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Abstract

This paper shows that standard corporate finance theory implies that
there is potentially a trade off between the variances of dividends and
equity prices. We show how the trade off works in a stochastic difference
equation model of dividend policy, demonstrating that the solution may
be unstable for plausible parameter values. At the boundary of the feasi-
ble set of price and dividend variances, prices and dividends are perfectly
correlated and both follow an AR(1) process. We calculate explicit for-
mulae for the variances, and show that firms could it principle make prices
completely predictable, by immediately incorporating all news about the
present value of earnings into dividends. By choosing to smooth dividends
firms increase the variance of prices, and may also increase the variance of
dividends. We show how this can easily result in sample variances which
violate variance bounds inequalities.
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1 Introduction

Dividends famously pose a puzzle (Black, 1976), or more accurately puzzles,
which involve both asset pricing and corporate finance. Indeed the simplest
theories in these two areas generate an apparent paradox. Asset pricing theory
says that the value of equity is the expected present value of future dividends.
Corporate finance theory (Modigliani Miller, 1958, 1961) says that dividends
are irrelevant, the total value of a firm does not depend on financial policy.
In a firm which issues debt and equity, the value of equity is equal to the
value of future earnings minus the value of debt, regardless of dividend policy.
The resolution of the paradox is that dividend policy is ultimately constrained
by capital structure, in the end the capital markets will not allow firms to
finance high dividends by selling shares or issuing debt if earnings do not warrant
it. This suggests modelling the dividend process and capital structure at the
same time. This paper aims at developing such an approach (see Bray and
Marseguerra, 1997, and Marseguerra, 1998, for preliminary results in this line of
research). This takes us outside the usual framework for the analysis of dividend
policy, which takes the capital structure and net dividend (dividends plus share
repurchases minus share issues) as given, and looks at the decomposition of the
net dividend into its three components. The classic question here is Black’s
(1976) original dividend puzzle, why do companies pay dividends given the tax
disadvantages of doing so (see Allen and Michaely, 1995, for a survey of the vast
literature on dividend policy, and Allen Bernardo and Welch, 2000, for a recent
explanation of the puzzle based on tax clienteles).!

We in contrast take models of dividend setting as determining the net div-
idend, and look at their implications for the stochastic processes of earnings,
equity values, debt and dividends within a simple and very orthodox framework,
in which assets values are expected present discounted values with a constant
discount rate, and the Modigliani Miller theorem holds. This is conceptually a
simple exercise, although algebraically burdensome in places. Why is it worth
doing? Because we believe the results are surprising, and go some way towards
explaining why it has been so hard to resolve some aspects of the dividend
puzzle.

We start with a very simple and orthodox model of the firm in section 2,
and show that whatever the dividend policy

pe+di=(1+7)pi—1+e (1.1)

where, r is the expected rate of return, and (this is the substance of the propo-
sition) e; is the innovation at date ¢ in the expected present discounted value
of current and future earnings from date ¢ onwards. This is not a deep or sur-
prising result, but it does highlight an important aspect of dividend policy; how
do dividends respond to the shock e; in the expected present discounted value
of earnings? The stylised facts of dividend smoothing (Lintner, 1956) suggests

ISee also Bagwell and Shoven,1989, and Fama and French, 2001, for changes in the size
and composition of net dividends.



that the answer is not much, in which case (1.1) implies that the shock is largely
manifested in the equity price, so taking the variance of earnings shocks as given
smooth dividends would seem to imply bumpy prices. We explore this further
in Section 3, showing that if detrended equity prices, dividends and earnings
shocks are stationary, then equation (1.1) implies bounds on the variances of
dividends and equity prices which are stated in Proposition 2 and graphed in
Figure 2. The feasible set has two important features. Firstly it confirms the
possibility of a trade off between the variances of prices and dividends. Sec-
ondly at the boundaries of the feasible set prices and dividends are perfectly
correlated, something we come back to in Section 6 where we show that this
implies that detrended prices and dividends follow an AR(1) process.

Further progress requires modelling of dividends and earnings which we pro-
vide in Section 4 in which dividends are a linear function of lagged dividends and
capital structure variables (the expected present value of earnings, and the value
of debt and equity), earnings and earnings shocks. The model is sufficiently
general to have as special cases both the major hypotheses on dividend policy.
One is the partial adjustment hypothesis, originally due to Lintner (1956), which
states that companies have a target dividend-earnings ratio, but smooth their
dividends by only adjusting to it partially. The alternative permanent earnings
hypothesis makes dividends a function of some measure of permanent earnings,
one such measure being the equity price (as in Marsh and Merton, 1986). The
empirical literature has sought to distinguish between the two hypotheses (see
for example Fama and Babiak, 1968), but (as we argue in Section 4) this may
be difficult to achieve because dividend smoothing can make the two hypotheses
observationally equivalent.

There is a long standing debate on whether dividends have a signalling role,
whether dividends convey any information which is not already incorporated
in earnings, and whether there is a conflict between dividend signalling and
smoothing. There are a number of theoretical models of dividend signalling
(e.g., Bhattacharya, 1979, Miller and Rock, 1985, John and Williams, 1985).
These are all models of one round of dividend setting. We have not addressed
the daunting technical difficulties in deriving a signalling model based on op-
timising assumptions which can extend over an unlimited number of dividend
decisions. However our model of dividend setting allows but does not force
dividends to convey information about future earnings, which may or may not
provide information additonal to that in current earnings.

We model earnings in Section 4 as the sum of a process which can be AR(1)
or a random walk, and a white noise process. This is the simplest way of
allowing both persistent and transient shocks to earnings. There are two basic
approaches to tackling the non-stationarity (see, e.g., Hamilton, 1994). One is
to difference the data, for example finding that the first difference of data is
stationary. An alternative approach is to estimate an exponential trend, which
is used to detrend the data. We allow here for both possibilities. The model
gives a set of three simultaneous linear stochastic difference equations (4.7) and
(4.8).

The first questions to ask about such a set of equations is whether the result-



ing solution is stable, and if not stable whether the variables are cointegrated.
This is addressed in Proposition 3 and illustrated in Figures 3 and 4. The result
depends upon the stability of the earnings process, and the coefficients of lagged
dividends and lagged equity prices in the dividend equation, which determine
the eigenvalues of the matrix in the difference equation system. We show that
plausible values of the coefficients generate eigenvalues which are close to the
boundary of the unit circle, so it is not surprising that as the empirical literature
suggests (DeJong and Whitheman, 1991), the stationarity and cointegration of
prices and dividends is a delicate issue. If dividends are not affected by the
balance sheet in the form of lagged equity prices or debt one or more of the
roots lies outside the unit circle. If dividends are unaffected by both lagged eq-
uity prices and lagged dividends, for example if the company never pays any
dividends, both roots lie outside the unit circle.

We solve the model in Section 5. Proposition 4 gives formulae for the time
path of prices and dividends generated by the difference equations. These
allow us to see the relationship between the partial adjustment and permanent
earnings hypotheses on dividend determination, the information conveyed by
dividends and the resulting price, dividend and earnings processes. The results
make it straightforward to specify conditions under which some or all of prices,
dividends and earnings are perfectly correlated. We show that if under these
conditions detrended equity prices and dividends are stationary, the variances
of prices and dividends lie on the boundary of the feasible set defined in Section
3, and the partial adjustment and permanent income hypotheses of dividend
setting are observationally equivalent.

We can also look at the response of dividends and equity prices to current
and lagged permanent and transient shocks in earnings. The specification of
the dividend equation allows us to follow Lintner’s (1956) survey results giving
transitory shocks no role in immediate dividend setting. However our model
implies that in that case transitory shocks to earnings before interest will in-
evitably have long terms effects on dividends and equity prices. This effect
can work through the effect of dividends on debt, and thus on earnings after
interest. In the econometric literature earnings are usually treated as an exoge-
nous variable in explaining dividends (e.g., Lee, 1996, and Chiang et al., 1997),
but we suggest this may not be so. This may account for the strong evidence
of non-stationarity in earnings (see, e.g., Ali and Zarowin, 1992), so much so
that some shocks to earnings appear to last for ever without diminishing. In
a world of changing markets and technology this is a somewhat surprising fea-
ture of earnings before interest.? But if earnings are earnings after interest and
therefore endogenous, dividend policy, and in particular dividend smoothing,
may account for the non-stationarity of earnings.

In Section 6 we come back to the Section 2 insight that the choice of how
much to make dividends move in response to shocks in the expected present

21t is however worth remembering, as clearly stated by Cambell and Shiller, that ”the
precise economic meaning of earnings data is not clearly defined; accounting definitions are
complicated and change through time in ways that are not readily documented” (Campbell
and Shiller, 1988, p.661).



value of earnings can generate a trade off between the variances of prices and
dividends, and derive formulae for these variances which apply when the de-
trended price and dividend processes are stationary. We show that if one or
both of the roots of the equation determining stability lies close to the bound-
ary of the unit circle, something which appears thoroughly plausible, there is
in fact little scope for trade offs through this mechanism, and as both roots
approach the boundary both variances tend to infinity. We then look at the
scope for trade off along the boundary of the feasible set of price and dividend
variances. We show that there is enormous scope for trade off here, and indeed
it is possible to make prices, but not dividends, follow a deterministic trend, by
putting the entire shock to the present value of expected earnings into dividends.
We show that by choosing to smooth dividends companies are choosing prices
which have large variances both because there is a big initial price response to
earnings shocks, and because the shock is persistent.

This is suggestive of the literature discussing Variance Bounds (Shiller (1981)
and the subsequent discussion Flavin (1983), Kleidon (1986), Marsh and Mer-
ton,(1986)), and the model of this paper does indeed make it easy to see why
Variance Bounds estimates can be problematic. In Section 7 we construct a
limiting case in which the detrended equity price p; at date ¢ is close to a ran-
dom walk pg + Z;Zl €; where ¢é; is the innovation at date j in the expected
present discounted value of earnings from detrended earnings from date ¢ on-
wards. The detrended perfect foresight price p;r (the present value of realised
dividends from date ¢t + j to T and the equity price at date T') is close to
po + ZJT:1 é;. (Note that ¢ does not appear in this formula.) At any date ¢
before 7' the variance bounds inequality is satisfied, varp; < varpj,. However
as the detrended perfect foresight is virtually the same for all ¢, the expected
sample variance of detrended perfect foresight prices is almost zero, whereas the
expected sample variance of the detrended prices is bounded away from zero.
The sample variances are grossly biased as estimates of variances, and the bias
is much greater for perfect foresight prices. Computer simulations generate
gross violations of variance bounds.

Section 8 concludes the paper with a discussion of the robustness of the
insights gained to less defensible of our assumptions.

2 Dividends and Equity Prices

We start with some very standard asset pricing and corporate finance theory
assumptions.

Assumption 1: Asset Pricing
Eyi(di +5r) = (14 7)Pi—1 (2.1)

where Jt 1s the dividend per share, p; price per share and r is the expected
rate of return.



The substance of this assumption is that the expected rate of return is con-
stant over time. This an unrealistic benchmark (Campbell, Lo and MacKinlay
1997) made for the sake of tractability and simplicity. We believe that the key
insights of this paper would hold with a more complicated model of expected
returns.

This paper relates dividends and share prices to the earnings and balance
sheet of the firm. This requires attention to net dividends d; defined as the sum
of total dividends plus share repurchases minus share issues

dy = ny_qdy + (ne—1 — ne) Py (2.2)

where n; is the number of shares outstanding at date . Dividends are paid at
date t on the n;_; shares outstanding at date t — 1, and ny;_; — n; shares are
repurchased at price per share p;. We use notation

Dt = N¢Dy- (2-3)

so p; is the total value of equity at date t, immediately after dividend payments
and share issues or repurchases. (For the sake of simplicity we assume that
these all take place at the same time.) Note from (2.2) and (2.3) that d; +p; =

Ng_1 (czt + ﬁt) SO dp*’—i% = C;;—i% and thus, from the point of view of returns,
we can work with either returns per share using the gross dividend per share,
which is the focus of the asset pricing literature, or returns on the total value of

equity using the total net dividend which is more natural in a corporate finance
context.

Assumption 2: Sources and Uses of Funds
dt + (1 + T)Bt—l =X+ Bt (24)

where By is borrowing at date t and x; is earnings net of investment
at date t.

The sources and uses of funds is an accounting identity. However there is
economic content in the assumption that the interest rate r in the sources and
uses of funds identity (2.4) is the same as the expected return in the asset pricing
equation (2.1), a simplifying assumption which is hard to justify. In the context
of the CAPM this is equivalent to assuming that the risk premium on debt is the
same as the risk premium on equity, a somewhat heroic assumption. Working
with a more general assumption would change the interpretation of the model
in a way which we will discuss shortly, when we have proved Proposition 1.

Assumption 3: Earnings The expected present discounted value of future earn-
mgs
n
) eewor
(1+7r)

=1

Ey

tends to a finite limit as n tends to infinity.



This assumption is standard, if it is not satisfied the value of the firm is not
well defined.

Assumption 4: No Bubbles The expected present discounted value of equity
n periods hence

Pt+n
o s
! [(1 + r)"}
tends to 0 as n tends to infinity.

Again this is a standard assumption.

Assumption 5: Borrowing Constraint The expected present discounted value
of borrowing n periods hence

et

tends to 0 as n tends to infinity.

This is an assumption on the willingness of creditors to lend to the firm. It
rules out for example the possibility that the firm’s creditors continually roll
over the existing debt without requiring any repayment of capital and interest.
It also rules out the possibility that firms hold negative debt, that is a cash
pile, which simply grows at the rate of interest. It is not so obvious that firms
will be unable to do this, although a free cash pile surely offers even greater
temptations to management than a cash pile, and they may be constrained by
their shareholders, or the threat or reality of take-over (Jensen, 1986).

The following Proposition is an almost immediate consequence of the as-
sumptions. It states that the unanticipated part of asset returns is the innova-
tion in the expected present value of current and future earnings. This is not
surprising, and it is easy to prove. We state it as a Proposition because it is
central to the argument of this paper. When firms get news about their current
and future earnings they have to make a decision as to how to respond to that
news in setting their dividend. If they do not adjust their net dividend by e;, the
entire innovation in the expected present value of current and future earnings,
the standard assumptions which we make imply that part that innovation must
be reflected in the value of equity p;. If there are no share issues or repurchases,
or decisions on issues and repurchases are announced before gross dividends, any
part of e; which is not immediately incorporated into future earnings is reflected
in the equity price.

Proposition 1 (Dividend Shocks) Suppose that Assumptions 1-5 above hold.
Then

pe+di = (14+7)p—1 + e (2.5)
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et = BV — By 1 V;

LTt4i 1

(2.6)

(2.8)

so e; is the innovation in Vi, the expected present discounted value of current

and future earnings at date t.

Proof. Multiplying equation (2.1) by n;—1 and using equations (2.2) and

(2.3) implies that
Ei 1(ds +pt) =

Iterating this equation gives

n

(1+7)pt—1-

DPt4n

Z dt—i—z

=1

1+7’)

Using equation (2.4) to eliminate d;4; the equation above from implies that

n

Pt + By = E;

(Pt4n + Biyn)

Ti+i
-+
; (1+7)

Assumptions 3-5 then imply that

pt+ By =

which establishes (2.6).

pe+di — (1+7)pi1

o0
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Also from (2.10) and (2.4)
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Figure 1: Plots of the conditional variances of prices and dividends for different
values of p,_;, the conditonal correlation of prices and dividends.

Assumption 2, which implies that the interest rate on debt is constant and
the same as the expected return on equity plays an important role here. If
we had worked with a richer and more realistic model of debt and returns the
equation p;+d; = (1+7r)pi—1+e; would still hold, but e; would be the innovation
in the value of equity which would respond to news about earnings, expected
returns, and the value of debt. We have assumed for the sake of simplicity
that the value of debt does not respond to news because we wish to focus on
dividends.

Proposition 1 has immediate consequences for the conditional variances of
dividends and prices. Equation (2.5) implies that

1 1
vars—1 pr + 2p,_1 (s, dy) (vars_1 p;)? (varg_1 dy)? + vary_; dy = vare,

where the notation var;_; is used for the conditional variance at date t — 1 and
pi—1(pt,dy) is the conditional correlation so —1 < p,_4(ps, dy) < 1.

Figure 1 shows the trade off between the conditional variances of p; and
dy. At point A next period’s price is made completely predictable by letting
the innovation in the dividend be e;, the innovation in the present discounted
value of earnings given by equations (2.8) and (2.7). At point B next period’s
dividend is completely predictable, in which case the entire innovation e; is in-
corporated into the price. Under the assumptions of this model firms which



wished to reduce the conditional variances of both dividends and prices would
wish to be on the segment AB for which p =1 in Figure 1.

3 The Variance Trade Off

We now make some simple points about the trade off between the variances of
prices and dividends under the assumption that there is a number v € (0,1+7)
such that detrended dividends y~*d;, equity prices v !p; and earnings inno-
vations v te; are stationary and have variances. This is not an innocuous
assumption, it is not for instance satisfied if dividends and equity prices follow
a random walk and are stationary in first differences. We will work with a
model of dividends and earnings which, depending on parameter values may or
may not satisfy this assumption. There are clearly more general models than
the one we use which also satisfy this assumption on variances. However, the
specification here assumed does allow us to make a point on the trade offs be-
tween dividend smoothing and the volatility of equity prices which is summed
up in the next Proposition.

Proposition 2 (The Variance Trade Off) Suppose that assumptions 1-5 hold,
and that dividend policy and the earnings process is such there is a positive con-
stant v for which detrended prices vy~ 'p;, dividends y~td;, and the innovation in
the expected present value of earnings y~te, are stationary. Let 0% = vary~td;,

2

o2 =vary~'p; and o =vary~te,. Then if

g
k=
147

(3.1)

(and so 0 < k < 1), the following upper and lower bounds hold:

(k2 + 1)012, + 02 4 20, [k=202 + 0% > o> (k72 + 1)012, + 02 —20,, [k=202 + o2.

The upper bound is satisfied as an equality if and only if prices and dividends
are perfectly negatively correlated, the lower bound is satisfied as an equality if
and only if prices and dividends are perfectly positively correlated. The lower
bound on o decreases from a value of o? to(1 —k*) o2 as o7 increases from 0
2 2

k4 2 ) i )
to (1_47;2) and thereafter increases as oy, increases. The upper bound on o is

an increasing function of 012,.
Proof. Equation (2.5) implies that
012, +2p0,04 + 05 = k72012) + 02 (3.2)

where p = correlation (p¢, d;). Treating this equation as a quadratic in og

o4 = —po, + \/(k:_2 —1+p%)o2 +o2. (3.3)

10



We ignore the negative root because as k=2 > 1 it makes the standard deviation
o4 negative. From (3.3)

doyg pafl

- — _Up+
dp V2 =14 )02 + 02

—op|1— po; .
P (k=2 =14 p?)o2 + 02

As by assumption k=2 > 1, and o, is a standard deviation so non-negative,
%"pﬂ < 0. As pis a correlation it must lie in [—1,1]. Thus the lower bound on
o4 is derived by setting p = 1, and the upper bound by setting p = —1 in (3.3),
which gives the bounds on 02. From (3.3)

) o2
ﬂ:—p—&—(kz—l—&-pQ)\/(k L

do, 214 p%oi 402

If p < 0 this is positive, so for given p, k and 02, as o4 > 0, 02 is an increasing
function of 012,. In particular if p = —1, g—g: > 0, so the upper bound on o3 is
strictly increasing. If p =1

2

60'(1 :71+k‘72 O'p

2,2 1 2
Oop k=202 + o2

S . ko2 . .
which is zero if 03 = (1—461;2)’ negative for smaller, and positive for larger values

of Uf,. At the minimum, substituting Uf, = %, the lower bound on o7 gives
a minimal value of &2 of (1 - kz) ol m

This Proposition establishes that standard assumptions on asset pricing and
corporate finance imply that there is potentially a trade-off between the variance
of prices and the variance of dividends. This is contrary to the intuition that
because prices are the expected present value of dividends it is surprising that
prices are bumpy whilst dividends are smooth. We will show how this trade off
can be achieved, and argue that all the evidence from Lintner (1956) onwards
which suggests that firms do not adjust dividends instantly in response to both
permanent and transitory changes in earnings implies that if standard theory
applies firms are choosing to make equity prices more volatile than they need
be.

Figure 2 illustrates the scope for the variance trade off, plotted for k = ﬁ—r =
%05, for which the minimal value of 02 is 0.09302 obtained when Uf, = 8.84902.
The lower boundary of the feasible set is a decreasing function of Uf, for value
below 8.84902 and an increasing function for larger values of 02. However as

»
Figure 2 shows the lower boundary is almost flat once o7 reaches 3072.

11
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Figure 2: The boundary of the feasible set of price and dividend variances for
k=1.05"1.

4 Dividends and Earnings

Our model of earnings is the simplest which allows for growth in earnings, auto-
correlation in earnings, and allows us to make a distinction between news which
is only relevant to current earning €14, and news which also has an impact on ex-
pectations of future earnings. €5;. These are earnings before interest payments,
but our model of dividend policy is sufficiently general to allow dividends to
depend upon earnings after interest.

Assumption 6: Earnings Process Farnings x; are given by

Tt (1+7—9v)
i ~ 7 4.1
i o+ (1 7“) Yt + €1t ( )
where®
Yt = QYi—1 + €2t (4.2)

3The term (1?{—;3'72 in (4.1) may appear strange. It is there to simplify notation by

making y* (€1 + €2¢) rather than a more complicated function of 14 and e2; the innovation

in the expected present value of earnings Vi = E: [ 2o ﬁ‘;’)—l . To see this note that

12



O<y<l4+r

1+r 1+r
< o< .

Feyy = Eegy = 0, varey, = 02, and varey, = 02, for all t, cov(eys, e2s) = 0
for all s and t, and cov(eis,e15) = cov(eat, e25) =0 for all t # s.

This allows for a variety of earnings process including the possibility that
earnings follow a random walk (a = 0, varey; = 02, =0,y = ¢ = 1) or a
constant plus an AR(1) process (varey; = 02 =0, v = 1, || < 1). Thus (4.1)
and (4.2) imply e; = EV; — E;_1V; =+ (e1¢ + €2¢) and so from Proposition 1

pe+de = (1+7)p—1 +7 (10 + 2). (4.3)
Our dividend model is given by
Assumption 7: Dividend Policy

di =v'h+adi—1 +bp—1 + Y'ym1 + fiv'en + forv'ea + fav'en
(4.4)

where €1, and €94 are the innovations in the earnings process and
€3¢ 18 another white noise process which is included to allow greater
generality and is orthogonal to {e1:} and {ea:}.

As current earnings are given by (4.1) and (4.2), and the expected present
value of future earnings by (2.7), this dividend policy allows for the dependence
of dividends on lagged dividends, equity prices and current earnings, the ex-
pected present value of future earnings, and innovations in current and expected
future earnings. From (2.6)

oo
Z Tt—1+44
— (1+r)

so given the inclusion of p;_; and y;—1 in the dividend equation, lagged bor-
rowing B;_1 can also affect dividends. Thus dividends can be a function of
earnings after interest payments on debt. Our specification of dividend policy
includes both Lintner’s (1956) model which makes dividends adjust partially to

Vi ay’ ¢
= —+ Yi—
1+r» 147r—v 147

=F;_

Di—1+ Bi_1 = FEy_y

equations (4.1) and (4.2) imply that
- 7 1 +r— ¢’Y (blfyl
E T | ¢ -
t{z 1+r)t 781t+’yz 1+r)l 1+7r (1+r)1yt
1+r a(l+r
= (au + ¥ +yt ) — e ean) 4t 20T gy
I+r— 1+r—v

Note the role of the assumptions that 0 < v < 1+ r and f% <o < % in ensuring that
the infinite sums converge.

Vi

13



a target fraction of current earnings, and a linear version of Marsh and Merton
(1986) which makes dividends proportional to the value of equity. This is not
a model of signalling, but the dividend equation does allow for the possibility
that both dividends and earnings are informative about future earnings, and
thus the value of the firm.

The dividend policy equation can also be written as

d a dp— b _
(fy_i) =h+ (;) (f;i) + (;) (%) +cyi—1 + frewe + fo2t + f3€at-

(4.5)

From (4.5) and (4.3)

() - - () () () ()

+(1 = fi)ew + (1 — f2)ear — faea (4.6)

Equations (4.5), (4.6) and (4.2) give a set of simultaneous linear stochastic
difference equations defining the evolution of (y~tds,y tps, ;) which can be
written as

vty h S e fie1s + facar + faca
Y | = —h | +M| 4y ey |+ | (L= fr)ew+ (1= f2)ear — faese
Yt 0 Yi—1 €2t
(@.7)
where
a b ye
M=~1| —-a 1+r—b —vc |. (4.8)
0 0 Yo

Note that mathematically the simple model of prices and dividends defined
by the following equations (4.9) and (4.10)

a b
vty = h+ ;T“f”dt,l + ;T“*”pH + fiv"te (4.9)

a b
Y 'py =—h— ;'7_(t_1)dt71 + (k7 - ;)7_“_1)1%71 + (1= fi)7y "e: (4.10)

is a special case of the model of equation (4.7) in which ¢ =0, f1 = fa, fs =0
and v 'e; = g9 + 14 However economically the model of (4.9) and (4.10) is
both less restrictive on the earnings process than that of (4.7) as it makes no
assumptions on earnings beyond the stationarity of y~te;, and more restrictive
on dividend policy, as it does not allow earnings to enter the dividend equations
apart from through e;.

14



Standard results on linear stochastic difference equations tell us that the
existence of a stable solution of both models depends on whether the eigenvalues
of M lie in the unit circle. The eigenvalues are the roots ¢, Ajand Ao of the
characteristic equation of the matrix M

(e R P

2

SO
A L 1+r+a—b+\/(1+r+a—b)2—4a(1+r) (4.11)
1 % .
A 1 1+r+afbf\/(1+r+afb)274a(1+r) (4.12)
2 % .
where A1 and Ay are the roots of
AQ—(H’":“_I’)H“(?”:o. (4.13)

We prove in the Appendix:

Proposition 3 The eigenvalues of M A1 and Ay are the roots of (4.13) and are
given by (4.11) and (4.12). They are complez if and only if a > 0 and

(VIT7—+va)’ <b< (VIitr+va)’. (4.14)

If A1 and Ag are complex they are complex conjugates. The roots A\ and Ao lie
2
in the interior of the unit circle if and only if a < T'7+—T and

(I+7r—9) (1%) <b<(l4+r+7) <1+%)

2 2 2
which implies that —7 < a < 7. Ifa> {4 and

(I+r—7) (12) <b<(+7r+7%) <1+2)
Y Y
A1 and Ao both lie outside the unit circle. If
b < min {(Hr—v) (1—%>,(1+r+7) <1+%)]

both roots are real, A\ > 1 and —1 < Ao < 1. If

b> max {(Hrv) (1%>,(1+r+’y) <1+%)}

both roots are real, Ao < —1 and —1 < Ay < 1. If
a a
(14+7r+7) (1—1—;) <b<(l+r—7) (1—;)

then a < ffg,, both roots are real and Ay < A1 < —1.
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b 0>A,>-1> A,
1> A5,

b=(1+r+y(1+a
1>A>0 (@+ren( v

-1> A,

\ b = ((1+r)Y2+ al2)2

0>A,> A,> -1

Pyl =Rl>1
1>2>0>2>-1 ‘
\ complex roots b = ((L+n)¥2- a2)2
A >l - 'Q—‘ 1>A,>A,>0 ‘ a
-1>A, T A Aot
A>1, 0> A2u>1> A,>0 b= (L+r-y)(L-aly)

Both A, and A, liein the unit circle.

Oneof A, and A, liesin the unit circle.

Neither A, nor A, liein the unit circle.

il

Figure 3: Stability condition with v =1 and r = 0.5.

The proof of Proposition 3 in the Appendix gives a more detailed description
of how A1 and A, relate to a and b, which is illustrated in Figure 3. This Figure
is drawn under the completely unrealistic assumption that v = 1 and » = 0.5,
(recall that v — 1 is the trend rate of growth of earnings and r is the interest
rate). These values are chosen simply because it makes it possible to see in the
Figure all the various regions in which A\; and A\ are positive and negative, real
and complex, and inside and outside the unit circle. Figure 4 shows part of a
similar plot to Figure 3 for the more realistic values of v = 1.05 and r = 0.07.
Note the very different scale on the vertical, b axis.

The stylised facts on dividend smoothing suggest that a is likely to be close
to 1, and b is likely to be positive but small. As Figure 3 shows, this implies
that A1 and )y are close to 1, they are positive if they are real, but could be
complex, and could lie either inside or outside the unit circle. A model in which
dividends depend upon lagged equity prices but not dividends, with coefficients
a=0and b~ 1+ r—is also close to the boundary of the stable set. There
are no points in the stable set for which b = 0, dividends must be affected
by the balance sheet. Recalling that we define earnings as being earnings
before interest, the balance sheet can affect dividends through earnings after
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1>A>0 b
1>2,>0 0>),>-1
-1>A, 1 b={ (1+r)V2- al2)

Pl=R,l<1

0.1 +
b=(1+r+y)(1+aly)

b=(L+r-y)(1l-ay) ' 1>A;>A>0
4y A>A>1
a
y2
1+r
A>1, 0>7,> -1 A >1>A,>0

complex

Both A, and A, liein the unit circle.

Oneof A, and A, liesin the unit circle.

Neither A, nor A, liein the unit circle.

Figure 4: Stability conditions with v = 1.05 and r = 0.7.

interest. If all three roots A1, Ay and ¢ lie in the unit circle detrended prices
and dividends are stationary, if Ajand A2 but not ¢ lie in the unit circle any
two of prices, dividends and earnings are cointergrated. If, as seems plausible
the price and dividend processes involve roots close to unity, their variances will
be very large or infinite. We will return to this point when we have explicit
expressions for the price and dividend processes.

5 The Paths of Prices and Dividends

We prove in the Appendix:

Proposition 4 (Prices and Dividends) If dividends and prices are given by
the equations

v tdy h S e fie1s + fagar + faca
Yo | = —h | +M | 4y Yp g |+ | (L= fi)ew+ (1 — fo)ea — faese
Yt 0 Yt—1 €2t
(5.1)
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where

then

t—

1 a b ye
—a 1+7r—b —vyc |.

0 0 VP

1

3 3
%_Md - ZZZ (1= kA M Ayyejn + mar

0i=1 j5=1

t—1
= E AanAer—_p + may
h

Pt

Hp

t—1 3

ZZZM A AGEjt—n A My

=0i=1j=1
t—1

Z AphAStfh + mpt

h=0

t—1

Y = Z Mear—n + Myo

where A3 = ¢

Hq =

My =

1—kX— f1
A = | —-1+kM+ 11

1

k(A — \2) 0

Aagp = ((1 — kM) AL, (1

h=0

(L+r—9)hy
(I+r =)y —a)=by

hny

(I+r =)y —a)=by

1fk)\2ff2+m

—l+k\+ - ooy
— )\17}\2 C
(A3=A1)(A3—A2)

— A2) X, (1 - ) M)

Apn = (AL, 12 AS, BAs NG )
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Elt—h
Et—h = | E2¢—h (5.9)
€3t—h

and

(1 — kAs) eAgyo

mae = (1 — kX)) Mgy + (1 — kXg) Mogo — F0w ) On =) (5.10)

" EAzcA)
M = KA N+ kAaXpge — oo ;1) (3;/30_ " (5.11)

where
1

q1 = —]{?)\2 (do - /Ld) + (1 - ]{?)\2) (po - /Lp) + mcyo (512)

1
g2 = kM1 (do — p1q) — (1 = kA1) (po — pp) — D =) o (5.13)

Note from (5.6) that Aq1 + Agp + Az1 = A1s + Aoy + Ay = 1, whilst
A1z + Ayz3 = 0 and Az3 = 0. Thus %}, — 1y and % — M, can be interpreted
as weighted averages of AR(1) processes with innovations {e1;} and {eo;} with
weights determined by fi1, fo and c¢ plus a multiple f3 of the difference between
two AR(1) processes with innovations {e3;}. However looking at (5.6) there is
no guarantee that the weights are non-negative. Indeed they are complex if
A1 and Ao are complex, and have zeros in the denominator if any of the roots
coincide. Lemma 1 in the appendix gives alternative expressions for dividends
and prices in which all the terms are finite and real valued, even if the roots are
complex or coincident.

Proposition 4, and in particular (5.2) and (5.3) imply that a necessary and
sufficient condition for the detrended dividend and price processes to be station-
ary in the sense that E (y~td;|do, po), var (Y~ td¢|do, o), E (v 'p¢|do, po), ang
var (7" 'p¢|do, po) all tend to finite limits is that mg:, my: and ZZ_:IO ‘Aij)\?‘
for i =1,2,3, j=1,2,3 all tend to finite limits as ¢ tends to infinity. There
is of course no reason why companies should keep econometricians happy by
choosing a dividend policy which results in prices and dividends with bounded

second moments, but they do need to consider their debt and equity holders.
Recall from (2.6) that p; + B; = EVier where p, is the value of equity, B, is

1+r
the face value of debt and V; the expected present value of earnings. From
Assumption 6 E;V; 1 =~ Ozl}rr% + (byt} . Assume that y; is stationary, with

finite variance so vt E;V,,1 is also stationary with finite variance, then if v~ tp;
is non-stationary with an infinite variance v~*B; must also be non-stationary
with an infinite variance. But it seems highly unlikely that companies will be
able to issue debt on terms which allow the face value of debt B; to be much
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larger than the total value of the firm E;V;,1, so dividend policies which result
in non-stationary detrended price processes are likely to become unsustainable,
as indeed are those which although stationary have very large, but finite, vari-
ances.

Proposition 3 established conditions under which A; and A5 both lie in the
unit circle. If in addition —1 < A3 = ¢ < 1 the solution is stable, and the
conditional variances of {d¢, pt, Y+ } given {do, po, Yo} exist, whatever the starting
point. However it is also possible to get stability when one or two of the roots
lies outside the unit circle, provided all the weight is put on stable roots, and
the starting point is appropriate. For example, consider the case when \; and
Ao are real, set fi = fo =1 — kA, and f3 = c¢=0. The sum of dividend and
price at date 0 is determined by the previous history and shocks at date 0, so
do — ptg +po — i, = s for some number s. It is possible to set dividends at date 0
so do—pg = (L—kA1)s and po — p,, = kAys, which implies that q; = k(A1 —A2)s,
g2 = 0, and from Proposition 4

110
A=10 0 0
00 0
SO
d t—1
7—1 — g = (L= kX)) A (ere—n +e2-n) + (1 — kA1) AfE(\ = Ao)s  (5.14)
h=0
» t—1
7@ —ptp =3 kMAY(E1e-n + E2-n) + EMATE (A — Ag)s. (5.15)
h=0

This implies that, for t =0,1,2.....,

dy V43
i (5= a) = =130 (B =)

i.e. prices and dividends are perfectly correlated AR(1) processes with root Ap.
Similarly setting f1 = fg =1-—FkAo, f3 =c=0,dy— Mg = (1 - k>\2)s

>
|
oo
oo
oo o

and
d t—1
7—1 — g = (L= kX ) A5 (ere—n +e2e-n) + (1 — kA2) Agk (A — Aa)s  (5.16)
h=0
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t—1
%fur:zyﬁﬂaaph+wpw+kM£MM—Aﬁs (5.17)
h=0

Again prices and dividends are perfectly correlated AR(1) processes with root

A2 and
dy Pt
kA2 (? - Md) = (1 —kA) (; - Mp)

Thus it is possible to get a stable AR(1) process with finite variances in the knife
edge case when one but not both of A\; and Ay lie outside the unit circle. The
stability is however delicate, with the wrong initial value of dividends, dividends
and prices are unstable.  The possibility of perfect correlation is interesting,
because Proposition 2 then implies that the variances of prices and dividends
lie on the boundary of the feasible set. = We concentrate on this case when
we consider variance bounds in Section 7. One special case is noteworthy. If
a = 0 so lagged dividends do not enter the dividend equation then A = 0 is a
root of the characteristic equation (4.13). Suppose A\; = 0, and consider (5.15)
and (5.17) which imply that % — pg = €1t + €2t and % — pp = 0. Thus it is
possible to construct a dividend policy where the entire shock to current and
expected future earnings goes into dividends which have no autocorrelation,
and prices are constant. This is completely unrealistic, but does demonstrate
the point that smoothing dividends by introducing autocorrelation in dividend
policy, implicitly involves making equity prices more variable than they need
be.
A more standard assumption is that b = ¢ = 0 in which case

G, 8
Nt Ty

d a (di_
i (t—l - Md) + fie1e + facar

detrended dividends follow an AR(1) process. Equations (4.11) and (4.12) imply
that \y = a/y and Ay = (1 +r)/y = 1/k. We assumed that |k| < 1 in order
to make the expected present value of future earnings finite, so Ao is outside
the unit circle. Equations (5.2), (5.3) and (5.6) imply that there is no weight
on the unstable root if f1 = fo =1 — kXA = 1—a/(1+r). If this condition
is not satisfied the price process is unstable. This contrasts with the usual
argument that if dividends follow an AR(1) process prices must also do so.
The difference is that the usual argument assumes that equity is priced on
the basis that dividends will continue to follow the same process in the future.
This argument ignores the fact that net dividends are ultimately constrained
by the firm’s ability to borrow. In this paper we are in a Modigliani-Miller
world, where the value of equity is the total value of the firm minus its debt,
regardless of dividend policy, because dividends are ultimately constrained by
capital structure.
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In this model earnings before interest are given by equations (4.1) and (4.2),
ie.

Ty (14+7r—¢7)
— =a+———y te
7 a+r 750
where y; = ¢y;—1 + €2t  From Proposition 1 borrowing B; = —Etl‘_i/fjl — Py

where E;V;11 is the expected present value at ¢ of earnings from date ¢ + 1,
onwards which is a linear function of ;. This implies that transient shocks to
earnings before interest can have persistent effects on earnings after interest,
prices and dividends through their effect on borrowing and thus on interest
payments. Lintner (1956) and the subsequent literature argues that dividends
respond mainly to permanent shocks in earnings; we argue that the transience
or persistence of earnings shocks is determined by dividend policy.

6 Variances

We are looking for the limits as ¢ tends to infinity of expressions for the con-
ditional variances of detrended prices and dividends var (y~*d¢|do,po) and
var (Y "tps|do, po). Proposition 4 implies that if A;, A2 and ¢ = A3 all lie in
the unit circle these limits exist. We derive general expressions for the vari-
ances in the Appendix. These expressions are very complicated unless ¢ = 0,
where c¢ is the coefficient on the earnings state variable y;_; in the dividend
equation. The next Proposition provides formulae if ¢ = 0. Note that setting
¢ = 0 allows for an effect of earnings on dividends, but requires that the effect
works entirely through the impact of shocks £1; and €9; to earnings. The proof
is in the Appendix.

Proposition 5 (Variances) Assume that

2 2
i <a< i

1+7r 1+7r

and
(1+7r—19) (1—%) <b<(l4+7+7) <1+%)

so Arand Ay lie in the interior of the unit circle. Let

a(l+r)

a
71':)\1)\25]{:—7 72

(6.1)

and

M+ A  y(+r+a-b)
[ T V5 W o G (6:2)
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which implies that
—l<nr<land —1<7<1 (6.3)

Then if c =0, varey; = 03 , varey, = 02 and vares, = 03, fort=0,1,2...

. —t

tlirgovar (’Y dt\do,po)

1—kr(1+7)+ k2 2
= [ > ( ) ] (Uf + a%) +
{(T—k}) —&-1—7’2} (1—72)

k(1 —72) + (1 - kr)?
[ Bi—m) (1= | (= 18) ot + (2 = f8)" B + S o)

and
I ~to 1d _ k2 2 2
tg&mdvlﬂomd = Hj?gﬁﬁ+gﬂ
_ P2 2 4 _ £Py2 24 252
Jr(fl fO)(Cil_W(zjgz(l_fO:z)az f303 (6.5)
where
fg:(l—kf)[lfkT(ler)Jrkzw]>0 (6.6)
{(T—k‘)z—&—l—rz}
and
8 =1—knr. (6.7)

The terms f§ and f$ satisfy

2 — T 77—2
=18 = & 2)(1 ) 2o (6.8)
[(T—k:) +1—T2}

and
1> > fé>o.
When f1 = fo = fg and f3 =0

k272 (O’% + O’%)

tlirgo var (’Y*tpt|do,po) = ) (6.9)
and
. 2 2 2 2
lim var (’y*tdt‘doypo) _ [1 kr(1+7) +k 7r] (gl + 02)
t—00 |:(7_ o k)Z +1-— 7_2:| (1 _ 7T2)
2(1— _ 2 2 2
E*(1—m) (1 T ) (01 +02). (6.10)

{(7’* k) +1 —72}
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When f1 = fo = f§ and f3 =0

2.2 ( 2 2 401 (.2 )
lim var (’Y_tpt\do,po) _ k*n? (o 202) n k*(1—m) (1—172) (02 + 03)
t—o0 (1*7T) [(7-7/%‘)24,177—2](14,71—)
(6.11)
_ 2 12 9 2
tlim var (V_tdt\do,po) _ [1 kr(1+7)+k 7r] (01 + 02) . 612)

[(r =k +1-72] (1 -72)

Recall that if ¢ = 0 the dividend equation is

(£)-1+(3) (£2) - (2) (30) s
¥ v/ \7 v\

This proposition makes explicit the dependence of the variances of prices and
dividends on the coefficients of lagged dividends and prices a and b which have
their effect through 7 and 7 defined in (6.1) and (6.2), and the coefficient f,
f2 which determines the impact of earnings shocks and f3 which determines
the response to a white noise process orthogonal to random shocks. Equations
(6.4) and (6.5) imply that non-zero values of f3 increase the variance of both
dividends and prices. The total shock to the expected present value of current
and future earnings is €14 + €9, where e9; is the shock to the earnings state
variable 1; which endures for many periods, €1, is the shock to earnings which
has no effect in later periods. For given a and b and thus 7 and 7 the variances
are quadratic function of f; and f; which are zero if dividend policy does not
respond at all to current news about earnings, and are one if the entire shock
to the expected present value of current and future earnings is immediately
incorporated into dividends.

Proposition 5 also implies that there is indeed a trade off, different values of
f1 and fo minimise the variances of dividends and prices. Consider the problem
of choosing f; and f; to minimise the variance of prices whilst requiring that
the variance of dividends is below a fixed level. This is a very well behaved
problems, the first order conditions imply that at the optimum f; = fs, so
any dividend policy which solves such a problem responds only to the shock
€1t + €2¢ in the expected present value of current and future dividends. This is
compatible with Lintner’s (1956) observation that shocks to current earnings
which are expected to endure have a bigger impact on earnings than temporary
shocks, as the enduring shocks also affect expected future earnings.

We can also get some insight into the effects of the coefficients a of dividends
and b of prices in the dividend equation. In the thoroughly unrealistic case that
a =0, (6.1) implies that 7 = 0 and from (6.7) f§ =1, soif f =1 = f§ from
(6.9) and (6.10) lim¢—.o0 var (Y~ p¢|do, po) = 0 and limy_,o var (y~d¢|do, po) =
(Uf + a%) , detrended prices are constant, and all the shocks to the expected
present value of earnings are incorporated into dividends. When a = 7 = 0
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there is considerable scope for trading off the variances of dividends and prices
against each other by choice of fiand fs.

Rather more realistically @ may be large enough to make 7 close to 1. If
either 7 or 7 tends to 1 the scope for trading off variances disappears. Equation
(6.8) implies that there is very little difference between the values of f; which
minimise the variances of prices and dividends, and as f; moves between these
values there is little effect on variances. This is a situation where the interval
(f&, f&) is small, outside this interval changes in the value of f; make the
variances of prices and dividends move in the same direction. If 7 tends to 1
both variances tend to infinity whatever the value of f; and fo. This is because
T = A A so if 7 tends to 1 both A\; and A tend to the boundary of the unit
circle, and it is impossible to avoid giving some weight to close to unit roots in
the solutions given in Proposition 4. The scope for trading off variances also
disappears as 7 tends to 1, in which case (6.7) and (6.8) imply that fJ' and f§
both tend to 1 — km, but the variances remain bounded. Looking at (6.2) shows
why this happens; 7 tends to 1 if one or both of A\; and A5 tend to 1, for example
if A\; tends to 1 but [A2| < 1 then 7 tends to A2 and f} and f¢ both tend to
1—FkMXg. Setting fi = fo =1 — kg is precisely the dividend policy which gives
no weight to the unstable root A; and results in perfectly correlated prices and
dividends.

Stylised facts about dividend smoothing suggest that a ~ 1 + r ~ ~ and
b ~ 0 in which case 7 ~ 1 and 7 = 1, a situation where there is little trade
off between the variances of prices and dividends, and both variances are very
large due to the presence of 1 — 72 terms in the denominators of (6.11) - (6.12).
If this is so, an explanation is needed as to why firms set dividends in this way.

The results on variances in the Appendix, make it possible in principle to
trace out the dependence of the variances of prices and dividends on all the
parameters of the dividend equation, but the algebra is nasty, and not very
illuminating. Further we already know from Proposition 2 what the boundaries
of the feasible set of prices and dividends look like, and that they are generated
by perfectly correlated price and dividend processes. The results of Proposition
3 tell us that choosing a and b so that

1+r+a—b) a(l+r)

,-YQ

(A—M)Q—AQEAQ—( A+ =0
so A is equal to A1 or Ao, and setting f1 = fo =1 — kX and f3 = ¢ = 0, gives
prices and dividends perfectly correlated AR(1) processes, for which

: _ 1— k)’
tll)rgovar (v~*di|do, po) = % (0% + Ug) .
212
Jim var (v""peldo, po) = T2 (07 +03).
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147

¥
£ and letting A = £. Evidently A = 0 implies lim; . var (v tpe|do, po) = 0
at which point limy .o, var (y~'d¢|do,po) = 0% + 03, which again gives us the
dividend policy which makes prices grow at a deterministic rate v and puts all

earnings shocks immediately into dividends. As

and

In particular this can be achieved by letting b = 0 so the roots are

AL a2
(LR ) e, R
1-X 1—-A

A = k minimises the variance of detrended dividends and when A = k,

limy oo var (v~ dy|do, po) = (1 — k?) (03 + 03) and limy_,o var (yp¢|do, po) =
% (01 4 03), so perfectly correlated price and dividend processes give con-
siderable scope for trading off the variances of prices and dividends against each
other. The variance of detrended prices increases and the variance of detrended
dividends decreases as A increases from 0 to k, increasing \ beyond k increases
both the variance of dividends and prices. However

dy pg (1—=XN1" (1 -k
— =+ +
di_q g di—1 di—1

&t

so increasing A beyond k& makes dividends smoother, in the sense that they are
more predictable, and their growth rate is closer to a constant. In the limit as
A tends to 1 detrended dividends and prices become a random walk with infinite
variance.

7 Variance Bounds

One of the most striking results in empirical finance is Shiller’s (1981) demon-
stration that the sample variance of perfect foresight share prices is dramatically
smaller than the sample variance of equity prices, whereas asset pricing theory
implies that the variance of perfect foresight share prices is greater than the
variance of share prices. The subsequent literature (Flavin (1983), Kleidon
(1986) and Marsh and Merton (1986) points to reasons why the sample vari-
ances may give misleading estimates of the variances. The apparatus of this
paper makes it very easy to see why this can happen.

The perfect foresight price pj is defined as the price which would prevail at
date t if investors had perfect foresight up to date T’

T—t

X dit; pT
Pir = o+ .
tT ; (1 +T’)j (1 +7_)T t

(Note this is not the same as Shiller’s p; which uses the sample average of prices,
rather than the terminal price pr. It is however what standard theory implies).
From Proposition 2

diyj = (1 +7)prvj—1 + €yj — Prsj
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where

ettj = FryjVivj — Errj—1Vigj

and
oo
L ) tJerr’L
‘/t+J - EtJ,»j Z 1 i 7’
z:O
SO
T—t
. (L +7)pe+j—1 + Cttj — ety pr
bir = 1 + T—t
j=1 (I+7r) (L+7)
Tt
t+j
= p+ —_— (7.1)
jz:; (1+7)

Thus the perfect foresight price p;, is the actual price p; plus the present dis-
counted value of innovations in the earnings process. Clearly varp;, > var p;.
However we shall show that the situation can be very different for sample vari-
ances.

We consider cases where prices and dividends are perfectly correlated AR(1)
processes, i.e. when either equations (5.14), (5.15), or (5.16) and (5.17) of
Section 5 apply. By choosing the parameters of dividend policy a and b so that

2\ — 1”45‘1_1’ A+ “(H') = 0, any value of A can be chosen. Set f; = fo =

1—kX and fs=c= 0. The sum of dividend and price at date 0 is determined
by the previous history and shocks at date 0, so dy — py + po — p,, = s for some

number s. Set dividends at date 0 so do — g = (1 — k\)s and py — p,, = kAs.
Then from (5.15), or (5.17)

Y e =, = A <7’(t’1)pt—1 - up) + kX1 + €2t)

For notational convenience let é; = v ‘e; = e1; + €2;. Then

Y0 =ty = X' (po — ) + EAE + kA2E_1 + kNP g + o+ RATE. (7.2)

Assume that é; is stationary with variance cr and that varpy = f ’>\2 0., which
implies that

k2\2

vary 'p; = W&i for ¢t > 0.
As errj =" ey and k = 35, equation (7.1) implies that
Y =, = A (po— py) + kA + kN E_1 + kN e o+ + R
thérir. +RIT + KT e (7.3)
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If-l1l<A<land -1<k<1
k2A% k2
1— )2 1— k2

lim vary 'pj, = o, + 62 for t > 0..
T—o00

k=0.954;lambda=0.995

sample variance of p(t) =12.18

sample variance of p*(t) =2.34
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Figure 5 - Variance bound violation: Prices and perfect foresight prices for
perfectly correlated prices and dividends.

We have assumed throughout this paper that k = 11 lies in (0,1). Recall
that v — 1 is the growth rate of expected earnings, so if k > 1 the expected
present value of earnings is infinite, and the model does not make sense. If
A > 1 the price and dividend processes grow faster than expected earnings, and
as we have argued this becomes economically implausible. However both k and

A may be close to 1. If A =1, v !p; is a random walk, with infinite variance,

t
Y 'pe = po + Z éj for all ¢
j=1

and the sample variance of p; is necessarily biased downwards as an estimator
of var y~tp;.

If A = k =1 the variance of v~ 'p} is also infinite. However equation (7.3)
then implies that

T
Y Pir = po + Z é; for all ¢
j=1
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so the sample variance of detrended perfect foresight prices is zero. This sug-
gests that when A and k are less than but close to 1 the sample variance of
detrended perfect foresight prices may be very much more biased downwards
as an estimator of vary~'p}, than the sample variance of detrended prices is
biased downwards as an estimator of var py; ‘.

Simulation results confirm this intuition. Figure 5 plots a realization of
prices and perfect foresight prices for perfectly correlated prices and dividends
in correspondence to k = 0.954 (as in Shiller, 1981) and A = 0.995. The variance
bound is violated and the plot clearly resembles the well known diagrams for
real U.S. data used by Shiller (1981) to claim the failure of the efficient market
hypothesis. The extreme case of k = XA = 0.999 is plotted in Figure 6 where
the sample variance of detrended perfect foresight prices is (almost) zero.

-15

k=lambda=0.9999

Sk 0 |

250 il

30+ 4

pt)

.35 I I I I I I I I I
0

Figure 6 - Dramatic variance bound violation: Prices and perfect foresight
prices for perfectly correlated prices and dividends.

The next Proposition rigorously formalize the argument (proof in the Ap-
pendix).

Proposition 6 (Variance Bounds ) Suppose that detrended prices v~ 'p; fol-
lows the AR(1) process

Y e =y = A (Do — 1) + kNG + EX*E_1 + kAP6o + o+ kN ey

{‘33\2; &’;’. The detrended perfect foresight price

var é; = &3 for all t and varpy =
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Dip 1S given by

Y — 1y = A (Po — ) + kA + kNP1 + kN Eo 4 o + kA6
tképpr.. + KT + L+ KT ey

Let V(A k) the sample variance of detrended prices (v_lpl, ...... 'y_TpT) and
Vi (A, k) the sample variance of detrended perfect foresight prices (v_lpr, ..’y_Tp}T) .

e f-1<A<land-1<k<1

. » kA%,
TII_I)T;OEVT(A,]C) =varvy ‘pt = WUE
and
k2\? Iz
. * 1 —t, * ~2 ~2
TIE%OEVT()\’]C) —Tlgr(l)ovarv Pir = T30 + T 720

o For fized finite T' > 1

li EV(Ak)f“zaﬂ_l)> li EVi(A\ k) =0
)\—>171§€1—>17 B = e 6T )\—>171§€1—>17 T ’ e

This first part of the Proposition implies that Vp(A k) and Vi(\ k) are
asymptotically unbiased as estimators of the limits of the variances of p; and
pir as the sample size 1" tends to infinity, so in the limit the expectations of
the sample variances satisfy the variance bounds inequalities.  Violation of
the variance bounds is therefore a small sample problem, although 100 years
of annual data may be a small sample as it is shown in Figure 7 which plots
EVp (A k) and EV (A, k) as function of the sample size T in correspondence to
k = 0.954 (as in Shiller, 1981) and A = 0.98.
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Figure 7 - The effect of sample size T' on expected sample variances of actual
prices (EVr(A, k)) and perfect foresight prices (EV} (A, k)) for A = 0.98 and
k = 0.954.

The second part of the Proposition shows that for any fixed finite sample size
the expected sample variances will dramatically violate the variance bounds in-
equalities if X\ and & are close enough to 1, that is when dividends are smoothed
to the point where detrended prices are close to a random walk and the growth
rate of earnings is close to the interest rate. This is clearly shown in Fig-
ure 8 which plots EVr (A, k) and EV;i(A, k) as function of the parameter A in
correspondence of T'= 100 and k£ = 0.995.
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Figure 8 - Dividend smoothing; the effect of A on the expected sample
variances of actual prices (EVr(A,k)) and perfect foresight prices (EV; (A, k))
for £ = 0.995 and sample size T" = 100.

8 Conclusions

We started with a problem. What does standard financial theory imply about
the relationship between the variance of dividends and the variance of equity
prices? More precisely, is there scope for a trade off between these variances?
Inevitably, being academics, the answer we have arrived at is “sometimes”.
There is in principle considerable scope for trade off, achieved by varying the
parameters of the dividend equation (4.4). Perhaps the most obviously im-
portant of these parameters for the variances of prices and dividends are the
coefficients determining the initial response of dividends to persistent and tran-
sient shocks to earnings (i.e. f; and fs in (4.4)). However Proposition 5 implies
that there is in fact little scope for trade off through f; and fs if the coefficients
a of lagged dividends and b of lagged equity prices are close to the boundary
of the stable set defined in Proposition 3. The dividend processes which result
in variances on the boundary of the feasible set defined in Proposition 2 and
allow for substantial trade offs between the variances of dividends and prices
are simple to describe. They are AR(1) processes, and result in prices and
dividends which are perfectly correlated. However, and contrary to standard
assumptions, an arbitrary AR(1) dividend process does not generally result in
perfectly correlated AR(1) prices. For this to happen the initial conditions have
to be very closely specified.

We argued in Section 5 that dividend processes which are unstable and make
the variance of the total value of equity infinite are implausible because of their
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implications for the balance sheet. However the stability conditions of Proposi-
tion 3 show that the equation system is at best knife edge stable if the dividend
equation does not include a balance sheet variable in the form of the lagged
value of equity, debt or interest payments. Making a system knife-edge stable
requires that the initial dividend be set at a level which depends on lagged equity
prices. Thus the balance sheet matters for dividend policy in the sense in which
it is used in this paper, setting the net dividend before interest, that is dividends
minus share issues, or dividends plus share repurchases. In retrospect this is
not surprising. However by assuming a linear dividend policy we may have
misrepresented the way in which the balance sheet effect on dividends works.
One possibility is a non-linear dividend policy which makes gross dividends fol-
low a smoothed policy much of the time, with occasional substantial changes in
net dividends reflecting the balance sheet, either in the form of share issues or
repurchases, or big changes in gross dividends. The resulting stochastic process
would be difficult to model analytically, but perhaps captures the stylised facts
of dividend policy better than a linear model.

The effect of the balance sheet on net dividends may be difficult to pick up
econometrically if dividends and equity prices are highly correlated, and if a is

close to its maximal stable value of T’% and b is close to the lower boundary of

the stable set, in which case b ~ QT—;?L? which is small if the rate of growth y—1
is close to the interest rate r. If net dividends are smoothed, the parameters a
and b lie close to the boundary of the stable set and detrended dividends and
equity prices have a root which is close to unity. As we showed in Section 7
this can give rise to data which satisfies variance bounds but makes the sample
variances violate variance bounds inequalities by an arbitrarily large amount.

We have already pointed out that this paper is not about dividend policy as
conventionally defined, which refers to the gross dividend. Dividend smoothing
is about smoothing the dividend per share, which does not smooth the gross
dividend if there are share sales or repurchases. In a world with frequent share
repurchases it remains true that value of a share is the present discounted value
of dividends per share, but a firm which regularly repurchases a fraction of its
outstanding equity can make both dividends and earnings per share grow, whilst
the total amount of earnings and dividends remains constant. Two firms with
exactly the same underlying earnings could display radically different rates of
growth of dividends per share, with the low growth firm paying out all or most
of its net dividend as gross dividends, and the high growth firm paying out
most of its net dividends in the form of share repurchases, giving shareholders a
capital gain. This is simply another way of saying that in a Modigliani-Miller
world gross dividend policy is irrelevant to the value of equity. Any explanation
of the significance of the choice between share repurchases and dividends has to
move beyond the Modigliani-Miller world of this paper.
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Appendix
Proof of Proposition 3

We are considering the roots A1 and Ao of

\2_ l+r+a—>b )\+a(1+r):0. (A1)
v 72

The roots are complex if

da(l+7) <1+r+ab>2
72 gl
which is equivalent to

(ViFr—va) <b< (Vitr+a)’.

The roots are

1 2
/\1%(1+r+ab+\/(l+r+ab) 4a(1+r)) (A2)
A - L 1+r+a—b—\/(1+7'+a7b)274a(1+r) (A3)
2= 9, :
Considering
1 —b 1
/\2( ”ta )A+a(vjr):(xlx)(xzx)

as a function of A and sketching curves demonstrates that
(>\1+1)(/\2+1)>0and ()\1*1)(/\2*1) >0
if and only if one of the four following mutually exclusive possibilities holds.

e A1 and Ay are complex in which case |A;|? :|/\2|2 = M2 > 0 so if
[A1A2] > 1 both Ay and A, lie outside the unit circle and if |A\; A2| < 1 both
A1 and Ao lie inside the unit circle.

e )\; and Ag are real and Mg < Ay < —1 in which case [A;\g] > 1.
e )\; and Ag are real and —1 < A2 < Ay < 1 in which case |[A\1\z] < 1.

e )\; and Ag are real and 1 < Ay < A; in which case [\ Az| > 1.
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Thus the conditions that (A +1) (A2 +1) > 0, (A1 —1) (A2 —1) > 0 and
|Ad1A2] < 1 imply that both A; and Ag lie in the unit circle. Conversely if A
and A2 both lie in the unit circle then |[A\A2| < 1, and either A\; and Ay are
complex in which case (A1 — A) (A2 = A) > 0 for all real A and in particular
for A = 1 and A = —1, or they are real in which case —1 < A3 < A1 < 1 so
M+ (A+1) >0and (A —1)(A2—1) > 0. Thus A; and A2 both lie in
the unit circle if and only if (A +1) (A2 +1) > 0, (A1 —1) (A2 —1) > 0 and
‘/\1)\2‘ < 1.

More curve sketching implies that (A1 +1) (A2 +1) < Oand (A —1) (A2 — 1) <
0 if and only if A\; and Ay are real and Ao < —1 < 1 < A;.  Similarly
(AM+1)(A+1)>0and (A —1) (A2 — 1) < 0if and only if A; and Ay are real
and —1 < A2 < 1 < Ay, whilst ()\1 +1) ()\2 +1) < 0 and ()\1 — 1) ()\2 - 1) >0
if and only if A\; and A2 are real and Ao < —1 < A < 1.

The conditions in terms of A1 and Ay can be translated into the conditions

given in the theorem by noting firstly that A; s = % S0 |A1A2] < 1 if and

ﬂiﬂil <1,and)\1+/\2:L|—L-$a_—bSO

1 —-b 1
(>\1+1)(/\2+1)1+( ”t“ )+“(72”) >0

only if

if and only if
1+7r+7) <1+%> >b

and

1 —-b 1
+r+a )+a( +7)

<A1—1><A2—1>=1—( -

if and only if

a

14+7r—7) (1—;) <b.

Proof of Proposition 4

The matrix difference equation

vty h y= =N,y fie1e + fagar + faez
Y | = —h [ +M| 4y g |+ | (L= fr)ew+ (1= fa)ear — faese

Yt 0 Yi—1 €2t
(Ad)
where
1 a b ye
M=—-| —-a 14+r—-0 —vc |. (A5)
Tl o0 0 o)
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can be written as

Zt = Mthl =+ uy

where
Y~y — g
2= | v 'pr — oy
Yt
(I+7r—7)hy

S Ry

hy?
L+r—=9y)(y—a)=by

f fa f3 €1t
u=|1-fi 1-fa —f3 a4
0 1 0 €3¢

Iterating (AG) yields

n—1

2 = § MM+ M2,
h=0

The matrix M defined in (A5) can be written as

M=LDL™!
where
A 0 0
D=| 0 X 0
0 0 M3

(AG)

(A7)

(A10)

(A1)

(A12)

(A13)

is a diagonal matrix, A1, A2 and A3 are the eigenvalues of M, and L is a matrix

of eigenvectors of M. From (A5) the characteristic equation of M is

(3 (2 2o

whose roots are A1, Ay and A3 where A\ and A2 are by given (A2) and (A3), and

A3 = . Let




A matrix of eigenvectors of M is

1—kXN 1—FkX 1— kX3
L= k})\l ]{?)\2 k)\?)
0 0 —ke™t (A3 = A1) (A3 = A2)
with inverse
1 7]{5)\2 1-— k‘)\g mc
t—-—__ - kM —1+kM —
Fi=2) | 0 =R

Equation (A12) implies that M" = LD"L~! so from (A11)

t—1
2 = Z LD"L Y, + LD' L™ 2.
h=0

From (A10) and (A15)

-1
L™y = Aeyyy

where
) 117 kk/\)\gff} 1—klj;ff;+—(xsim
A=—— | “1+EM+ i —1+EM+fo— o5
E(A = A2) 0 e jp\lj\gzc (As=2a)
(As=A1)(As—A2)
and

whilst from (A7) and (A15)

q1
Lz = Q2
1
TEOe A1) —ra) YO

(k/\g (do — [Ld) + (1 — k‘)\g) (po — [Lp) +

where

1
L VW)

1

T a0 ©

—f3
[3

1

(A14)

(A15)

(A16)

(A17)

(A18)

(A19)

>Cy°>

(A3 — A1

(A20)

1
q2 = m (k?)\l (do — pg) — (1 = kA1) (po - Mp) - mcyo) :
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Hence from (A13), (A14), (A16) and (A17)

J t—1 3 3
g = YD (L= kA N A jemn + may (A22)
v h=0 i=1 j=1
t—1
= Z ANapAei_p + mas
h=0

t—1 3 3
L SO RN AGEjn + mp (A23)
h=0 i=1 j=1
t—1
= D Apnler g+ my
h=0

t—1

ye =Y Mearn + Mo
h=0

where A and &,_j, are given by (A18) and (A19),

Aan = ((1 — kM)A (1= kXg) A3, (1 — kAs) Ag) (A24)
Ap = (k>\1>\’f,k>\2>\§,k>\3>\§> (A25)

(1— k‘>\3)0)\§yo
(A3 = A1) (A3 — A2)

mar = (1 — kX)) Ajqr + (1 = kAg) Ayqe — k (A26)

k/\30>\§y0
E(As— A1) (A3 —A9)

mpr = kA gy + kdabgo — (A27)

and A and €;_, are given by (A18) and (A19).
Proof of Proposition 5

The result is proved from using Lemmas 1, 2 and 3. Lemma 1 gives ex-
pressions for d; and p; which are equivalent to (5.2) and (5.3), but unlike the
expressions in these equations involve only real valued variables even if A\; and
Ao are complex, are finite and well defined for all values of A1, A2 and Az even if
two or more of the roots coincide, and disentangle the effects of A1, Ao and A3
from those of fi, fo,f3 and c.
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Lemma 1

d t—1
_i L Z YanAaFet—n + ma (A28)
v h=0
» t—1
7§ — =Y U ApFerp +ma (A29)
h=0
where
h h h
A \! 1 Al — )\3) ()\2
= | A+, 2 — (1= k\) ~——L (1 — kX
wdl ( 1 2 )\1 _ )\2 k()\l o )\2) ( 1) ()\1 _ )\3) ( 2)

h h h h
W, = [ AP AR M=y 1 —k\ <>‘1 */\3) W (>\2 */\3)
[Jh 1 27)\1_)\271{?()\1—)\2) ()\1_)\3) e EEEE—

0 i 0
Ag = % (1- k‘)qg (1 —FkNa) *% + % E))\l + A2) (1) ] (A30)
1 1
1 2 1 2 0
Ap=| (M + Afa) —kMA2 —3 (/\6+ A2) (1) (A31)
1 1 0
F=1h fo f3 (A32)
0 ¢ O

The vectors gy, ¥, and matrices Ay, Aq and F' are real valued and finite.

ph

Proof. The Lemma is proved using (5.2) and (5.3) and showing that Agp A =
YapnAal and App A =1, ApF. Note firstly that A = HF where

ph
! 11_ kl?i _11 o
H=————| “1+kh v A33
k(A= A2) 0 0 =, (A33)

T s=A)(s—A2)
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so the Lemma can be proved by showing that Ag,H = ¢4, Aq and AppH =
Y, Ap. From (5.7) and (A33)

)‘Ill - )‘g _ _ h _ h
AanH = (l (1= kM) (1 = ko) ( ) —( =AM+ (1= kA N oy

k (A —A2) k(A —A2)
where
o = 1 (L= RN (L=kA) A5 (A= da) (1—kAs) Ay
¢ EOq—X2) | As— X A3 — Ao (A3 — A1) (A3 — A2)
Sp— 1 lc/\)<>\}f/\g) +a m)wAg) =y
T kOq = A Y00 = ) e = Ag) | T R
SO
1 1 1
AgpH = (E (1= kA1) (1 = EA2) ¥ogp, *§¢1dh - (1 ) 1=k + /\2))) 7/12dhﬂ/13dh>
= 7/}dhAd-
Also
. 1—kX\y -1 e
ApH = ————— (AN XA M) | 1+ kA 1 D PR v
" Oy (P B ) o o _ _Gi%
(A3=A1)(Az3—A2)
M = RN — EAa (1= EA) NS —ENAT + XN
k(A — X2) TV
where
o 1 EMAL RAAS (A= Aa) kAsAg
P EAi—=X2) [Ads—=A1 A3—=X2 (A3 = A1) (A3 — A2)
L kA (A}fikg) + kA (Ag”g) =1
K — o) Pa=da) T e m ) |
SO
1 1 1 1
Ath = §w1ph + | —kAiAe + 5 (>\1 + /\2) w2pha 757/}1‘1;}1 - 5 (/\1 + >\2) prhr wSph

wphAp‘

To see that the vectors ¢y, 1), and matrices A), Aq and F are real valued
even if A\; and Ao are complex, note that if complex A1 and Ay are complex
conjugates. To see that they are finite even when roots coincide note from the

. . . )\h,i)\h, _
definition of a derivative that terms such as ﬁ tend to hA! L. m
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Lemma 2 Assume that —1 < A3 < 1,

2 2
Y Y
<a<
1+r “ 1+r

and

(1+T—7)(1—%> <b<(1+r+’7)(1+%>

2

)

S0 A1, X2 and Az all lie in the interior of the unit circle. Then if vare;s_p =0
fori=1,23 and h=10,1,2....

1 1
varfy*tdt = [ 1 f1 0 ]A&QdAd [ fi ] O’%+ [ 1 fo ¢ ]A&QdAd fo ] O’%
0 c
0
+[ 0 f3 0 ]A&QdAd fg O’%
0
1 1
vary 'p, = [ 1 fi 0]AMA | fi oi+[1 f2 ¢ | A4, | f o2
0 c
0
+[ 0 fs O ]A;QPAP f3 O’%
0

where Ag and A, are given by (A30) and (A31) and

Qu=> Vintan

h=0

QP = Z w;hwph
h=0

Proof. From Lemma 1 if A1, A2 and A3 lie in the unit circle

(o)
vary 'dy = dehAdFSQF/ .
h=0

where
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But

Y AgF S F' ALl = trace )y, AgFS?F Al
= trace SF' A\ an AaF S

1
= [1 h 0] iﬂ/}iihwdhAd bil U%
0
.
+[ 1 fo ¢ ] AWubanAa | fo o3
C
.
+[0 f3 0 ]AWvmAal| f3 |03
0

since S is a diagonal matrix and F is given by (A32). Noting that h appears
only in v/,1,, gives the result for dividends.
Similarly

o0
vary 'p, = Z wphApFSQF/A;w;h
h=0

and

VA FS2F AL, = trace s, A,FS?F ALy,
= trace SF AL, 1,, ApFS

1

= [1 £ 0]AW WA, | fi |0}
0

+[1 fo e ] AW tnAy | f2 | o3

+[0 f5 0 AW A, | f3 | 03

which as h appears only in 1/J;h1/1ph gives the result for prices.
Lemma 3 If

W:)\l)\gz%

and

AL+ g y14+r+a—-0)

T TN Y+a(l+r)

42



41 =72+ 72(1 —m)?
(1—=72)(1—-72)

d _ op _
QII*QII*

1
-7 (1-m)

d _ op _
Q22_922_

T(1—m)
=)0

Q(112 = 931 = Q11]2 = le =
Proof. We have
o0 o0 o0 2
chll - Q‘11)1 - Z w%hd = Z w%hp = Z (A}IL + /\}QL) -
h=0 h=0 h=0
1 n 1 n 2
1-A7 1-X 1-X\k

4 (1 + /\1)\2) — ()\1 + )\2)2 (3 — )\1)\2)
(1=A) (1=A3) (1 —Ax2)

Moreover

(1=X3) (1-X3)

(1T =21 = A2+ A X)(T+ A+ A2+ A1)
Q+m)(1—m)(1+7)1+7)=(1-72) 1+

SO
1-A)(1-M)=1-7)1+n)]° (A34)
1—MA=1—7 (A35)
404+ M) — M +2)2B=-Md) = 40 +71) -1 +71)3@B-7)
= 401 -7 +71*(1 -7
SO
_ 72 72(1 — )2
Q(111 =0 = 4(1(1 — 2;{(1 Elﬂ_z) ) : (A36)
Similarly

oo oo
d _ d _OP _ QP _ E _ E
Ql2 - Q21 - 912 - 921 - wlhdd}mld - wlhprhp
h=0 h=0

- S (o) (322

h=0

B 1 { 1 ]
A=A 12 12
_ A+ Ao . T(l—ﬂ')

(1-M)(1-2) (1-m)(1—-n?
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and

2
’ o0 o0 o0 Ah o Ah
ng = Q12]2 = Zdjghd = nghp = Z L 7 2
h=0 h=0 h AL— A2

=0
B 1 1 1 2
(M=) {1A§+1A§1—A1AJ
B 1+ A2
(1=A7) (1= A3) (1 — Ao
1

=) a-m)

[
The next Lemma gives formulae which taken with Lemmas 2 and 3 give
general expressions for the variances of prices and dividends.

Lemma 4

k{r(l—-m)—Xsm[2—72(1+m)]|} =7 (1 +7)+2r +77A3 (1 — )
k(1 —72)(1—72) [L—7(1+m) A3+ 7A3]

d _nd _
QIS_QSI_

E(1—A37mm) +Agm — T
k(1—72)(1—72) [1—7(14+m) A3 +7r/\§]

d _ od _
Q23_932_

(1= X3m) [14+ k2 = 2k7] + As (L —m) [(1 + &2) 7 — 2K]
B2(1=X3) (1—72)(1—72) [L— 7 (1 +m) A3 + A3

Q4 = Q33 (1) =

Am[2—72(1+7)] —7(1—m)

Q11)3:911’;1: )
(1-72)(1—=2) [1 —7(14+m) s +7T>\3]

—1 4+ Ag7m

b, = OF, =
BT A1 -m) L -7 (147 A+

and

- B 1-Mr+x(1—-n)7
Q55 = Q33 (0) = (1_)\3) (1—172)(1—n2) [1_7-(14_77))\3—1-77)\%].
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Proof. Let

1 ()

()
wSh(O‘): k()\l_)\Z) 7(047]%‘/\1) ()\1_)\3)

(A2 = A3)
(A37)

+ (O& - k/\z)
and observe that when o = 1, ¥g;, (@) = 55,4 and when o = 0, —t¢)3, () =
Yspp. Let Yy, =y, # Yyd for i =1,2 so
o0
O3 (Oé) - Z 1/}1hw3h (Oé)
h=0

and if @ = 1, Q3 (a) = Qf; = QF; whilst if @ = 0, Qi3 (o) = —QF = —0F,.

Now
o B 1 (a—kM\) 11
,;Ai Yan (@) = TR { =) \IT— Ak 1T— g
L1 (a — kXg) 11
EOr—X2) [ (A2 —A3) \T=2Xoh 11— A3\
o )\1 (k? — Oé)\i)
k(1= XA1) (1= Xida) (1 — NiAsg)
SO
_ . h h
Qs (@) = D (A +2h) v ()
h=0
o )\1 (k? — a)\l) + )\2 (k} — Oz)\g)
RIL= A1 = Mde) (1= MAg) k(L= Aide) (1= A3) (1= Aadg)
A1 (k= ady) (1= A3) (1= dadsg) + Ao (K — ada) (1= A7) (1 — M1 Ag)
E(L—AT) (1= A3) (1= MA2) (1= A1ds) (1 — AaAs)
(A1 +22) (1= AA2) — AsAhiAz (2= A7 — A3)
(1—=A7) (1= A7) (1= Ath2) (1= Ards) (1 — A2ds)
o« [AT 423 = 20723 — Atdads (A1 + A2) (1 — Aido)]
E(1—AT) (1= A3) (1= MA2) (1= Aths) (1= A2As)
Furthermore
AN X =214 -2 (A38)
(1= XAA3) (1= Ad3) =1 —7(14+7) A3 + 72 (A39)
and so using (A34) and (A35)

913(04)
k{r(l—m)—Xsm[2—7*(14+m)|} +a{-m2(1+m) +2r+77As (1 —7)}

k(1—72) (1 —72) [1 =7 (1+7) A3 + 7A3]
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implying that
0f; = Q3 =3(1)
k- m = w22 (1+7)]}
k=T —w2) [L— 7 (L 7) A3+ TA]
2(147) —2r —7rA3 (1 — )

_k(lfTQ) (1—7x2) [177(1+7r) )\3+7r/\§] (A40)
and
Oy = Qf = -3 (0)
_ _ dnp-r04m]-r0-m (a4
(1—-72)(1—m7?) [1—7’(1—}-77))\3—&-71-)\3]'
Similarly
- (-4)
Doz (@) = h;) On = ) Yy, (@)
_ )\1 (k} — Oz)\l)
F O =20 (1= A1 = Ada) (1— Adg)
)\2 (k‘ — Oé)\g)

k(A= X2) (1= Athg) (1= A3) (1= A2As)
A (k—ad) (1= A3) (1= A2)3) — Ao (k — ada) (1 — A7) (1 — A)g)
k(A= A2) (1= A7) (1= A3) (1= MiA2) (1= Ardg) (1 — M)
14+ A2 — Ashda (AL 4 o)
(1=2D) (1= A3) (1= Ad2) (1= A Ag) (1 — A2dg)
B A+ Ao — Ashido (14 A As)]
k(1= A7) (1- /\g) (1= XA2) (1= AA3) (1= A2)3)
Thus using (A35) and (A39)

- ()
a3 (a) = Z N — o) Yy ()
h=0

E(1—=Asmm) +a(Agm—7)
k(1—72)(1—m2) [L—7(1+m) A3+ mg]

SO
k(1= Mam) + dam — 7

0L = Q) = Qg3 (1) =
23 32 23( ) ]{7(1—72) (1_772) [1—7'(14-77))\34-77)\%]

(A42)

and
—14 Ag7mr

QD = O, = Qg3 (0) = .
23 32 23() (1_7_2)(1_71-2) [1—7’(1—‘1-71'))\3—‘,—77)\%]
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As

() ()
I v s e wy
1 1 1 1 1
v =) O — ) [1—&% TToeh I-dah 1-X
(1= XideA3)
(1= 23) (1= Xid) (1= Ash) (1= Ashe)

h=0

Q33 (Ot) =
B (= kAp) (@ —kX\) (L+Ash) (@ =k (1= AA)
R (M= A)P (1-22) (1) (1-2%) (1= A12) (1= A3)2)
(o — kX2) (0= kX)) (L+Asha) (o= kA1) (1= AMA)
k2 (A1 — A2)? (1= A3) (1 — Asha) (1-23) (1= Xh2) (1= AsAp)
but

(0= kM) (L+Ash) (@ =kAo) (1 =AM As)

(1-2x)) (1= XA1A2) (1 = Ashz)
(@ — kA1) (1+A3A1) (1= Agh2) (1= MA2) — (@ — kXa) (1= A3AA2) (1= A7)

(1= A7) (1= Ah2) (1= Asho)
(1= 23A12) [(a — kA1) (1= Apha) — (a — kAg) (1= AD)]
(1= A7) (1= M A2) (1= Asho)
Az (A1 = Ag) (@ — kAp) (1 — Aphg)
(1= A7) (1= MA2) (1= Asho)
L= A3 A2) (@A — k) + Az (o — kAr) (1 — Arho)
(1= A7) (1= AA2) (1= Asho)

= (M —A2) (

Similarly

(@ —kX) (L+Ashe) (o= kA1) (1= AM)
(1-23) (1—AA2) (1 —A3)p)
1= A3MA2) (@de — k) + Az (o — kA2) (1 — Apho)
(1=23) (1= Aida) (1= Ashp)

= *(/\1*/\2)(
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SO

Q33( )
(a0 — kA1) [(1 = A3MA2) (@1 — k) + Az (o — kAp) (1 — Apho)]
B2 (A= A2) (1= A3) (1= A7) (1 — Ado) (1= AsAr) (1= Asha)
(o —kX2) [(1 = A3MA2) (@da — k) + Az (@ — kXa) (1 — Ao
TR (A= A2) (1= A2) (1= A2) (1= Aha) (1= AgAr) (1 — Agha)
(1= 23N\ 12) [(a — kA1) (ad — k) (1= A3) — (o — kA2) (@2 — k) (1= AD)]
K2 (A= A2) (1=A3) (1= A7) (1= A2) (1= Aide) (1= A3h1) (1= Asho)
X (1= Mde) [ (@ = kA)* (1= 23) = (a = kAo)* (1= A)|
K2 (A= o) (1= 23) (1= A7) (1= 23) (1= Ad) (1= Aghn) (1= Azha)
(1- A§A1A2) [(a? + k?) (14 Aid2) — 20k (A1 + X2)]
K2 (1—23) (1= AT) (1= 23) (1= Ath) (1 — Ash1) (1 — Azha)
Az (1= MA2) [(e® + k:2) (A1 + X2) — 20k (1 + A1 A9)]
B2 (1=23) (1= A7) (1= A3) (1= Aida) (1= Ashg) (1= Asha)’

Using (A34), (A35) and (A39)

+

1= X\37) [@® + k% = 2ak7] + A3 (1 —7) [(a® + k?) T — 20k
( ) [ ] I

Q33 () = k2 (1 _)\g) (1-72)(1-=2) [1 —T(1+7T))\3+7T)\§]

SO

(1= N3m) [L+ &2 = 2k7] + A3 (1 — ) [(1+ &?) 7 — 2K]
k2 (17/\5) (1-72)(1—72) [1*7’(1+7T)/\3+7T>\§]
(A43)

Qgg = Q33 (1)

and

1= Xr+X(l—n)7

Oy = Q33 (0) = (1—)\2)(1—72)(1_772)[1_7(1+7T))‘3+7T)‘§]

(A44)

Proof of Proposition 5
Ife=0
(1 f e)AlQda? (1 f ¢)=(1 fF)yBlaB?(1 f)

and

!

(1 f e)AarQrA” (1 f ¢)'=(1 f)BraB” (1 f)
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where

0 [l—kr(l+m)+km
w3 TR (a15)
S s s (a16)
and
_ 1 4(1—72)+72(1—7r)2 T7(1—m)
. (17T2)(172){ 7(1—7) 1 }
4 1o 1 7(1—m)
B (1—7r2){0 0}+(1—772)(1—7-2)[ 1 ][7(1_7") 1],
From (A45)

Bd[T(lﬂ) } :Hlmﬁ?ﬁkﬂ

SO

f? [1—kr (1+7) + k27 — f(1— k7)]?

(1 f)yBlaB*(1 ) Tt ey

[1—k7(1+7r)+k277]2
{(T—k)z—&-l—rz} (1—72)

(K21 =) + (1= k7)?]
2(1 — 72 _ -2 (f*
E2(1-n2)(1-12)

+ £

where
(1—kT) [1 —kr(14+7m)+ l<:27r]

fi= {(T—k)2+1772}

>0 (A47)

since both k and 7 lie in (—1,1), and 1 — k7 (1 + 7) + k% is linear in 7 and
positive at both 7 =1 and 7 = —1. Similarly (A46) implies that

, 1 0 , 1 1 -1 1 1

D p/ _ _ = .

B{o O}B _4[1 1]—4[1][1 1]
and
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SO

, o / 1—f)? T —kn— fr)?
(1 pymos (1 gy - G0 I
k272 P2
- Tt 4
where
f§=1—knr.
From (A47)
(1—kr) [1 =kt (1+7)+ k7]
P_fd = 1 —knrr—
fo =10 ! {(T*k)2+1*7'2}
(1 — knr) {(T—k‘)Q-‘rl—Tz}—(l—k‘T)[l—k‘T(l-‘rﬂ')-‘rk‘Qﬂ']
- [(T*k)2+1*7'2}
_ k)z(l—ﬂ')(l—T2> S o.
[(T—k‘)z—i—l—T?]
Thus

1>f>fi>0
and when f = f{

/ k2m2
(1 £)BOB" (1 ) =g
(1 f)BQBY (1 f)

[1—kT(1+7T)+l<:27r]2 +}’<:2(1—71')(1—7'2)
(r=k?+1-72] -7 [ -k’ +1-7]

and when f = f¢
k22 N k(1 —m) (1—72)
A=) Je—k?+1-7| (1 +7)

(1 fF)yBraBY (1 f) =
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[1—kr(1+m) +k27r]2
[(T—k‘)z—i-l—Tz} (1—m2)

(1 f)BBY (1 f) =

Proof of Proposition 6

The first step is the proof of the following Lemma.

Lemma 5 Under the condition of Proposition 6 the expected sample variance
of detrended prices (v_lpl, ...... v pT) 18

2

w2 T
EVr(A\ k) = Sr()) 52 + T (T —h+1)Sr_n1(N) 67
h=1

1—\?
1 I
2 .
o ST =Rt D) (=D s V262 (449)

h=1
and the expected sample variance of detrended perfect foresight prices (v_lpr, ...... 'y_Tp}T)
18

k2\2 k2

EVi(\ k) = Sr(N) ﬁﬁg +T (T —h+1)Sp_pnt1 (N 62

h=1

(T —h+1) (h—1) mn_1 (k) — mr—ns1 (V)]? 62

Jr
S~
M’ﬂ

1

e

1
+7 ) (h=1)Sh (k)62 (A50)
h=1
where
mi(0) = lieh
‘ i
h=1
Si6) = % z 0" —mi(0)) =+ Z 0*" — m;(0)*
i0) = =D (0" -mi0) == 0" —mi(0)*.
h=1 h=1
Proof. Let

ﬁt(a) =\ (po — ,up) + k))\tél + k‘)\tilég + ..+ kAé + Oz(]{?ét+1... + k}h_téh + ...+ ]CT_téT)

which implies that

Y 'pe = p, + P(0)

o1



Y i =y, + Pe(1)

so Vr (A, k), the sample variance of detrended prices (y~'p1, v ?pz2, ..y 'pe..v Lpr),
is the same as the sample variance of (p1(a), p2(a),...p¢()...pr(a)) with o = 0.
Furthermore, Vi (A, k), the sample variance of detrended perfect foresight prices
(7_1p’1kT, Y2 Dby ...’y_tp;kT...v_Tp}T) is the same as the sample variance of
(p1() , p2(@), ...pt(a)...pr () with @ = 1. Tt is convenient to write

T
(@) = A (po — 1) + Y Aunéy,
h=1

where Ayo = Al and for 1 < h < T, Ay, = kAT"THiE b < ¢ and Ay, = akh—t if
h > t. Thus, the matrix Ay, for 1 <h<T and 1 <t <Tis

2 ak akh—1 ak™™2  akT—1 7]
D% kA akh=2 akT=3  akT?
A= | kX' RN kA kTt kTt
AT AT AT kA ok
AT AT AT % kX
Let Vi (A, k,a) be the sample variance of (1 (), ......p7 (@) so Vr (A k,0) =
Vi (A, k) is the sample variance of (v~ 'py, ...y Tpr) and Vi (A, k, 1) = Vi (A k)
is the sample variance of (y~'pf,.....777p}). Now

EVi (\ ko)

1 & ’
<T2At0> var po +
1 & ’
= <?2At0> var pg +
t
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2y2
SO as var pg = %ag

L~ o 1\ e
EVT ()\7 k?, a) = T ; AtO — T ; AtO 1 - AZ U'e
T 1 T 1 T ’
2
+Z T (Z Ath) T2 (Z At”) Te
h=1 t=1 =1
2N, 2
= Vao- )\2'575 + Z Vanoe (A51)
h=1
where
1 T 1 T 2 1 r 1 =
_ 4 A2 o A ) = — A — A 3
Van T <; th> T2 <; tl> T ; < th T ; t}>

is the sample variance of (A1, Asp, --... AT;L)/ , the hth column of the matrix A.
Furthermore, it is straightforward to confirm that

B A (A52)
v h=1

Si(0) = % > (0" - W(e))2 _ % S0 mi0)2  (A53)
h=1

h=1

Vao = St (\) (A54)

and has sample variance

h-1 T—h+1
Van T a?Sp_1 (k) + TICZST—hH (\)
T—h+1)(h—-1
+( Tz) ( ) [amp—1 (k) = mr—pt1 (>\)]2 (A55)

Using (A54) and (A55) with o = 1 gives (A50). Using (A54), (A55) with
a = 0 and the condition that var pg = %aﬁ, gives (A49). m

We are now ready to prove the Proposition. As Sp(A) is a continuous
functions of A, Sp (1) =0 and 1 — A\* =0 when A = 1

Sr(A) ST ()
lim 5 = lim ga__
A—11 — ) A—1 3210—)\/\ )
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But as
1 1
2h h
[ E A <_ E A )
h=1 h=1
Sr(\)

%/\(’\) = 0 when A\ = 1 whereas 8(10_/\’\2) = —2when A = 1, and solimy—1 7555 =

0. Thus from (A54)

k22 52 E2X2S7(N) o
li oo = li ————0.=0. A
)\*}171%1*}17 VAO )\2 e )\HI*ITSHI* 1— )\2 e 0 ( 56)

The expressions for m;(f) and S; (f) in (A52) and (A53) imply that they
are continuous in 6, m; (1) =1 and S; (1) = 0. Thus the limit of the expected

sample variance of p; is

~2 T
g
li E = = T—-h+1)(h-1
)\*}171%1*}17 VT(/\7 k) T2 h; + )
T T(T —1) 2T — 1)
T 6
L (T2 —1) )
= O’
6T

since
T

2 1
> (h=1) =sT(T-1)@2T-1).

h=1
Finally, the limit of the expected sample variance of p}; is
lim  EVi(\k)=0.
A—1—k—1— T( ’ )

and the first part of the Proposition is proved. We now prove the second
part of the Proposition by deriving explicit expressions for the expected sample

variances. As A;p = \!

T T 2 2 2T T\ 2
1 2 1 A=) 1 A=)

(A57)
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Asfor 1 <h<T, Ay =kN""Hif h <tand Ay, = k"t if h >t

T 2
1
T (Z Ath) T2 (Z Ath)
t=1
1 T—h+1 ) T—h+1 2
= T<22k2‘+k‘2 Z )\21>—ﬁ<a2kﬂ+k Z )\1)
i=1
B l o282 1— k}2(h 1) 2)\2 1— )\Z(T—h-l-l) - L . 1 — (=1 . k)\l _ )\(T—h—i—l) 2
T 1— )2 T2 1—k& T— X

N

21.2 242 2 2(h—1) 2(T—h+1)
o’k l<:>\2 A (ak kAN 1 kak ppp i
=1 T-x T2 \1—-k 1-2X T — k2 1N

L (akk® D pnTNT ok R (akkD T
7 N i +ﬁ(l—leJrl—A) & T 1-a

1/ N A2\ 1 [ ak ) 5 2fl - ) N )
— T l—l{jQ 17)\2 T2 1—k 11—\ TOL 1_k;2 T(l_k)Q
_lk2A2)\2(T—h+1) 1 n 1 B ak?)\khfl)\T—h-&-l
r -2 T1-_N?) TPA-ka-N

L2 ok kA ok AT
T2\1-k  1-X)\1—-k 1-x /)
hence
r [ A 2
Z T (Z Ath) - ﬁ (Z Ath)
h=1 t=1
_oo BN L ek RAN 1L (RO
C1—k2 1) T\1-k 1-2)\ T 1— k2 1—k2 T(1-k)?

lkle (1-27) (( . )( k22 (AT~ 47)

U DI-N =)

L2 (ak kA ak:(l_ kT k'>\2 1-— ,\T )
T2\1-k 1-2AX (1—k)
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Thus

EVT ()\, k), Oé)

2
JEi

2
(A= 1 faa =) k22
o \T 1= 2\ 1-X 1 \2

+a2k2+k2)\2_1 ak kA 21, (BT L
et T\ tToy) T\ e 1— k2

T 1—)\° 1-)%) T

() [ >)

The expected sample variance of p; is EVp(\ k) = EVr (A k,0) so

i X127 (( ) )( ak2>\2 (A" =7

EVr (\ k)
2
o (1Xa=N) 1 faa -2 k2\%
I A = G Y 127
_A'_L)\QAQ_l & 2A2
1_)\20E T\1-x) e

_lkle(l_AQT)(( L >A2

T 1- 2 1-X) T(@a-)*) ¢

o B (1-07)

I S P A59
2 (1-A (459)

andif —-1<A<land -1<k<1

A%,
127

lim BV (A k) =
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The expected sample variance of pfis EVJi(A k) = EVp (A k, 1) so

1 (k% (1—K2T) 1 1 2
i + 5 | 0c
T 1—k2 1-k>  T@1—k)

1A () (( ! 1 )U 22 (X - 07)

+
T 1— 2 1-2)  T(1-))?

EVZE(\ k)
2
o (ra=N 1 faa =) A%,
\T 1=\ 12 1-A 1—2’
L BN 5 1 k LA 2,
1 k2% 1% r\1-k 1)) %

RIS HA-NO -0
2 (ko (ko) RN
+ﬁ(1—k+1_)\>((1k)2 + TESNE & (A60)

andif —-1<A<land -1<k<1

25 P =5 S

TILIHOOEV; (\E) = — % + A

57



References

1]

[10]

[11]

Ali, A. and P. Zarowin, 1992, “Permanent versus Transitory Component of
Annual Earnings and Estimation Error in Earnings Response Coefficients”,
Journal of Accounting and Economics, 15, 249-264.

Allen, F.; A. Bernardo, I. Welch, 2001, “A Theory of Dividends Based on
Tax Clienteles”, Journal of Finance, .55, 2499-2536

Allen, F. and R. Michaely, 1995, “Dividend Policy”, in: Jarrow, R., Mak-
simovic, V., Ziemba, W. (Eds), Handbooks in Operations Research and
Management Science: Finance, North-Holland, Amsterdam, 793-838.

Bagwell, L. and J. Shoven, 1989, “Cash Distributions to Shareholders”,
Journal of Economic Perspectives, 3, 129-149.

Bhattacharya, 1979, “Imperfect Information, Dividend Policy, and The
Bird in the Hand Fallacy”, Bell Journal of Economics, 259-270.

Black, F., 1976, “The Dividend Puzzle”, Journal of Portfolio Management,
Winter, 5-8.

Bray, M. and G. Marseguerra, 1997, “Dividend Policy and Excess Volatility
of Stock Prices”, Papers and Proceedings of the 21%¢ Annual Meeting of
the Italian Association of Mathematics Applied to Economic and Social
Sciences (A.M.A.S.E.S.), Rome, 10 -13 September 1997, p. 149-164.

Chiang, R., I. Davidson, J. Okunev, 1997, “Some Further Theoretical and
Empirical Implications Regarding the Relationship Between Earnings, Div-
idends and Stock Prices”, Journal of Banking and Finance, 21, 17-35.

Fama, E., and H. Babiak, 1968, “Dividend Policy: An Empirical Analysis,”
Journal of the American Statistical Association, December, 1132-1161.

Fama, E., and K. French, 2001, “Disappearing Dividends: Changing Firm
Characteristics or Lower Propensity to Pay?,” Journal of Financial Eco-
nomacs, 60, 3-43.

Flavin, M., 1983, “Excess Volatility in the Financial Markets: A Re-
assessment of the Empirical Evidence,” Journal of Political Economy, 91,
929-956.

Hamilton, J. D., 1994, Time Series Analysis, Princeton University Press,
Princeton.

Jensen, M.C., 1986. “Agency Costs of Free Cash Flow, Corporate Finance
and Takeovers,” American Economic Review, 26, 323-329.

Kleidon, A., 1986 “Variance Bounds Tests and Stock Price Valuation Mod-
els,” Journal of Political Economy, 94, 953-1001.

98



[15]

[16]

[17]

[18]

[19]

Lee, B., “Time-Series Implications of Aggregate Dividend Behavior”, The
Review of Financial Studies, 9, 2, 589-618.

Lintner, J., 1956 “Distribution of Incomes of Corporations Among Divi-
dends, Retained Earnings, and Taxes,” American Economic Review, 46,
97-113.

Marseguerra, G., 1998, Corporate Financial Decisions and Market Value,
Physica-Verlag, Berlin and New York.

Marsh,T.; and R. Merton, 1986 “Dividend Variability and Variance Bounds
Tests for the Rationality of Stock Market Prices,” American Economic
Review, 76, 483-498.

Miller, M.H. and F. Modigliani, 1958, “The cost of Capital, Corporation
Finance and the Theory of Investment”, American FEconomic Review, 48,
261-297.

Miller, M.H. and F. Modigliani: 1961 “Dividend Policy, Growth and the
Valuation of Shares,” Journal of Business, 34, 411-433.

Miller, M. and K. Rock, 1985, “Dividend Policy Under Asymmetric Infor-
mation”, Journal of Finance, September, 1031-1051.

Shiller, R., 1981 “Do Stock Prices Move Too Much to Be Justified by
Subsequent Changes in Dividends,” American Fconomic Review, 71, 421-
436.

99



