the complementary solution. Of course, if x can change randomly

without constraints, then the constants must be set equal to zero to avoid

mispriced consumption strategies. In this case the consumption rule is:

c (x) = x
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which simply states that consumption cannot be greater than x (the present

budget constraint). In this scenario, consumption follows a random walk rule

(Hall, 1978).

But, if household operates in imperfect capital markets, the two constants

A1 and A2 exert their a®ects on current consumption. Consequently, to have

an optimal decision rule the consumption pro¯le must change to take into

account the future constrained values of x: Once the upper (lower) bound has

been reached; the value of x can only decrease (increase) randomly, implying a

decrease (increase) in c(x). To focus on restrictions, let equation (4) de¯nes

the critical range. As long as x lies within the interval, its evolution is

described by equation (8). When, on the other hand, x reaches one of the

two boundary values, the evolution of dx becomes a modi¯cation of the

process (8).

As x tends to ¯, c(x) tends to its own maximum level C; for the same

reason, when cash in hand tends to the lower level zero; then c(x) tends to

the minimum value c. This implies that when the constraints are binding it

must be veri¯ed that:

cx (0) = 0 = cx (¯) (17)
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This expression is sometimes called smooth pasting condition, and it is a suf-

¯cient condition to allow the calculation of the constants A1 and A2: But,

what is remarkable here is that the boundary condition (17) implies that over

the range [0; ¯] the consumption path will be optimal only if the trajectory is

continuous and smooth for any value of x: It is only when c(x) is continuous

and smooth that its ¯rst derivative dc(x)
dt

exists and it is continuous. Conse-

quently, the imposition of (17) guarantees the respect of the Euler equation

(15), or more generally (14), not only when the constraints are slack, but

also when the state variable x is up to the bounds.

Applying (17) to (16) we obtain the explicit solution

c(x) =

�
1

¼1

exp (¼2¯)¡ exp (¼2y)
exp (¼1¯) exp (¼2y)¡ exp (¼2¯) exp (¼1y)

¸
exp (¼1x) +

+

�
1

¼2

exp (¼1y)¡ exp (¼1¯)
exp (¼1¯) exp (¼2y)¡ exp (¼2¯) exp (¼1y)

¸
exp (¼2x) + x

Notice that only when the two barriers become in¯nitely distant the con-

sumption rule is a liner function of the fundamental.

The dynamics of c(x) can be de¯ned for all x in the interval [0; ¯]. Hence,

the function c(x) can be interpreted as representing the increased level of

consumption for a consumer whose cash in hand changes from a situation
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marked by credit rationing and scarce income, to a situation in which mon-

etary resources are increased, but to a level where no further expansion is

possible.

Figure 1 shows the linear function of the fundamental c = x, and the S -

shaped locus representing the non-linear functional form c(x); which is tan-

gent at 0 and ¯ with values c(0) = c and c(¯) = C:7 It meets the boundaries

smoothly to ¯rst order, but the optimal boundary values for consumption, c

and C; lie, respectively, below ¯ and above 0: This happens because the state

variable x can never exceed the interval [0; ¯], and with ¾ > 0 and ¯nancing

constraints, the consumption will surely falls randomly below 0 (above ¯)

after reaching it.8

7The optimal consumption path in ¯gure 1 is drawn for particular values of parameters.
More precisely, we have supposed that ¼1 = ¡¼2 = 2, µ = 0; ° = 1; and that the upper
bound for cash in hand is equal to ¯ = 3. For equation (4) the lower bound is, in turn,
x = 0: Note that for this value the level of minimum consumption is positive and equal
to c = 0: 497; implying dissaving. In other words, to assure consumption (when income is
equal to zero) the consumer uses his wealth accumulated in previous periods when y > 0.
The value of saving is graphically represented by the distance of the S-curve from the
c = x straight line. Note that in this model the consumption curve is simmetric with
respect to value x¤ = 1:5; which identi¯es the in°ection point along the S -shaped locus.
Finally note that, since consumption is a function of x; not of y, and c(x) can be greater
than less than or equal to y; there is no explicit information about the level of saving in
the range [®;¯] :

8This point is further discussed in the next sections.
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Figure 1. The optimal pro¯le of consumption when x = c

More precisely, when x is higher than the lower level 0; the value of

the consumption rises, following a non linear increasing relationship. Once,

however, x passes the in°ection point, where c(x¤) = x¤; the curve becomes

concave: the consumer anticipates the e®ect of the upper constraint at the

current time. In other words, the household perceives closeness to the upper

bound as an exacerbation of the ¯nancing constraint. This contributes to

slowing down expected consumption dct
dt
; which for x = ¯ is equal to zero

(in our example ¯ = 3). Hence, the consumer that appears to be more

¯nancially constrained, takes into account the uncertainty over future cash
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in hand and it is more reluctant to consume.9 In turn, the consumer less

¯nancially constrained exhibits a greater positive sensitivity to x.

Two are the main consequences of this behavior. As ¯rst point, observe

that to have a precautionary saving the value of the cash in hand must be

higher than the critical value x¤: For example, let us suppose that x evolves

in such a way as to realize value x1: In a perfect capital market the value

of consumption would then be c1 on the straight line c = x: The foorward-

looking consumer anticipates, however, that the cash in hand will never move

outside the range [0; ¯], and that the closer the upper ¯nancing constraint

¯; the higher is the probability that x will be lower in the future. This

bearish expectation a®ects current consumption, reducing its level along the

S -curve, generating a precautionary saving. On the other hand, for values of

x smaller than x¤ the path is convex and the increases of uncertainty has a

positive e®ect on current consumption because, for small value of x, a higher

¾2 implies a higher probability to gain a higher income.

This interpretation of the S-curve makes it possible to reach a ¯rst con-

clusion: namely that latent ¯nancing constraints can a®ect the consumer's

behavior even when the bounds are currently slack. This is the consequence

9Similar graphic representation but for the only case of upper bound are in Heller and
Starr (1979), Helpman (1981) and Deaton (1991).
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of entering money in the felicity function, and of the forward-looking behav-

ior by consumers that anticipate the possibility of future constraints at the

current time. It is this anticipative behavior which assures the respect of the

Euler equation when the constraints bind.

3.1.2 Case 2: x¡ c = k

In this case we assume that the consumer has a constant propensity to save

equal to k: Hence, the di®erential evaluation equation for c(x) can be written

as

c(x) = µ + °x+ 'cx +
1

2
½¾2cxx (18)

where ° < 1 measures the marginal propensity to consume, and where the

component of the expected drift ' = ½rk is, now, constant. Equation (18)

can be solved using the standard method. With respect to the previous

example, the solution di®ers for the fundamental

c(x) = (µ + °x)

30



which appears to be a linear keynesian consumption rule, and for the values

of the roots which are given by

¼1;2 = ¡rk
¾2

§
µ
r2k2

¾4
2

½¾2

¶1
2

with ¼1 > 0 and ¼2 < 0: Then, as in the previous case, consumption path

has a S-shaped trajectory.

3.1.3 Case 3: x¡ c stochastic

When (x¡ c) is stochastic, the same boundary conditions (17) determine

the solution, though it cannot be obtained explicitly. We can still derive key

qualitative features of the solution from the consideration of the stochastic

evaluation equation. To prove this point, consider the di®erential equation

(14):

c(x) = µ + °x+ ½ [r (x¡ c)] cx +
1

2
½¾2cxx

and the range [®; ¯] ; where now ® represents the lower bound. Evaluating

this equation for x = ® and x = ¯; and using the boundary conditions (17)
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that must hold at ® and ¯; we ¯nd:

c(¯) = µ + °¯ +
1

2
½¾2cxx

c(®) = µ + °®+
1

2
½¾2cxx

The two expressions show that in the neighborhood of the bounds the evalu-

ation equation (14) does not depend on the stochastic drift ½r (x¡ c). But,

close to the upper bound ¯ the derivative cxx < 0; signifying that along the S-

curve the threshold value c(¯) is below the straight line; that is c(¯) < µ+°¯:

In turn, close to the boundary value ® the derivative cxx > 0; implying that

c(®) > µ + °®: These are the same properties that the value function had

in the previous two cases. Consequently, the smooth pasting condition (17)

is su±cient to have an S -shaped path for potentially constrained consump-

tion.

3.1.4 Optimal constrained behavior and the Euler equation

We can now use all this information to explain the optimal trajectory of

c (x) : Looking at equation (14) we see that the value of consumption at any

time is an intertemporal equilibrium relationship, which depends on both
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cash in hand and future consumption. Given an initial value for x, any future

increase (or decrease) in expected monetary resources implies a corresponding

increase (or decrease) in future consumption and consequently, given the

arbitrage relationship (14), in current consumption. If, at some particular

time, the household anticipates that with some positive probability the future

cash in hand will be no higher than the upper level ¯; he comprehends that

in the long run the consumption will not grow beyond the maximum trigger

value C. This information a®ects the rate of change of consumption. As

¯ draws closer, the upper value of the monetary resources exerts an ever

stronger in°uence on current consumption, and after a certain value (x¤),

the level ct becomes a concave function of x. In other words, as x approaches

the upper barrier the consumer realizes that future consumption plans will

be constrained by the availability of monetary resources. A forward-looking

consumer will anticipate this trend in the fundamental; as a result future

constraints will be re°ected in the household's current decisions. In these

circumstances, it is not surprising that as x tends to ¯ consumption converges

smoothly to C; becoming tangent at the trigger value C; in such a way as to

satisfy the intertemporal Euler equation:

It should be remarked, once more, that the non-linear dynamics of the
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c (x) has an important implication: the e®ect of increasing uncertainty, ¾2, on

saving depends on the initial value of x. In the convex part of the c (x) curve

increases in ¾2 rises the value of the current consumption. For larger values

of x; on the other hand; consumption path is concave and the consumption-

uncertainty correlation is reversed. This latter property distinguishes the

present model from the Deaton's model (1991) where the combination un-

certainty with ¯nancing constraints can only generate a precautionary saving

behavior. Thus, in this simple model the interaction between current con-

sumption and future monetary resources can provide a more complex con-

sumption behavior, and the household can smooth consumption even when

the constraints are binding.

4 Conclusions

In this paper we have shown that when utility depends on both consumption

and monetary resources the presence of ¯nancing constraints and uncertain

income does not invalidate the Euler equation up to the bound. This can

happen because in a forward-looking environment the presence of a slack ¯-

nancing restriction in°uences the behavior of a rational consumer well away

34



from the point at which the constraint binds. To obtain this result, it is

required a shifting in the current level of consumption, for ensuring that the

Euler equation changes, period by period, and it is satis¯ed even when the

constraint binds. This means that households which face rationing in the

future, but which are free from constraints at the present time, will make

sequential decisions to achieve a coherent and optimal consumption plan us-

ing not only currently available information, but also expectations on future

monetary resources. As a consequence, an optimizing consumption-saving

path implies that the Euler equation must be continuous at the boundary

values. In the presence of ¯nancing constraints it is only this continuity con-

dition which guarantees the respect of the intertemporal Euler conditions,

that is the optimality of the consumption strategy.
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