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Abstract. We propose a dynamic model to describe the commercial exploitation, by a population
of strategically interacting agents, of a common property renewable resource. The population of
players is assumed to be divided into two groups: defectors, that just maximize their own profit,
and cooperators, that decide their harvesting policy by maximizing the overall profit of their group.
An evolutionary mechanism, based on the replicator dynamics, is introduced to describe the time
changes in the proportions of defectors and cooperators within the population. This leads us to the
qualitative study of a two dimensional nonlinear dynamical system that describes the time evolution
of the resource stock and the population share between cooperators and defectors. The long run
evolution of this dynamical system is analyzed by analytical and numerical methods, and the role of
some economic and ecologic parameters is investigated.
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1 Introduction

Since the pioneering work of Gordon (1954), many bioeconomic models for the description of the com-
mercial exploitation of common property renewable resources, such as fisheries, stressed the problem
known as "the tragedy of the commons” (Hardin, 1968, see also Clark, 1990). This problem can be
basically identified with a prisoner’s dilemma (see e.g. Mesterton-Gibbons, 1993) because the presence
of firms playing their dominant strategy which maximizes their own profit (disregarding competitors’
profits) leads to severe depletion of the resource, and consequently to low profits for all. On the other
hand if firms cooperate to maximize the total profit, then a sustainable exploitation is more likely to
be obtained, which implies higher profits for all in the long run.

Dynamic models based on Cournot oligopoly games have been recently proposed by Szidarovszky
and Okuguchi (1998, 2000) to describe commercial fishing, where the strategic interaction among
players is related not only to the selling price, determined by the total harvesting quantity through a
given demand function, but also to a cost externality, since resource stock reductions, as consequence
of players’ harvesting, lead to higher unitary fishing costs (see also Bischi and Kopel, 2002). In
Szidarovszky and Okuguchi (1998) every player is assumed to decide his/her harvesting activity solving
a profit maximization problem, without any concern with the implications of this activity on the



depletion of the natural resource. Instead, in Szidarovszky and Okuguchi (2000) it is assumed that
the fishermen form a grand-coalition (i.e. a cooperative venture) and each player determines his/her
harvesting activity such that the joint profit of all players is maximized. In both cases, the solution of
the optimization problem leads to harvesting functions that depend on fish stock, whose dynamics is
governed by a biological growth function with an extra mortality term due to the harvesting activity.

A discrete time version of the oligopoly model proposed in Szidarovszky and Okuguchi (1998) is
given in Bischi and Kopel (2002), where dynamics with perfect foresight (i.e. fishermen are assumed to
know the fish stock at each time when they solve their maximization problems) are compared with dy-
namics with limited knowledge of the fish stock and its estimate is obtained by adaptive expectations.
In Bischi et al. (2002), discrete time versions of both models (the one with non cooperative oligopoly
competition of Szidarovszky and Okuguchi, 1998, and the one with total cooperation, where all the
players form a unique cooperative venture, so that they behave like a sole owner, like in Szidarovszky
and Okuguchi, 2000) are considered with adaptive expectations.

In the model proposed in this paper, the players (e.g. fishermen) have access to a common property
resource (e.g. a sea where a given fish stock is available) and sell the harvested resource in the
same market, but, differently from the above cited literature, both competitors and cooperators are
present. In fact a fraction s of fishermen behaves as cooperators, and form a cooperative venture
where each one decides the harvesting quota by maximizing the profit of the coalition, whereas the
complementary fraction (1 — s) of fishermen behaves as competitors (or “defectors” with respect to
cooperative behavior) each of which decides harvesting quotas by maximizing his/her own profit
(disregarding competitors’ profits). Following the terminology typical of prisoner’s dilemma (see also
Sethi and Somanathan, 1996) we call the latter group defectors, because they deviate from the socially
optimal attitude of cooperating, and consequently they produce a negative externality on the rest of
the community, in terms of potential severe depletion of the common property resource.

Furthermore we introduce the possibility to impose sanctions to punish defectors. As in Szi-
darovszky and Okuguchi (1998, 2000), Bischi and Kopel (2002), the harvesting of each group depends
on strategic interactions related not only to the influence of total supply on the market prices, but also
to the dependence of harvesting cost on available fish stock, whose evolution is governed by biological
laws as well as harvesting activities. Moreover, following Sethi and Somanathan (1996) we propose
an evolutionary mechanism that describes how the population share is updated over time. This evo-
lutionary mechanism, based on replicator dynamics, is based on the principle, typical of evolutionary
games, that the fraction of agents playing the strategy that earns higher payoffs, increases in the next
period.

However, differently from the model proposed in Sethi and Somanathan (1996), where the harvest-
ing behavior of cooperators and defectors is assumed to be described by general functions that satisfy
some formal assumptions, we explicitly deduce the harvesting decisions as the Nash equilibrium of
the profit maximizing game that cooperators and defectors are playing, founded on explicitly defined
demand and cost functions. This allows us to study, by theoretical and numerical methods, the effects
of some economic parameters, such as the market price (i.e. the parameters that characterize the de-
mand function) or the cost parameters (related to the technology adopted), on the long-run evolution
of the resource stock and the population shares between the two groups. In particular, the proposed
model lets detect what economic parameters may determine not only the extinction of the resource,
but also the extinction of a given behavior.

The paper is organized as follows. In section 2 we propose a static game where a population of



profit maximizing agents decide the quantities to harvest on the basis of two different behaviors: a
fraction of players form a coalition, each of them trying to maximize the overall profit, whereas the
complementary fraction behave as “selfish” profit maximizers. The reaction functions are obtained and
the unique Nash equilibrium of the game is computed. In section 3 a growth equation, governing the
dynamics of the resource stock with harvesting, is introduced, the harvesting being decided by the two
groups by choosing the Nash equilibrium quantities according to the game analyzed in section 2. In
this section the population share between the two kinds of agents is assumed to be a parameter, so the
existence and stability of the steady states are studied as well as how these are influenced by population
share. In section 4 we introduce an evolutionary mechanism that, at each time period, describes how
the population share is updated, based on replicator dynamics, and we study the problems of existence
and stability of the equilibria. In particular a distinction is introduced between boundary equilibria,
where all the players behave as cooperators or as defectors, and inner equilibria, where cooperators
and defectors coexist in the long run. A short discussion of the results, a description of open problems
and possible further developments are given in section 5.

2 The static game

Let us assume that a population of n agents harvest from a common property renewable resource stock,
and sell the harvested resource at a price p determined by the total harvested quantity according to
a given demand function. For example, we may imagine that the agents are fishermen that harvest
fish from a sea where a given fish stock X is present, however similar considerations may be applied
to the harvesting of different renewable resources, such as forests or others. The agents decide the
quantities to harvest on the basis of profit maximization problems. However, we assume that a fraction
s of them, denoted as “cooperators” form a coalition (a cooperative venture) and consequently each
of them tries to maximize the overall profit of the coalition, whereas the remaining fraction (1 — s)
behave as “selfish” profit maximizers, and are denoted as “defectors” (with respect to the socially
more desirable cooperative behavior).

In this section we consider X and s as fixed parameters®, with X > 0 and 0 < s < 1. Let 2’ be the
quantity harvested by the cooperator ¢, 1 = 1,...,ns, and let :L‘il be the quantity harvested by defector
i,i=1,...,n(1 —s). Then the total fish which is supplied and sold in the market is

ns n(1-s)
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We assume that the selling price p is determined by the linear demand function
p=a—bH (1)

where a and b are positive constants, and the cost function of player ¢ for harvesting a quantity x
when a fish stock X is present is given by

2

C(z, X) =% (2)

!Since n is finite, admissible values of s should be discrete, i.e. s = k/n with k = 0,1,...,n. However, as usual in

population dynamics and evolutionary games modelling, we abstract from this and we allow s to be a real number in

the interval [0, 1], even if we shall consider ns and n (1 — s) integers that sum to n, by assuming some approximation of
ns to the nearest integer.




This cost function can be derived from a Cobb-Douglas-type “production function” with fishing effort
(labor) and fish biomass (capital) as production inputs (see Clark 1990, Szidarovszky and Okuguchi,
1998). It captures the fact that it is easier and less expensive to catch fish, if the fish population is
large.

Following Sethi and Somanathan (1996) we shall also consider an extra-cost due to the presence of
social norms that are intended to punish fishermen that behave as defectors, i.e. self-interested profit
maximizers without any care of social optimum. Like in Sethi and Somanathan (1996) we assume that
cooperators are entrusted to punish defectors by applying sanctions. This may be done directly by
exerting a direct punishment, such as social disapproval damage or physical damage or destruction of
equipment, as observed in less developed societies, or by alerting authorities so that they can impose
sanctions according to the laws in force. Such punishment is costly for the defectors, the cost being
ns&, where ¢ is the amount of the sanction and ns represents the probability that a defector is notified
by a cooperator. However, in general, this kind of punishment is also costly for the cooperators, the
cost being proportional to the number of defectors. We shall represent by n(1 — s)i this extra cost
for cooperators (of course £ > 1, and we shall often consider ¢» = 0 in the following). All in all, the
profit of i-th cooperator is

N2
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where . is the fishing technology coefficient of cooperators and n(1 — s)i represents the cost that
cooperators have to face in order to punish defectors, and the profit of i-th defector is

i (x))°
mh = (0~ bH) — i — st (1)
where 74 is the fishing technology coefficient of defectors and nsé represents the punishment that
defectors have to bear for causing the negative externality in the community.
Each cooperator determines z! by solving the optimization problem
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max 7" = max Zwé (5)
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where 7V, which is a concave function in the variables x%, denotes the total profit of the cooperative
venture. Assuming interior optimum, the first order conditions give a system of linear equations in
the unknowns z?,

orV > L) 27c .
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Each defector determines l‘fi by solving the optimization problem
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Assuming, again, interior optimum, the first order conditions give a system of linear equations in the
unknowns z;

—s)n

Omy k k i 2 g
Bxil:a_bz;xc—b Z: xd—bxd—yxd:O (8)

The equations (6) and (8) give a linear system of n equations with n unknowns. However, it is
straightforward to see that any cooperator faces the same optimization problem, and analogously for
the defectors. In fact, if we denote by 19T = i z* the total harvest of the cooperators and by

2707 = S 15)” k the total harvest of the defectors, from (6) we get
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and from (8) we get
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So, denoting the optimal harvesting decision of each cooperator by x., and the optimal harvesting
decision of each defector by x4, these quantities are obtained by solving the two linear equations

a—2(bsn+ %)z —b(l—s)nzg=0
a —bsnx. — [b(l—i—(l—s)n)%—z—%] xg=0

from which the two linear reaction functions are obtained

aX b(1—s)nX
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These reaction functions allow one to compute, respectively, the optimal harvesting decision of a
“representative cooperator”, given the harvesting decision of a representative defector, and the optimal
harvesting decision of a “representative defector”, given the harvesting decision of a representative
cooperator.

As hq (0) = Wm < h7Y0) = ST being equivalent to bX + 274 > 0, and he 0) =
W <hg (O) 7o, being equivalent to bsn.X +2v, > 0, the two reaction curves always intersect

in a unique point (x}, x}) with positive coordinates, which represents the unique Nash equilibrium of
the game. Of course, the harvesting strategies of cooperators and defectors at the Nash equilibrium
are functions of fish stock X and the fraction of cooperators s, as well as of the cost parameters ~.,
~vq and the market price parameters a and b, given by

bsnX + 27,
b2sn(n(1—s)+2) X2+ 2b(2nsyg+ Ye + Yen(l — 8)) X + 4.4

(X, s) =aX (9)
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Xa—b(l—s)nzy(X,s)
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Given 0 < s < 1, these per-capita optimal harvested quantities both vanish for X = 0, i.e.
x5 (0,s) =25(0,8) =0
are both positive for X > 0, have slopes at X = 0 given by

ox} (X,s)‘ a o’ (X,s)| _a
ox  X=0— 274’ ox  X=v— 27

and both tend to horizontal asymptotes as X — +o0, given by
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respectively. Moreover, x}; is an increasing and concave functions with respect to X > 0, whereas z, is
downward sloping for high values of X. Typical graphs of ), and x are shown in fig. 1a. Notice that,
for sn > 2 (i.e. if at least two cooperators exist) then z} < ¥ for large values of fish stock, whereas
for small values of X the comparison between z; and x depends on the respective cost parameters.
It is also worth to notice that both z); and x} increase if the selling price increases, i.e. a increases
and/or b decreases in the demand function (1). Moreover, also the gap between z; and z, for large
values of the fish stock, increases with increasing prices and with the number ns of cooperators, being

73 (+00,8) = 2 (00, 5) = b[(1—§)n+2] (Fi)

The total harvesting at the Nash equiltbrium is given by
H*(X,s) =n[szi(X,s) + (1 — s)ag(X,s)] . (11)
For each s, H*(X, s) is an increasing and concave function with respect to X, such that, H*(0,s) = 0,

BH*(X,3)| _na i+1—s
0X r= 2 Ye Yd

and for X — oo it approaches an horizontal asymptote.

* B 1 1—3s _
H(+0078>—”“Ln[<1_s) +2]+b[<1—s>n+2ﬂ_

n
_al+n(l-3)) a - 1
Cb[(T—s)n+2] b 2+(1—s)n

Notice that H* < a/b for each X > 0, so that prices are always positive. Moreover, if s is decreased, i.e.

the number of defectors is increased, then H*(+o0, s) increases, that is, as expected, in the presence
of abundant resource the total harvest is greater if the number of defectors increases. In the limiting

case s = 0 (all defectors) we have H*(+00,0) = ¢ <1 — ﬁ), and in the opposite limiting case s =1
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(all cooperators, equivalent to the case of a sole owner) we get H*(+00,1) = a/2b, the monopolist
optimum.

These results allow us to compute, at the Nash equilibrium, the profit of a representative defector
and that of a representative cooperator, given by

)2 2
g =ay(a—0H") — % —nsé  and . =x, (a—bH") —%% —n(l—s)y (12)

respectively. Plugging the expressions of x, x}; and H* into (12), 7} and 7} and can be rewritten as:

. a’X (bnsX + 27.)% (bX + vq)
Ty = 5 — ns (13)
[bX (bn(—n(1—s)—2))sX —2(n(1 —s)+ 1)y — 4 (bnsX + ve) V4

and

. a’X (bnsX +7.) (bX + 2%1)2 (- sy (14)
[bX (bn(—n(1 —s) —2))sX —2(n(1 —s) + 1) v — 4 (bnsX + v¢) V4]

respectively. These expressions show that, at the Nash equilibrium, the profits of defectors (coopera-
tors) are positive provided that the applied sanctions (the costs to apply sanctions) are not too heavy.
For example, under the assumption ¥ = 0 and & > 0, that we shall often consider in the following,
we have 7 always positive and 7 positive or negative according to the sanctions applied and to the
number of cooperators.

FIG. 1 APPROXIMATELY HERE

3 The one-dimensional dynamics with fixed s

We now regard X as a dynamic variable and s as a parameter, that is, we consider the time evolution
of the resource stock X (t), that depends on its natural growth function and on the harvesting activity,
and we assume a fixed share of fishermen population between cooperators and defectors.

Let X (t) denote the fish stock at time period ¢. We consider the following discrete time equation
to describe the time evolution of the fish stock

Xt+1)=F(X@)=Xt)1+a—-pX({t)—H"(X(t),s) (15)

that is, we assume that in the absence of any harvesting the stock of the fish population in period % is
determined by the discrete time logistic equation?, with o and 3 biological parameters that characterize
the fish population we are considering and the environment where it lives: « is the intrinsic growth
rate and «/( the carrying capacity, i.e. the positive equilibrium value of the unharvested resource
population, since for H* = 0 and X = a/f (15) gives X(t + 1) = X(t). We also assume that the

2A more general growth function G(X) = XR(X), with R(0) > 1, R(X) > 0 for 0 < X < K and R(X) < 0 for
X > K, K > 0 being the carrying capacity, may be considered. However, the choice R(X) = 1 + a — 8X, known as
logistic growth, is one of the simplest and most commonly used for qualitative analysis purposes.



fish stock is harvested according to the Nash equilibrium of the static game described in the previous
section.

The steady states of the model with harvesting are the non negative fixed points of the function
F in (15), solutions of the equation

X(a—ﬂX):H*(X;S,%,yd,a,b,n) (16)

where the dependence on the parameters is emphasized. So, for any given value of s, the equilibria
are located at the non negative intersections between a parabola and the concave function (11) (see
fig.2).

FIG. 2 APPROXIMATELY HERE

The equilibrium Xy = 0 (extinction of the resource) always exist. Furthermore, depending on the
values of the parameters, two, one or no positive equilibria may exist (see fig.2). We now give some
conditions for the existence of positive steady states. First of all, as the parabola, whose equation is
given by the left hand side of (16), has slope a at X = 0, a necessary and sufficient condition for the
existence of a unique positive steady state is (see curve a in fig. 2)

0H* (X, s) ~nafs 1-s
a—X|X:O_ 5 <ch+ ~a ><Oé. (17)

In this case, a unique positive equilibrium exists, say Xi, with 0 < Xj < a/f. If (17) holds, then
DF(0) > 1 hence whenever a unique positive equilibrium exists, the fixed point Xy = 0 is unstable
(see fig. 3a). This means that if (17) is satisfied, i.e. the number of fishermen is not too high, or prices
are not too high or cost parameters are not too small, then even if the resource stock is reduced at
an arbitrary small positive value by some exogenous shock, the endogenous dynamics of the system
is such that it spontaneously evolves to viable levels of the resource stock, close to X;. The unique
positive equilibrium X; may be stable, i.e. |DF(X7)| < 1, or unstable, with DF(X;) < —1. In the
latter case, which occurs with high values of the parameter «, a more complex bounded attractor,
which may be periodic or chaotic, may exist around X;. The bounded attracting set is confined inside
the trapping set I = [c1, ] where ¢ is the maximum value of the function F' and ¢; = F(c). In any
case, the basin of the bounded attractor is bounded by the unstable fixed point Xy = 0 and its rank-1
preimage Xp_,, i.e.

B=(0,Xo_,)
where X , is the positive solution of the equation
H*(X
l+a—-pX = )(( ) (18)

It is straightforward to see that under the assumption (17) the equation (18) has a unique positive
solution Xy, such that X; < Xo_, < (1 4+ «)/B. An initial condition with X (0) > Xy , is mapped
by the iterated function F to a negative value, so we consider as unfeasible such kind of trajectory>.

3This may be interpreted as a resource extinction due to overcrowding effects, a definitely unrealistic situation in the
context we are considering.



It is worth to notice that the equilibrium value Xj is influenced by the value of s. In fact, if s
is increased, then the asymptote of H* moves downwards, and this implies that X7 increases with s,
i.e. Xj(s) is an increasing function. The intuition behind this is clear: more cooperators imply an
higher resource stock at the long run equilibrium, due to a more conservative (or sustainable) resource
exploitation.

If the aggregate parameter at the left hand side of (17) is increased, i.e. the number of fishermen
and/or prices become higher compared with intrinsic growth of the fish species in the environment
considered, and/or the fishing costs are lowered by using more sophisticated technologies, for

1—
na (i + 8) =2« (19)
Ye Yd

we have DF(0) = 1 and if na (s/7. + (1 — s)/vq) is further increased (or v decreased) then a transcrit-
ical (or stability exchange) bifurcation occurs after which the equilibrium Xy = 0 becomes stable, i.e.
—1 < DF,(0) < 1, and a second fixed point X» enters the positive orthant, i.e. 0 < Xs < X3 < a/f .
The new positive equilibrium X5 is unstable, being DF(X3) > 1, and belongs to the boundary which
separates the basin of the stable equilibrium Xy = 0 from the basin of the positive attractor. So,
in this situation X5 constitutes a threshold population level such that if the current population X (t)
falls below X5 then the resource stock will spontaneously evolve towards extinction. It is worth to
notice that if s is increased, so that the asymptote of H* moves downwards, then threshold value Xo
moves to the left, i.e. it is a decreasing function of s. This means that more cooperators imply not
only a higher resource stock at the long run equilibrium Xj, but also an enlargement of its basin of
attraction.

As usual with noninvertible maps, all the rank-1 preimages of X5 belong to basin boundaries, so
the basin of the positive attractor is now given by

B=(X2Xs,), (20)

Xs_, being the rightmost solution of the equation F(X) = X5. The set of positive initial conditions
which asymptotically converge to Xo = 0, and give rise to extinction in the long-run, is formed by the
union of two disjoint intervals

BP(0) = (0, X2) U (X2_,, X0_,) (21)

whereas the initial condition X (0) > Xy , generate unfeasible trajectories.
In general, a sufficient condition for two equilibria is

na (s 1-s a 1 o?

7<%+ ’yd>>aandg<1——2+(1_s)n><@ (22)
where the first inequality states that at X = 0 the curve H*(X) has slope greater than that of the
parabola, and the second inequality states that the upper bound of H* is below the vertex of the
parabola (see the curve (b) of fig. 2).

When two positive equilibria exist, the dynamic scenario is the one described above, and repre-
sented in fig. 3b. With given values of the biological parameters oo and 3, so that the parabola in
fig. 2 is fixed, if the other parameters are varied with the consequence that the asymptote of H*
moves upwards, the two positive equilibria become closer and closer, so that the basin of X, enlarges




and, therefore, the basin of the viable equilibrium X7 shrinks. This can be obtained, for example, by
increasing prices (i.e. increasing a/b) or with decreasing values of s, i.e. by increasing the number of
defectors. We are particularly interested in the latter effect: decreasing values of s imply less robust-
ness of the viable equilibrium with respect to exogenous shocks. Of course, also a study of the effects
of the parameter 0 may be interesting, as an higher value of 8 may be interpreted as the effect of a
damaged environment, due to pollution or other factors.

If we reverse the second inequality in (22), i.e.

na (s 1—s a 1 o?

7<%+ ’Yd>>aand6<l_—2+(1—5)n>>ﬁ (23)
we obtain a necessary condition for the uniqueness of the extinction equilibrium Xy = 0, i.e. no positive
steady states. Such a situation may be obtained as the final effect of increasing H*(+4o00,s): The
transition from a dynamic scenario characterized by two positive steady states to one with no positive
steady states occurs via a fold (or tangent) bifurcation, due to a progressive decrease of X1, increase of
X (so that the basin B becomes smaller and smaller) until they merge with DF(X;) = DF(Xs) =1,
and then they disappear. It is trivial to prove that when Xj is the unique equilibrium, then for every
initial condition the system evolves towards extinction (see fig. 3c). Once more, we remark that
such a sequence of bifurcations described above may occur for increasing prices, decreasing costs or
decreasing values of s, i.e. by increasing the number of defectors.

FIG. 3 APPROXIMATELY HERE

4 The two-dimensional model with evolutionary dynamics of s

We now relax the assumption of a fixed population share between cooperators and defectors, and
we introduce an evolutionary mechanism that, at each time period, describes how the population
share is updated. In the spirit of evolutionary games, we assume that the fraction of agents playing a
strategy that, with respect to the other strategies, earns higher payoffs, increases in the next period. In
our case, the payoffs associated with the two available strategies of cooperation and defection are the
profits 7 (t) and 7;(t) respectively, that, according to (14) and (13), depend on the current population
share s(t) as well as on the current resource stock X (). Since, as argued in the previous section, the
dynamics of X (t) are influenced by s(t), this will give rise to a two-dimensional nonlinear dynamical
system with dynamic variables X (¢) and s(t), the study of which may give us information on the
long-run evolution of the system. For example, we may ask not only if the resource stock will survive
or become extinct in the long run, but we may also ask if some behavior (cooperation or defection) will
survive or become extinct as the system evolves. Since, under the reasonable assumption 7. = 4 (that
means that the two groups adopt the same technology) the strategy chosen by defectors is dominant if
no sanctions are applied, the assumption £ > v > 0 will be crucial in order to obtain stable equilibria
with a nonvanishing fraction s of cooperators.

4.1 Replicator dynamics

The simplest (and more frequently used) model proposed in the literature which gives an evolutionary
pressure in favor of groups obtaining the highest payoffs is that of replicator dynamics (Taylor and
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Jonker, 1978, see also Vega-Redondo, 1996, ch.3, Hofbauer and Sigmund, 1998, ch.7, Weibull, 1995,
ch.3). The discrete time replicator dynamics for the fraction of cooperators can be written as

s(t+1)=s(t) ”fi;t) (24)
where
w(t) = sma(t) + (1 — s) ma(t) (25)

represents the average profit observed at time ¢. So, (24) states that s(t 4 1) will be greater than s(¢)
if % (t) > 7(t) whereas s(t) will decrease if 75 (t) < 7(t). As 7} (t) > 7(t) if and only if 7} (t) > 7(¢), it
follows that the population share related to the better performing strategy at time period ¢ increases
in the next period.

Both 7} (t) and 7(t) depend on s(t), as well as X (t), so the difference equations (15) and (24)
define a two-dimensional discrete dynamical system. Starting from a given initial biomass X (0) and a
given initial population share s(0), the recurrences (15) and (24) allow one to obtain X (¢) and s(t) for
each t > 0, from which the corresponding values of x (t), «; (), 7} (t), 7 (t), H*(t) can be obtained.

It is interesting to study if the dynamic variables X (¢) and s(t) converge to a given steady state
in the long run, i.e. as t — oo, or if they exhibit some more complex time pattern.

4.2 Qualitative study of the two-dimensional dynamical system

The time evolution of the discrete time two-dimensional dynamical system in the dynamic variables X
and s is obtained by the iteration of a map of the plane T": (X (¢),s(¢)) — (X (t+ 1), s(t + 1)) defined
by

X(t+1)=X(t) (1+a—BX(1) — H* (X(t), s(1))
(26)

me (X (1), s(1))

U0 =50 o, 50) + (1 — ) (X @), 50)

where H* (X, s) is given by (11), with «} and z; defined in (10) and (9) respectively, and 7}, 7] are
given in (14) and (13) respectively.

It is straightforward to see that if 7 (¢) > 0 and 7;(¢) > 0 then s(¢) € (0,1) implies s(t+1) € (0,1)
as well. However, negative profits may arise if the parameters £ and/or 1 are positive. As the influence
of these parameters is always related to the difference £ — ), without loss of generality we shall assume
1 = 0, and whenever 7(¢) < 0 we shall assume s(t 4+ 1) = 1 (instead of the meaningless s(t +1) > 1,
as obtained by simply applying (26)).

4.3 Two benchmark cases

It is important to notice that if s(¢) = 0 then s(¢t+1) = 0 for each ¢ > 0, and if s(¢) = 1 then s(t+1) =1
for each t > 0, i.e. the two boundary lines s = 0 and s = 1 are trapping lines, on which the dynamics
are governed by one-dimensional unimodal maps, given by the restrictions of the two-dimensional
map (26) to them. These two cases correspond to particular benchmark cases, where we have all
cooperators and all defectors respectively, i.e. the cases considered in Szidarovszky and Okuguchi
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(1998) and Szidarovszky and Okuguchi (2000) respectively, see also Bischi, Kopel and Szidarovszky
(2002). The properties of these one-dimensional dynamical systems can be easily obtained on the
basis of the results of section 3. For example, the dynamics along the invariant edge s = 0, where all
players are defectors, are governed by the one-dimensional map (15) with

naX
b(n + 1)X + 2’Yd

H*(X,0) =nxj(X,0) =

So the steady states are X = 0 and the solutions (if any) of the equation
b3 (n+1) X% 4 (2874 — ab(n+1)) X +na — 20y = 0 (27)

The analysis is the same as in Szidarovszky and Okuguchi (1998) or in Bischi et al. (2002).
On the other invariant edge s = 1, where all players are cooperators, the dynamics are governed
by (15) with

N N naX
H*(X,1) = na (X, 1) = 2nX + 1)

So the fixed points are X = 0 and the solutions (if any) of the equation
200nX? 4+ 2 (8. — abn) X +na — 20y, =0 (28)

The analysis is the same as in Szidarovszky and Okuguchi (2000) or in Bischi et al. (2002).

4.4 Steady states

As usual, the starting point for the qualitative analysis of a nonlinear dynamical system is the localiza-
tion of the steady states and the study of their local stability. The steady states of the two-dimensional
dynamical system (26) are the fixed points of the map T, solutions of the system T'(X, s) = (X, s). It
is straightforward to see that two corner equilibria always exist, given by Ey = (0,0) and E; = (0,1),
characterized by extinction of the resource. Other boundary equilibria may exist along the invariant
lines s = 0 and s = 1, given by the solutions, if any, of (27) and (28) respectively. If two equilibria
with positive fish stock exist both on the invariant edge s = 0 and on invariant edge s = 1, say X»(0),
X1(0) and X2(1), X;(1) respectively, then, on the basis on the arguments of section 3, the following
relation must hold: Xs(1) < X2(0) < X;(0) < X1(1). A necessary condition for the existence of
two positive equilibria along s = 0 is that two positive equilibria exist along s = 1. However, it may
happen that two positive equilibria exist along s = 1 and no positive equilibria exist along s = 0. Of
course, sufficient conditions for the existence of two positive boundary equilibria along the invariant
edges are obtained from (22) with s =0 and s = 1 respectively.

Instead, if (17) is satisfied for s = 1, i.e. na < 2ary., then a unique equilibrium exists along the
edge with only cooperators, and the same holds on the other invariant edge if na < 2ay;. These two
conditions are equivalent under the reasonable assumption 7. = v4. However, even when a unique
equilibrium exists, the inequality X7(0) < X;(1) holds, i.e. the long-run equilibrium under sustainable
fishing is characterized by an higher values of resource stock in the limiting case of all cooperators
than in the opposite limiting case of all defectors.

The stability of these equilibria with respect to the one-dimensional dynamics trapped inside the
invariant edges can be easily deduced from the discussion on the one-dimensional dynamics given in
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section 3 applied to the particular benchmark cases s = 0 and s = 1. However, we are now mainly
interested in the stability with respect to perturbations transverse to the invariant edges, i.e. what
happens if a few defectors appear starting from a situation with all cooperators, or what happens
if a few cooperators appear starting from a situation with all defectors: Are such small mutations
eliminated by the evolutionary dynamics, so that the original benchmark case is restored (case of
transverse stability) or do they grow up thus causing an irreversible departure from the original
benchmark case?

An answer to these questions requires the study of the local stability of the boundary equilibria,
i.e. the localization, in the complex plane, of the eigenvalues of the Jacobian matrix of (26) computed
at the boundary steady states. This is not difficult in principle, as eigenvalues are always real because
the Jacobian matrix of (26) is a triangular matrix along the invariant edges. This implies that we can
only have nodes or saddle equilibria on the boundaries. However, the expressions of the eigenvalues
are quite involved, and the stability conditions obtained are not easy to be interpreted.

So, in the following we prefer to follow a numerical and graphical method in order to obtain a
global view of the dynamic properties of the dynamical system (26)%.

First of all, we consider the question of the existence of inner equilibria, i.e. steady states charac-
terized by coexistence of cooperators and defectors. These are obtained solving the nonlinear system

X(a—pX)=H*"(X,s) (29)

T (X, 5) = my(X, s)
with 0 < s < 1. The set of points of the plane (X, s) that satisfy the first equation represent locus
of points that give one-period stationary resource stock, i.e. X(t + 1) = X(¢)°. For each s in the
range [0, 1] the X coordinates of these points can be computed by solving the equation (16), already
analyzed in section 3. So, this set of points may be formed by two branches, say Xi(s) and Xs(s),
with X5(s) < Xj(s) for each s. Moreover, from the results of section 3, X(s) is a decreasing function
and Xj(s) is increasing, so the branch Xj(s) has positive slope and the branch Xs(s) has negative
slope in the plane (X, s) (see figures 4a and 5a). The intersection of the branch X;(s) (X2(s)) with
the invariant edge s = 1 gives the boundary equilibrium of X coordinate X;(1) (X2(1)), and the same
holds for the intersections (if any) with the other invariant edge s = 0. However, it may happen that
the two branches intersect s = 1 but have no intersections with s = 0, because they may merge for
s > 0 (see fig. 6a). If the condition (17) is satisfied for all s € [0,1], then the locus of points such
that X (¢ 4+ 1) = X(¢) is only formed by the branch Xi(s). The knowledge of these curves give us
the following information: Starting from a given point (X, s), a one-step iteration of (26) generates
a new point (X', s') = T, rank-1 image of (X, s) by T, with X’ > X if (X s) is in the strip between
the curves Xa(s) and X;(s) (or between the axis X = 0 and the curve X;(s) if only the branch Xj(s)
exists) and with X’ < X if (X, s) is on the left of the curves X3(s) (provided it exists) or on the right
of the curve Xi(s).

FIG. 4 APPROXIMATELY HERE

4A more standard analytical study of the stability of the boundary equilibria, obtained with the help of software
packages for symbolic algebraic manipulation, is in progress.

50f course, this does not mean that the dynamic system is in equilibrium, unless also s(t) is stationary, i.e. the second
equation (29) is satisfied as well.
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A similar reasoning can be applied to the set of points that satisfy the second equation (29), that
represent the locus of points that give one-period stationary population share, i.e. s(t 4+ 1) = s(¢). A
qualitative study of this curve is more difficult, due to the complicated expressions of 7}(X,s) and
75(X,s). However, the numerical solution of the equation 7}(X,s) = 7j(X,s) for different sets of
parameters gives rise to decreasing curves in the plane (X, s), as shown in the figures (4a, 5a, 6a). The
points above the curve 7}(X,s) = mj(X, s) are points where 7}(X,s) < 7}(X,s), hence the rank-1
images (X', s') = T (X, s) of points (X, s) above the curve have s’ < s. Of course, the points below the
curve are characterized by (X, s) > 75(X,s), hence (X', s') = T (X, s) are such that s’ > s. These
arguments allow us to obtain a global qualitative picture of the dynamic behavior of the dynamical
system (26), as shown by the arrows represented in fig.4a.

Of course, any intersection between the curve 7%(X,s) = (X, s) and one of the curves X;(s),
i = 1,2, represents a steady state of the dynamical system. Of course, all the steady states along
the branch Xs(s) cannot be stable, because all the points of that branch behave as repelling points
along the X direction. Instead, steady states located along the branch Xj(s) are candidates to be
stable equilibria. For example, in fig. 4a, obtained with the set of parameters n = 10, a = 3, 8 =1,
a=1.050b=03,v%=v=1,1%=0,&=0.01, the two equilibria on Xs(s) are unstable, whereas the
equilibrium point E = (1.48,0.15), located on X;(s) is stable. In fig. 4b, the numerically computed
basin of attraction of the stable equilibrium E is represented by the white region, whereas the grey
region represent the initial conditions leading to extinction of the resource. Two typical trajectories
are also represented as sequences of black dots. From this picture the role of the curve Xs(s) is quite
evident: like in the one-dimensional model studied in section 3, the locus points X5(s) constitutes the
boundary that separates the basin of attraction of the stable positive equilibrium from the basin of
the trajectories leading to the extinction of the resource.

In the situation shown in fig. 4, the long run evolution of the system leads to an equilibrium
situation characterized by a small fraction of cooperators (only 15% of the fishermen population).
The amount of cooperators at the stable equilibrium can be increased by varying some parameters,
for example by increasing &, i.e. more heavy sanctions, or by decreasing a/b, i.e. lower prices. Both
these variations cause an upward movement of the curve 7}(X,s) = 7(X,s). For example, fig. 5
has been obtained by increasing the parameter £ from 0.01 to 0.05. The consequence is that the new
stable equilibrium is E = (1.91,0.62) i.e. 62% of fishermen are cooperators and, consequently, an
higher resource stock is present at the equilibrium. If, starting from this situation, the parameter
¢ is further increased, or a/b is decreased, the equilibrium E moves upwards along the curve Xj(s)
until it merges with the boundary equilibrium X;(1) through a transcritical (or stability exchange)
bifurcation. After this, the boundary equilibrium X (1) becomes the unique stable steady state, where
only cooperators exist. This means that prices are so low that it is not convenient to be defectors,
even if very few defectors are present, i.e. even if a defector appear (a mutation in the population
composition) it is eliminated by the evolutionary mechanism.

FIG. 5 APPROXIMATELY HERE

It is also interesting to see what happens when prices are very high, like in the situation shown
in fig. 6a, where the same parameters as in fig. 4 have been used, except the parameter a = 1.2. In
this case no positive boundary equilibria exist along the invariant boundary s = 0 with all defectors,
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and two positive equilibria, X2(1) < X1(1) exist along the edge s = 1. In this situation all the initial
conditions generate trajectories that approach the boundary s = 0 and then converge to the unique
stable equilibrium Ey = (0,0). This means that the prices are so high that defectors prevail, but their
harvesting is so high that the resource is exhausted. However, if we constrain the system to start
with s = 1 (all cooperators) and sufficient initial resource stock, i.e. X (0) > X3(1), then the system
evolves towards the equilibrium X;(1), according to the one dimensional dynamics shown in fig. 6b.
However, the equilibrium is not transversely stable. This implies that if just one defector appears, the
endogenous evolutive dynamics will create more and more defectors, and the system will irreversibly
evolve towards a situation with all defectors and extinction of the resource.

FIG. 6 APPROXIMATELY HERE

5 Conclusions

In this paper we have presented a model that constitutes an attempt to put together two opposite
approaches to commercial fishing: cooperation (i.e. harvesting decisions obtained through the max-
imization of the overall profit, that lead to a more conservative resource harvesting) and the non
cooperative, or defective, attitude (i.e. harvesting decisions obtained through the maximization of
the personal profit without any concern with social welfare). Oligopoly models based on one of these
opposite attitudes, that is all agents behaving as cooperators or all agents behaving as defectors, have
been recently proposed by Szidarovszky and Okuguchi, 2000 and 1998 respectively (see also Bischi
et al., 2002, for a comparison between the two cases). The model we propose describes a common
property resource exploitation with a population of agents switching between a non-cooperative and
a cooperative behavior regulated by an evolutive mechanism, known as replicator dynamics, based on
the evolutionary idea that the fraction of agents playing the strategy that earns higher payoffs will
increases in the next period (as proposed in Sethi and Somanathan, 1996).

Our work is mainly methodological, as its primary goal is the setup of the dynamic model: starting
from a static game where the harvested quantities are decided by the two groups by choosing the Nash
equilibrium, which depends on the available resource stock and the population share, we then introduce
the dynamic equations that govern the growth of the renewable resource and then we introduce the
replicator dynamics that governs the time evolution of the population share between cooperators and
defectors. This leads us to the study of a nonlinear two-dimensional discrete time dynamical system.
The results given in this paper constitute only a first step towards a full understanding of the dynamic
behaviors of the model, as we only gave a numerical and graphical characterization of the equilibria
and their stability.

We can summarize our results as follows. First, the presence of many cooperators always leads to
a relatively high level of the resource stock, hence wealth in the long run, whereas many defectors can
cause a severe depletion of the resource, influencing also the increment of the basin of attraction of
steady states with extinction of the resource. Second, from the point of view of a regulator, not only
the cooperative behavior can be supported increasing the level of sanctions, or lowering the prices,
but also it is possible to reach steady states characterized by the presence of only cooperators which
are transversely stable, i.e. even if a defector enters the market this behavior does not spread over
the population. Otherwise, low sanctions and/or high prices could lead to steady states with only
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defectors, and the potential depletion (even extinction) of the resource. In this case, even if the system
starts from an initial condition with only cooperators, the non-cooperative behavior will prevail if only
one agent decides to defect. Even if the qualitative analysis of the model can be carried out with the
methods discussed in this paper, a more complete analysis of the effects of the parameters on the kinds
of long-run evolution, as well as on the transverse stability of corner equilibria, is under development.
Further enhancements of this model could also relax the assumption of perfect foresight about the next
period fish stock replacing it by a weaker (and more realistic) assumption on expectations formations
(e.g. assuming that agents have adaptive expectations on the available resource stock).
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Figure captions

Fig. 1. (a) Typical graphs of harvesting quantities of defectors, =, and cooperators, 7, at the
Nash equilibrium, plotted as functions of the available resource stock X. (b) The corresponding total
harvesting H*(X, s).

Fig. 2. Qualitative graphical representation of the equation (16) with fixed values of the parameters
a and ( and three different functions H*. The curves denoted by a, b, ¢ can be obtained, respectively,
by decreasing values of s or increasing values of a or decreasing values of b.

Fig. 3. Qualitative representation of the function F', that governs the one-dimensional dynamics
of the resource stock X according to (15), in the three different cases represented in fig.2: (a) One
positive equilibrium (b) Two positive equilibria (c¢) No positive equilibria.

Fig. 4. (a) Numerical graphical representation of the equation (29) obtained with the set of
parameters n = 10, a =3, 6 =1,a=1.05,0=03, 7. =7 =1, ¥» = 0, £ = 0.01 The arrows give
a qualitative indication of the directions of one-step advancement of the discrete dynamical system
(26) (b) For the same parameters of as those used in (a) the basins of attraction are represented:
the white region represents the basin of the inner equilibrium FE, the grey region is the set of points
that generate trajectories leading to extinction (i.e. X < 0). Two trajectories, starting from initial
conditions (2,0.9) and (2,0.05), are also represented by sequences of black dots.

Fig. 5. The same as fig. 4, the only difference being the value of the parameter £ = 0.05.

Fig. 6. (a) The same as fig. 4a, the only difference being the value of the parameter a = 1.2. (b)
For the same parameters of as those used in (a) the function F(X) that governs the one dimensional
dynamics along the invariant edge s = 1 is represented, with a trajectory starting from X = 1 and
converging to the equilibrium X;(1).
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