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1 Introduction

Intuitively a cooperative equilibrium is a collective decision adopted by a group of individuals

that can be viewed as stable (i.e., an equilibrium) against all feasible deviations by single

members or by proper subgroups. While modelling the possibilities of cooperation may not

pose the social scientist particular problems, at least once an appropriate economic or social

situation is clearly outlined, the definition of stability may be a more demanding task for

the modeler. This because the outcome, and the profitability, of players’ deviations heavily

depends on the conjectures they make over the reaction of other players. As an example,

a neighborhood rule to keep a common garden clean possesses different stability properties

whether the conjectured reactions in the event of shirking is, in turn, that the garden would

be kept clean anyway or, say, that the common garden would be abandoned as a result.

Similarly, countries participating to an international environmental agreement will possess

different incentive to comply with the prescribed pollution abatements whether defecting

countries expect the other partners to be inactive or to retaliate.

The main focus of the present paper are cooperative equilibria of games in strategic form.

A cooperative equilibrium of a game in strategic form can be defined as a strategy profile such

that no subgroup of players can ”make effective” - by means of alternative strategy profiles -

utility levels higher for its members than those obtained at the equilibrium. As expressed in

the example above, the content of the equilibrium concept depends very much on the utility

levels that each coalition can potentially make effective and this, in turn, depends on the

conjectures over the reactions induced by deviations.

In line with the idea of Nash equilibrium, one important cooperative equilibrium proposed

by Aumann (1959) extends the assumption of ”zero conjectures” to every coalitional devia-

tion. Accordingly, a Strong Nash Equilibrium is defined as a strategy profile that no group of

players can profitably object, given that remaining players are expected not to change their

strategies. Strong Nash Equilibria are at the same time Pareto Optima and Nash Equilib-

ria; in addition they satisfy the Nash stability requirement for each possible coalition. As a

consequence, the set of Strong Nash Equilibria is often empty, preventing the used of this

otherwise appealing concept in most economic problems of strategic interaction.

In this paper we propose a cooperative equilibrium for games in strategic form, based

on the assumption that players deviating from an arbitrary strategy profile have non zero

conjectures on the reaction of the remaining players. More precisely, the conjectural coopera-

tive equilibrium we propose assumes that these remaining players are expected to optimally

and independently react according to their best response map. The assumption of a ”best

response” conjecture introduces a very natural rationality requirement in the equilibrium
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concept. Furthermore, the coalitional incentives to object are considerably weakened with

respect to the Strong Nash Equilibrium, thus ensuring the existence of a cooperative conjec-

tural equilibrium in all symmetric games in which players’ actions are strategic complements

in the sense of Bulow et al. (1985), i.e., in all supermodular games (see Topkis (1998)).

The mechanics underlying such a result can be illustrated by means of the following

symmetric 3x3 matrix game.

A B C

A x, x d, h a, c

B h, d b, b e, f

C c, a f, e y, y

Suppose that in the game (b, b) is an efficient outcome, i.e, such to maximize the sum

of players’ payoffs. To be a cooperative equilibrium, such an outcome has to be immune

from each player switching his own strategy, given his own expectation on the rival’s optimal

response to the switch. When players actions are strategic substitutes (and the game sub-

modular), each player’s reaction map is downward sloped, implying that any move from (b, b)

by one player would generate a predicted outcome on the asymmetric diagonal of the matrix.

In this case, if we let, in the example, a > b > c > h, and b > a+c
2 , the efficient outcome

(b, b) will not certainly be a conjectural cooperative equilibrium, for player 1 will profitably

deviate from it (from B to A), conjecturing that her rival’s best reply will go in the opposite

direction (from B to C), and getting a payoff of a > b. The same will happen if c > b > a > e,

in which case player 2 will deviate by switching from B to C. In contrast, suppose that the

game above is supermodular, with the associated increasing reaction maps. In this case, the

conjectured outcomes in case of deviations from outcome (b, b) are only (x, x) and (y, y). As

a result, if either player finds it profitable to switch either to A or to B (x > b and y > b,

respectively) then the assumption that (b, b) is an efficient outcome is contradicted. We can

conclude that (b, b) is a conjectural cooperative equilibrium of the symmetric game described

above whenever supermodularity holds. Note that in our example, if d > b, the efficient

outcome (b, b) is a conjectural cooperative equilibrium although it is neither a Strong Nash

Equilibrium nor a Nash Equilibrium.

The above example, although providing a clear insight of how supermodularity and sym-

metry work in favour of the existence of an equilibrium, contains two substantial simplifica-

tions: the presence of only two players, ruling out existence problems related to the formation

of coalitions, as well as the restriction to 3 strategies, thus forcing the increasing best replies

to generate symmetric outcomes, from which, the fact that (B,B) is an equilibrium, directly

follows. However, in the paper we are able to show that the existence result holds for any
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number of players and strategies, provided a symmetry assumption on the effect of players’

own strategies on the payoff of rivals is fulfilled.

Related Literature. The problem of defining cooperative equilibrium concepts have

been centered on the formulation of conjectures ever since the pioneering work of von Neu-

mann and Morgenstern’s (1944). The concepts of α and β core, formally studied by Aumann

(1967), are based on their early proposal of representing the worth of a coalition as the aggre-

gate payoff that it can guarantee its members in the game being played. Formally obtained

as the minmax and maxmin payoff imputations for the coalition in the game played against

its complement, the α and β characteristic functions express the behaviour of extremely risk

averse coalitions, acting as if they expected their rivals to minimize their payoff. Although

fulfilling a rationality requirement in zero sum games, α and β-assumptions do not seem jus-

tifiable in most economic settings. Moreover, the little profitability of coalitional objections

usually yield very large set of solutions (e.g., large cores).

Other approaches have looked at the choice of forming coalitions as a strategy in well

defined games of coalition formation (see Bloch (1997) for a survey). Among others, the

gamma and delta games in Hurt and Kurz (1985).1 The gamma game, in particular, is

related to the present analysis, since it predicts that if the grand coalition N is objected by a

subcoalition S, the complementary set of players splits and act as a noncooperative fringe. On

the same behavioural assumption is based the concept of γ core, introduced by Chander and

Tulkens (1997) in the analysis of environmental agreements, where a characteristic function is

obtained as the Nash equilibrium between the forming coalition and all individual players in

its complement. As in the present approach, based on deviations in the underlying strategic

form game, the γ core assumes that the forming coalition expects outside players to move

along their (individual) reaction functions. Differently from our approach, however, there the

forming coalition forms before choosing its Nash equilibrium strategy in the game against its

rivals, while here deviating coalitions directly switch to new strategies in the underlying game,

expecting their rivals to react in the same manner as followers in a Stackelberg game. In

applying our concept to the analysis of stability of environmental coalitions, we may interpret

these differences as the description of different structures in the process of deviation. While

the γ core seem to describe settings in which the formation of a deviating coalition is publicly

observed before the choice of strategies, our approach best fits situations in which deviating

coalitions can implement their new strategies before their formation is monitored, enjoying a

1More precisely, Hurt and Kurz (19) present endogenous coalition formation games and look at the Strong

Nash of these games. Other related papers (i.e., Chander and Tulkens (1998), Yi (1998)) look at the Nash

equilibrium taking as given the gamma and delta rule of coalition formation.
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positional advantage.

The paper is organized as follows. The next section introduce the conjectural cooperative

equilibrium in a standard setup of strategic form games. Section 3 presents the main paper

result: for a well defined class of games, symmetric supermodular games, a conjectural coop-

erative equilibrium always exists. Section 4 discuss in detail the meaning of the result and

the role of the slope of players’ reaction maps. This is done through a descriptive example

of environmental economy whose cooperative conjectural equilibrium exists depending on

individuals’ preferences. Section 5 concludes.

2 Set Up

We consider a game in strategic form G =
¡
N, (Xi, ui)i∈N

¢
, in which N = {1, ..., i, ..., n}

is the set of players, Xi is the set of strategies for player i, with generic element xi, and

ui : X1× ...×Xn → R+ is the payoff function of player i. We denote by S ⊂ N any coalition

of players, and by S̄ its complement with respect to N . For each coalition S, we denote by

xS ∈ XS ≡
Q
i∈S Xi a profile of strategies for the players in S, and use the notation x = xN .

APareto Optimum (PO) for G is a strategy profile such that there exists no alternative

profile which is preferred by all players to and it is strictly preferred by at least one player.

The Pareto Optimum xe is efficient if it maximizes the sum of payoffs of all players in N .

A Nash Equilibrium (NE) for G is defined as a strategy profile x̄ ∈ XN such that no
player has an incentive to change his own strategy, i.e., such that

ui(x̄) ≥ ui(xi, x̄N\i) ∀i ∈ N and ∀xi ∈Xi.

Nash equilibria are stable with respect to individual deviations, given that the effect of

such deviations is evaluated keeping the strategies played by the other players fixed at the

equilibrium levels.

In trying to formulate equilibrium concepts that allow coalitions of players to coordinate

in the choice of their strategies, a natural extension of the Nash equilibrium is given by the

concept of Strong Nash equilibrium (SNE), a strategy profile that no coalition of players

can improve upon given that the effect of deviations is, again, evaluated keeping the strategies

of other players fixed at the equilibrium levels. So, x̂ ∈ XN is a SNE for G if there exists no

S ⊂ N and xS ∈ XS such that

ui(xS , x̂S̄) ≥ ui(x̂) ∀i ∈ S;
uh(xS , x̂S̄) > uh(x̂) for some h ∈ S.
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Obviously, all SNE of G are both Nash Equilibria of G and Pareto Optima. As a result, SNE

fails to exist in many economic problems, and in particular, whenever Nash Equilibria fail to

be Optimal. Although the lack of existence of SNE can be interpreted as a poor specification

of the game theoretic model, it precludes the use of this otherwise appealing concept of a

cooperative equilibrium in many important applications.

In this paper we propose a concept of cooperative equilibrium for G based on the intro-

duction of non-zero conjectures in the evaluation of the profitability of coalitional deviations.

The concept we propose captures the idea that players in S̄ are expected to react to the

deviation of S by making optimal choices (contingent on the strategy profile played by S)

as independent and noncooperative players. The conjectured optimizing reactions of outside

players are formally described by the map rS̄ : XS → XS̄ defined as follows:
2

rj (xS) = argmax
xj
uj
³
xj , rS̄\j(xS), xS

´
∀j ∈ S,

where rj denotes the j-th coordinate of rS̄. Note that rS (xS) is the Nash equilibrium of the

restricted game obtained from G by considering the set of players S and by parameterizing

their payoff function by xS. We obtain the following definition.

Definition 1 A Conjectural Cooperative Equilibrium (CCE) is a strategy profile x∗

such that there exists no coalition S and strategy profile xS ∈ XS for which

ui(xS, rS̄(xS)) ≥ ui(x
∗) ∀i ∈ S;

uh(xS, rS̄(xS)) > uh(x
∗) for some h ∈ S.

Note that all CCEs are Pareto Optima, but need not be NE of the underlying game. In

a 2x2 Prisoner’s Dilemma, for instance, although no SNE exists, the efficient strategy profile

is a CCE.

3 On the existence of conjectural cooperative equilibria in

supermodular games

This section contains our main result, showing that if the payoff functions ui are supermodular

for all i ∈ N and if the game G satisfies two symmetry requirements, then every G admits a

conjectural cooperative equilibrium.

2The following definition implicitely refers to a singlevalued map rS̄ . We will deal with the possibility of

multivalues reaction maps in the section of supermodular games, for which a natural selection is adopted.
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3.1 Supermodularity

We start by defining the concept of supermodularity. For any two strategy profiles x, y in

XN , we define the join element (x ∧ y) and the meet element (x ∨ y) as follows:

(x ∧ y) = (min {x1, y1} , ...,min {xn, yn}) ;
(x ∨ y) = (max {x1, y1} , ...,max{xn, yn}) .

Definition 2 The set XN is a lattice if (x ∨ y) ∈ XN and (x ∧ y) ∈ XN for all x, y ∈ XN .

Definition 3 The function ui : XN → R is supermodular if for all x, y ∈ XN :

ui (x ∨ y) + ui(x ∧ y) ≥ ui(x) + ui(y).

The function ui is strictly supermodular if the inequality is strict for all unordered x, y ∈ XN .

Definition 4 The function ui : XN → R has increasing differences in (xi, xj) if the term

ui(xN\{i,j}, xi, xj)− ui(xN\{i,j}, xi, x0j) is increasing in xi for all xj > x0j.

The following lemmas apply some results in the theory of supermodular games to the

present setting. When omitted, we refer to Topkis (1998) for proofs.

Lemma 1 If ui is supermodular on XN , then ui has increasing differences in (xS , xS̄) for

all S ⊂ N .

Lemma 2 For all xS the set rS̄(xS) has an upper and least element.

Proof. Direct application of lemma 7 in the appendix.

We denote by ru
S̄
the selection of the map rS̄ obtained by considering its upper element,

and by rl
S̄
the selection obtained by considering its least elements.

Lemma 3 The maps ru
S̄
and rl

S̄
are non decreasing in xS .

Proof. Direct application of lemma 8 in the appendix.

3.2 Assumptions

We now list the assumptions needed for our main result.

Assumption 1 Xi is an ordered compact lattice, for all i ∈ N.
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Assumption 2 ui is supermodular on XN and upper hemicontinuous in xi for all xN\i ∈
XN\i.

Assumption 3 (Symmetric Players): For all x ∈X and all pairwise permutations p : N →
N :

up(i)
³
xp(1), ..., xp(n)

´
= ui (x1, ..., xn) .

Assumption 4 (Symmetric Externalities): One of the following two cases must hold:

1. Positive externalities: ui(x) strictly increasing in xN\i for all i and all x ∈ XN ;

2. Negative externalities: ui(x) strictly decreasing in xN\i for all i and all x ∈ XN .

3.3 Results

We start by a preparatory lemma, allowing to deal with the case of multivalued maps rS̄.

Lemma 4 If the payoff functions exhibit positive (negative) externalities, then for all xS the

element ru
S̄
(xS) (rlS̄ (xS)) Pareto dominates all other elements in rS̄ .

Proof. Directly implies by assumption 4.

Motivated by Lemma 4, we will assume that in the case of positive externalities, the

upper element of the set of Nash equilibrium best response is played, while the least element

is played in the case of negative externalities. We can justify this assumption by arguing that

if some pre-play communication is available for players in S then the Pareto optimal Nash

equilibrium should be expected.

The next lemma establishes a results about the ordering of the strategies played by

S and those played by the complementary coalition S, when the former chooses a Pareto

Optimal profile given the reaction map rS̄ defined as a x
∗ ∈ XN such that x∗̄

S
= rS (x

∗
S)

and such that there exists no x0S ∈ XS for which ui (x
0
S , rS̄ (x

0
S)) ≥ ui (x∗) ∀i ∈ S and

ui (x0S , rS̄ (x
0
S)) > ui (x

∗) for at least one i ∈ S. This is without loss of generality since, if S
cannot improve upon a given strategy profile by means of a PO profile for S, then it cannot

by means of any non optimal strategy profile.

Lemma 5 Let i ∈ S and j ∈ S, and denote by x ∈ X and y ∈ X the strategies of player

i ∈ S and player j ∈ S, respectively, at x∗ Then:
i) positive externalities imply x ≥ y;
ii) negative externalities imply x ≥ y.
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Proof. Let Ui(x, y) ≡ ui
³
x∗S\i, x, x

∗
N\S\i, y

´
, and similarly letUj(x, y) = uj

³
x∗S\i, x, x

∗
N\S\i, y

´
.

We use supermodularity of ui to write:

Ui(y, y) + Ui(x, x) ≥ Ui(x, y) +Ui(y, x). (1)

By the properties of x∗,
Uj(x, y) ≥ Uj(x, x), (2)

implying by symmetry that

Ui(y, x) ≥ Ui(x, x). (3)

Using (1) and (3) we obtain

Ui(y, y) ≥ Ui(x, y) = ui(x∗). (4)

Now suppose that y > x and assume that the game has positive externalities. By lemma 3,

the equilibrium best response map has non decreasing upper element, so that

y > x⇒ ru(x∗S\i, y) ≥ ru(x∗S) = x∗̄S. (5)

By positive externalities

ui(x
∗
S\i, y, r(x

∗
S\i, y)) > ui(x

∗
S\i, y, r

u(x∗S)) = Ui(y, y). (6)

Equations (4) and (6) imply

ui
³
x∗S\i, y, r

u(x∗S\i, y)
´
> ui(x

∗), (7)

a contradiction.

Suppose now that y < x and assume that the game has negative externalities. Super-

modularity of ui and uj imply

y < x⇒ rl(x∗S\i, y) ≤ ru(x∗S) = x∗̄S . (8)

By negative externalities

ui(x
∗
S\i, y, r

l(x∗S\i, y)) ≥ ui(x∗S\i, y, rl(x∗S)) = Ui(y, y). (9)

Again, equations (4) and (9) imply

ui(x
∗
S\i, y, r(x

∗
S\i, y)) > ui(x

∗). (10)
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The proof is completed by the observation that since equations (7) and (10) hold for all i ∈ S,
the assumption that x∗ is a Pareto Optimum is contradicted.

The next result shows that at x∗, members of S cannot be better off than members of
S. This result generalizes to the present setting of coalitional actions a well known property

of the subgame perfect equilibrium in two player symmetric supermodular games, in which

the ”leader” is weakly worse off than the ”follower”. This generalization will be shown in

theorem 1 to directly imply the existence of conjectural cooperative equilibria.

Lemma 6 Let x∗ ∈ XN be defined as in lemma 5. Let i ∈ S and j ∈ S̄. Then uj(x∗) ≥
ui(x

∗).

Proof. The following inequalities hold:

uj
¡
x∗S, x

∗̄
S

¢ ≥ uj ³x∗S, x∗̄S\j, x∗i ´ ≥ uj ³x∗S\i, x∗j , x∗̄S\j, x∗i ´ . (11)

The first part is implied by the conditions defining the profile x∗; the second part follows
from lemma 5 and assumption 4. By the assumption of symmetric players, we also have

uj
³
x∗S\i, x

∗
j , x

∗̄
S\j, x

∗
i

´
= ui

¡
x∗S , x

∗̄
S

¢
. (12)

Inequalities (11) and (12) imply

uj (x
∗) ≥ ui (x∗) ,

which proves the result.

Now, we prove the main result of this section, that a CCE always exists in all symmetric

supermodular games. The proof of the theorem is constructive in that, it shows that the

efficient strategy profile xe satisfies the requirements of a conjectural equilibrium.

Theorem 1 Let the game G be a symmetric supermodular game. Then, G admits a conjec-

tural cooperative equilibrium.

Proof. Let xe be an efficient strategy profile for G, that is, a strategy profile that maximizes

the aggregate payoff of N . Suppose there exists a coalition S ⊂ N and joint strategy xS ∈ XS
such that for all i ∈ S :

ui(xS , rS̄(xS)) > ui(x
e). (13)

Note that by lemma 6, it must be thatP
i∈S
ui(xS, rS̄(xS))

s
≤

P
j∈N\S

uj (xS, rS̄(xS))

n− s , (14)
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otherwise there would exist h ∈ S and k ∈ S̄ for which

uh (xS , rS̄(xS)) > uk (xS , rS̄(xS)) .

By condition (14) we obtain the following implication:P
i∈S
ui(xS, rS̄(xS))

s
> ui(x

e)⇒

P
j∈S̄

uj (xS , rS̄(xS))

n− s > ui(x
e). (15)

We conclude that if ui(xS, rS̄(xS)) > ui(x
e) for all i ∈ S then, using (13) and (15), we obtain

s

P
i∈S
ui(xS, rS̄(xS))

s
+ (n− s)

P
j∈N\S

uj (xS, rS̄(xS))

n− s > s

P
i∈S
ui(x

e)

s
+ (n− s)

P
j∈S̄

uj(x
e)

n− s (16)

or, X
i∈N

ui(xS, rS̄(xS)) >
X
i∈N

ui(x
e) (17)

which contradicts efficiency of xe.

4 On the Existence of Equilibria in Submodular Games

4.1 The Role of the Slope of the Reaction Map

Theorem 1 establishes sufficient conditions for the existence of a conjectural cooperative

equilibrium of the game G. The crucial condition, strategic complementarity in the sense of

Bulow et al. (1985), generates non decreasing best replies; in particular, the supermodularity

of payoff functions implies that the Nash responses of players outside a deviating coalition

are a non decreasing function of the strategies of coalitional members. This feature ensures

that each players outside S is better off than each coalitional member of S when deviating.

Deviations by proper subcoalitions of players are therefore little profitable, while the grand

coalition, not affected by this ”deviator’s curse”, produces a sufficiently big aggregate payoff

for a stable cooperative outcomes to exist.

In this section we show how the same mechanics responsible for our existence result on the

class of supermodular games, provide useful insight for the analysis of games with strategic

substitutes, as, for instance, environmental and public goods games. We will use as an

illustration an environmental Cobb-Douglas economy to show that as long as best replies are

not ”too” decreasing (thereby providing deviating coalitions with a not ”too” big positional

advantage), stable cooperative outcomes exist.
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4.2 An illustration using a Cobb-Douglas environmental economy

We consider an economy with set of agents N = {1, ..i, .., n}, in which z ≥ 0 is the environ-
mental quality enjoyed by agents, xi ≥ 0 is a private good, pi ≥ 0 is a polluting emission

originated as a by-product of the production of xi. We assume that for each i inN preferences

are represented by the Cobb-Douglas utility function

ui (z, xi) = z
αxβ ,

technology is described by the production function

xi = p
γ
i ,

and emissions accumulate according to the additive law

z (p) = A−
X
i∈N

pi (18)

where A is a constant expressing the quality of a pollution-free environment. We will assume

that γ,α and β are all positive and γ ≤ 1.
We associate with this economy the game Ge with players set N , strategy space

£
0, p0i

¤
for each i, with

P
i∈N p0i < A, and payoffs Ui(p1, ..., pn) = zαpδi , where δ = βγ. Using this

(symmetric) setup, we can express the maximal per-capita payoff of each coalition S in the

event of a deviation from an arbitrary strategy profile in G as follows:

ui (S) = s
−δAα+δα2α (α+ δ)−α−δ (α+ δ (n− s))−α δδ. (19)

This simple setup of an environmental economy can be used to illustrate how CCE exist

when best replies are not too decreasing or, in other terms, when strategies are not too

substitute. This in turn requires that players’ utilities does not decrease too much with other

players’ choice, a property mainly depending on the level of log-concavity of the term z (p)α.

We prove this analytically for the case δ = 1, while we rely on numerical simulation for the

general case.

Note that z (p)α is log-concave (and the game is not log-supermodular) for α > 0, and best

replies are decreasing. The environmental game admits a unique Nash equilibrium p̄ with

p̄i =
A
α+n for every i ∈ N , and a unique efficient profile pe (by efficient we mean ”aggregate

welfare maximizer”). Simple algebra yields the following expression:

ui (S) = s
−1Aαα+1α2α (α+ 1)−α−1 (α+ n− s)−α .
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The profitability of individual deviation from the efficient strategy profile pe is evaluated

as follows:

ui (p
e)− ui (S) = αα (α+ n− 1)−α n− 1 < 0⇔ α < 1.

It follows that when the function z(p)α is strictly concave (α < 1), then no CCE exists.

However, when α = 1, the CCE is unique, and equal to pe. It is also easy to show that for

α > 1 (z(.)α convex ) the strategy profile pe is still a CCE. We conclude that the existence of

a CCE only requires a not too strong log-concavity of z(.)α. This ensures that the marginal

utility of each consumer does not decrease too much with the rivals’ private consumption

and hence, a deviating coalition, by expanding its pollution (and private consumption) does

not exploit too much its advantage against complementary players. When this is the case,

although the environmental game is a natural ”strategic substitute” game, the CCE exists.

It is interesting to relate the existence of a stable cooperative (and efficient) solution with

the relative magnitude of the parameters α, β and γ, expressing the intensity of preferences

for the environment and for private consumption, and the characteristics of technology. It

turns out that in order for an agreement on emissions to be reached, agents must put enough

weight on the environment in their preferences (high enough α), and emissions must not

be too ”productive” according to the available technology. In other words, this conclusion

rephrases the common intuition that a clean environment is sustainable only if agents care

enough for ambient quality.

As we said, the analysis of existence of a CCE for the general case (that is, removing the

assumption δ = 1) is not possible in analytical terms. In what follows we show by means

of computations that the set of CCEa of the game Γe can be characterized with respect to

three possible configurations of the parameter α,β and γ of the economy: the case α = βγ,

in which the CCE is unique and assigning to each player the payoff ui(pe) (for this case we

provide an analytical proof); the case α > βγ, in which the set of CCEa strictly includes the

profile pe; the case α < βγ, in which the set of CCE is empty.

Proposition 1 If α = βγ the unique CCE is the efficient profile pe.

Proof. We first show that no profile p 6= pe can be a CCE. By (19) we obtain

ui (p
e)− ui ({i}) =

ααAα+δ (α+ δ)−α−δ δδ
h
(α+ δ (n− 1))α − ααnδ

i
nδ (α+ δ (n− 1))α

from which

ui (p
e)− ui ({i}) = 0⇐⇒

h
(α+ δ (n− 1))α − ααnδ

i
= 0;
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Using the fact that δ = βγ we geth
(α+ δ (n− 1))α − ααnδ

i
= [α+ α (n− 1)]α − (αn)α = 0

from which

ui (p
e) = ui ({i}) .

To show that pe is a CCE, it suffices to show that ui (S) ≤ ui (pe) for all coalitions S such
that s > 1. Using (19) we obtain

ui (p
e)− ui (S) ≥ 0⇐⇒

h
sδ (α+ δ (n− s))α − ααnδ

i
≥ 0

which, using again the fact that δ = βγ reduces to

ui (p
e)− ui (S) ≥ 0⇐⇒ [s (α+ α (n− s))]α ≥ (αn)α .

The last condition can be rewritten as

ui (p
e)− ui (S) ≥ 0⇐⇒ s+ (n− s) s+ s2 ≥ n+ s2

which is always satisfied since s ≥ 1.

Proposition 2 If α > βγ then pe is a CCE.

Proof. We proceed by numerical simulations. Our aim is to show that whenever α > βγ

the difference ui (p
e) − ui (S) is positive for every s. We first consider the case s = 1. We

plot the graph of

fi (α, n) ≡ max {(ui (pe)− ui ({i})) , 0}
for the fixed value of δ = 0.5. The domains are taken to be (1, 10000) for n and (0, 1) for α.
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2000

4000
6000
800010000
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0.2
0.4

0.6
0.8 1

Figure 1: fi (α, n) for the case δ = 0.5.
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From Figure 1 it is evident that ui (p
e) > ui ({i}) whenever α > 0.5 = δ. Similar graph

(not provided here) are obtained for other values of δ in the range (0, 1).

We perform the same exercise for coalition of size s > 1. We plot the function

f (α, s) ≡ max {(ui (pe)− ui ({S})) , 0}

for fix values of n and δ. The domains are taken to be (δ, 1) for α and (1, n] for s. For the

case n = 1000 and δ = 0.2 we obtain the following graph:

0.2 0.4 0.6 0.8 1

200 4006008001000

0

0.5

1

1.5

2

0.2 0.4 0.6 0.8 1

200 4006008001000

0

0.5

1

1.5

2

Figure 2: f (α, s) for the case δ = 0.2.

In Figure 2 the graph of f (α, s) all lies above the zero plane for all values of s ∈ (1, n]
and of α ∈ (δ, 1). Summing up, whenever α > δ we found that ui (pe) > ui {i} for s ≥ 1; we
thus conclude that whenever α > δ then pe is a CCE.

Proposition 3 If α > βγ there exists no CCE.

Proof. We again proceed by numerical simulations and evaluate the function

f̂i (α, n) ≡ min {(ui (pe)− ui ({i})) , 0}

for an arbitrary player i ∈ N and a fixed value of δ. The domains are taken to be (0, 1) for

α and [1, 10000] for n. Figure 3 depicts the graph of f̂i (α, n) for the case δ = 0.5 (different

values of δ are reported in the appendix):
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6008001000
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Figure 3: f̂i (α, n) for the case δ = 0.5.

It is evident from Figure 3 (and from numerical evaluations around the point α = 0.5)

that for any value of n in the selected range, ui (p
e) < ui ({i}) for the whole range of values

of α < δ. We thus conclude that for such values there is no CCE.

The above results can be usefully summarized by plotting the value of the difference

[ui (pe)− ui {i}] as a function of the parameter α for fixed values of δ, n and for s = 1.

0.2 0.4 0.6 0.8 1

-3

-2.5

-2

-1.5

-1

-0.5

0.5

Figure 4: The difference ui (pe)− ui {i} for the case δ = 0.5 and n = 10000.

5 Concluding remarks

In this paper we have proposed a new cooperative equilibrium concept for games in strategic

forms, based on the assumption that deviators expect other players to react optimally and

independently in accordance to their best response map. We have employed the properties

of reaction maps in supermodular games to show that equilibria exist on this class of games

under some additional symmetry axioms. We have also discussed existence of equilibria in
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submodular games, and in particular, in the case of a specific Cobb-Douglas environmental

economy. In particular, we have shown how the degree of submodularity of the associated

game, and the existence of an equilibrium, is closely related to the intensity of preferences

for the environmental quality and for private consumption. This example formalizes the

intuitive insight that if agents care ”enough” about the environmental quality, then an efficient

agreement on pollution emissions and on cost sharing can be achieved.
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APPENDIX

Lemma 7 If A is a compact sublattice of Rn and f is upper hemi continuous on A, then

argmaxx∈A f(x) is a nonempty compact sublattice of Rn, and has a greatest and least element.
If f(x) is strictly supermodular, then argmaxx∈X f(x) is a chain.

Proof. See Topkis (1998).

Lemma 8 Let T be a lattice, and let (Gt)t∈T be a collection of strategic form games. Let

the set of strategies Xt
i be constant over T , and let the payoff functions u

t
i(xi, x−i) be upper

hemicontinuous in xi for all xi ∈ Xi and x−i ∈ X−i and have increasing differences in
(xi, x−i) on X. Then there exist a greatest and a least Nash equilibrium elements for each

game Gt, and these elements are increasing in t.

Proof. See Topkis (1998).
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