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1 Introduction

The time evolution of an oligopoly system is often describedas ann-players
game which is played repeatedly, in the sense that at each discrete time pe-
riod t = 0, 1, ... , n producers choose their actions,x1(t), ... , xn(t),
by solving an optimization problem based on the knowledge ofthe actions
observed in the past. For example, the classical Cournot adjustment (see
Cournot, 1838, Teocharis, 1960, and many others) is obtained by assuming
that at each period any player chooses its own production strategy which is
a best response to the choices of the competitors in the previous period.

This is often expressed in the form of a discrete dynamical system defined
in a given strategy spaceS ⊆ Rn. Given an initial conditionx(0) ∈ S, the
sequence of actionsx (t), t ∈ N , is obtained inductively by the iteration of
a mapT : S → S defined by

x′ = T (x) (1)

where′ denotes the unit-time advancement operator, that is, if theright hand
side variables represent the actions at time periodt then the left hand side
represents the set of actions at time(t+ 1).

A dynamic process defined by the iterated map (1) may converge to a
given steady state (or equilibrium) or to a more complex attractor. Indeed, as
shown in a pioneering paper by Rand, 1978, quite complex dynamics, with
periodic and chaotic trajectories, may characterize the long run behavior of
duopoly games (see also Postom and Stewart, 1978). Examplesof econom-
ically interesting discrete time dynamic oligopoly games,showing complex
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dynamics, have been given by Dana and Montrucchio, 1986, Puu, 1991,
1997, 2000, Kopel, 1996, Agiza et al., 1999, Bischi et al., 2000a, 2001a,
Agliari et al., 2000b, just to quote a few. In these papers it is shown that dy-
namic Cournot oligopoly games may have time evolutions which never settle
to a steady state, and in the long run they exhibit bounded dynamics which
may be periodic, or quasi-periodic or chaotic. In such cases, a delimitation of
a bounded region of the strategy space where the system dynamics are ulti-
mately trapped, despite of the complexity of the long-run time patterns, may
be an useful information for practical applications. Moreover, as some para-
meters are varied, global bifurcations may cause sudden qualitative changes
in the properties of the attracting sets (see the contact bifurcations in Mira et
al., 1996 and the so called crises in Grebogi et al., 1983).

Another problem which often arises in the study of nonlinearmaps which
describe dynamic oligopoly games concerns the existence ofseveral attract-
ing sets, each with its own basin of attraction. In this case,a problem of equi-
librium selection arises (see Van Huyck et al., 1994, Bischiand Kopel, 2001)
because the dynamic process becomes path-dependent, i.e. which kind of
long run dynamics is chosen depends on the starting condition of the game.
This opens the question of the delimitation of the basins of attraction and
their changes as the parameters of the model vary.

These two problems lead to two different routes to complexity, one re-
lated to the complexity of the attracting sets which characterize the long run
time evolution of the dynamic process, the other one relatedto the com-
plexity of the boundaries which separate the basins when several coexisting
attractors are present. These two different kinds of complexity are not related
in general, in the sense that very complex attractors may have simple basin
boundaries, whereas boundaries which separate the basins of simple attrac-
tors, such as coexisting stable equilibria, may have very complex structures.

Both the questions outlined above require an analysis of theglobal dy-
namical properties of the dynamical system, that is, an analysis which is not
based on the linear approximation of the map (1). When the mapT is nonin-
vertible (i.e. “many-to-one”) the global dynamical properties can be usefully
characterized by the method of critical sets, a powerful tool introduced in the
seventies (see Gumovsky and Mira, 1980a,b and references therein, Mira et
al. 1996, Abraham et al. 1997) but only recently employed in the study of dy-
namic modelling of economic and financial systems (see e.g.Gardini, 1992,
Bischi et al., 1999b,c, 2000b, Agliari et al, 2000a, Puu 2000, Bischi and
Kopel 2001, Bischi et al., 2001b, Dieci et al., 2001, Chiarella et al 2001a,b).
Indeed, several dynamic models of oligopoly games are represented by the
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iteration of a noninvertible map , i.e. a point transformationT which maps
distinct points into the same point. Loosely speaking, thiscan be expressed
by saying that the map “folds and pleats” the state space. As we shall de-
scribe in the following, the folding action associated withthe application of
a noninvertible map, as well as the “unfolding” associated with the geomet-
ric action of the inverses, can be described by using the formalism of critical
sets. The repeated application of a noninvertible map repeatedly folds the
state space along the critical sets and their images, and often this allows one
to define a bounded region where asymptotic dynamics are trapped. Instead,
the repeated application of the inverses “repeatedly unfolds” the state space,
so that a neighborhood of an attractor may have preimages farfrom it. This
may give rise to complicated topological structures of the basins, which may
be formed by the union of non connected portions.

The paper is organized as follows. In section 2 we recall somedefinitions
and properties of noninvertible maps. In section 3 we describe the construc-
tion of absorbing regions and in section 4 we recall the main contact bifurca-
tions which lead to complex basins of attraction. In section5 we describe the
properties of a Cournot duopoly game and in section 6 we consider the spe-
cial case of with symmetric duopoly games (i.e. duopoly games with identi-
cal players) leading to chaos synchronization problems andriddled basins.

2 Noninvertible maps: Basic definitions and properties

In this section we give some basic definitions and properties, and a mini-
mal vocabulary, about the theory of noninvertible maps of the plane and the
method of critical sets. A mapT : S → S, S ⊆ Rn, like the one defined
in (1), transforms a pointx ∈ S into a unique pointx′ ∈ S. The pointx′ is
called the rank-1 image ofx, and a pointx such thatT (x) = x′ is a rank-
1 preimage ofx′. Starting from an initial conditionx0 ∈ S, the repeated
application (iteration) ofT uniquely defines a trajectory

τ(x0) =
{
x(t) = T t(x0), t = 0, 1, 2, ...

}
, (2)

whereT 0 is the identity map andT t = T (T t−1).
A setA ⊂ Rn is trapping if it is mapped into itself,T (A) ⊆ A, i.e.

if x ∈ A thenT (x) ∈ A. A trapping set is invariant if it is mapped onto
itself: T (A) = A, i.e. all the points ofA are images of points ofA. A
closed invariant setA is an attractor if it is asymptotically stable, i.e. if
a neighborhoodU of A exists such thatT (U) ⊆ U andT t(x) → A as
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t→ +∞ for eachx ∈ U .
The Basin of an attractorA is the set of all points that generate trajecto-

ries converging toA

B (A) =
{
x|T t(x)→ A ast→ +∞

}
(3)

Starting from the definition of stability, letU(A) be a neighborhood of an
attractorA whose points converge toA. Of courseU(A) ⊆ B (A), but
also the points of the phase space which are mapped insideU after a finite
number of iterations belong toB (A). Hence, the total basin ofA (or briefly
the basin ofA) is given by

B (A) =
∞⋃

n=0

T−n(U(A)) (4)

whereT−1(x) represents the set of the rank-1 preimages ofx (i.e. the points
mapped intox byT ), andT−n(x) represents the set of the rank-n preimages
of x (i.e. the points mapped intox aftern applications ofT ).

If x �= y impliesT (x) �= T (y) thenT is an invertible map, because
the inverse mapping that givesx = T−1 (x′) is uniquely defined; otherwise
T is a noninvertible map. So, noninvertible means “many-to-one”, that is,
distinct pointsx �= ymay have the same image,T (x) = T (y) = x′. Hence,
several rank-1 preimages may exist and the inverse relationx = T−1 (x′)
may be multivalued. Geometrically, the action of a noninvertible mapT
can be expressed by saying that it “folds and pleats” the plane, so that the
two distinct pointsp1 and p2 are mapped into the same pointp. This is
equivalently stated by saying that several inverses are defined inp, and these
inverses “unfold” the plane.

For a noninvertible map (1)Rn can be subdivided into regionsZk, k ≥ 0,
whose points havek distinct rank-1 preimages. Generally, as the pointx′

varies inRn, pairs of preimages appear or disappear as this point crosses the
boundaries separating different regions. Hence, such boundaries are charac-
terized by the presence of at least two coincident (merging)preimages. This
leads to the definition of the critical sets, one of the distinguishing features
of noninvertible maps (Gumovski and Mira, 1980, Mira et al.,1996):

Definition. The critical setCS of a continuous mapT is defined as the
locus of points having at least two coincidentrank − 1 preimages, located
on a setCS−1 called set of merging preimages.
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The critical setCS is then-dimensional generalization of the notion of
critical value (when it is a local minimum or maximum value) of a one-
dimensional map1, and of the notion of critical curveLC (from the French
“Ligne Critique”, following Gumowski and Mira, 1980), of a noninvertible
two-dimensional map. The setCS−1 is the generalization of the notion of
critical point (when it is a local extremum point) of a one-dimensional map,
and of the fold curveLC−1 of a two-dimensional noninvertible map. The
critical setCS is generally formed by(n− 1)-dimensional hypersurfaces of
Rn, and portions ofCS separate regionsZk of the phase space characterized
by a different number ofrank−1 preimages, for exampleZk andZk+2 (this
is the standard occurrence).

From the definition given above it is clear that the relationCS =
T (CS−1) holds, and the points ofCS−1 in which the map is continuously
differentiable are necessarily points where the Jacobian determinant van-
ishes, so that ifT is smooth we have :

CS−1 ⊆ J0 = {p ∈ Rn|detDT (p) = 0} (5)

In fact, in any neighborhood of a point ofCS−1 there are at least two distinct
points which are mapped byT in the same point. Accordingly, the map is
not locally invertible in points ofCS−1.

In order to explain the geometric meaning of the critical sets, let us con-
sider a portion ofCS, sayĈS, which separates two regionsZk andZk+2
of the phase space, and let̂CS−1 be the corresponding locus of merging

preimages, i.e.̂CS = T
(
ĈS−1

)
. This means that two inverses ofT exist,

sayT−11 andT−12 , which are defined in the regionZk+2 (and have respec-
tive ranges in the regionsR1 andR2 separated bŷCS−1). Both inverses
merge on̂CS−1 (i.e. they give merging preimages on̂CS−1) and no longer
exist in the regionZk. Now, letU ⊂ Rn be a ball which intersectŝCS−1
in D = U ∩ ĈS−1. ThenT (D) ⊆ ĈS, andT (U) is “folded” alongĈS
into the regionZk+2. In fact, considering the two portions ofU separated by
ĈS−1, sayU1 ∈ R1 andU2 ∈ R2, we have thatT (U1) ∩ T (U2) is a non-
empty set included in the regionZk+2, which is the region whose pointsp′

have rank-1 preimagesp1 = T
−1
1 (p′) ∈ U1 andp2 = T

−1
2 (p′) ∈ U2. This

means that two pointsp1 ∈ U1 andp2 ∈ U2, located at opposite sides with
respect tôCS−1, are mapped in the same side with respect tôCS, in the

1This terminology, and notation, originates from the notionof critical points as it is used
in the classical works of Julia and Fatou.
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regionZk+2. This is also expressed by saying that the ballU is “folded” by
T alongCS on the side with more preimages (examples in two dimensions
are given below, see e.g. Fig. 7). The same concept can be equivalently
expressed by stressing the “unfolding” action ofT−1, obtained by the appli-
cation of the two distinct inverses inZk+2 which merge alongCS, because if
we consider a ballV ⊂ Zk+2, then the set of itsrank−1 preimagesT−11 (V )
andT−12 (V ) is made up of two ballsT−11 (V ) ∈ R1 andT−12 (V ) ∈ R2, and
these balls are disjoint ifV ∩ ĈS = ∅.

Folding by T

Unfolding by T-1

c-1

(b)(a)

µ = 3.5
1.1

1.1

c = µ/4

Figure 1: (a) The logistic map (b) Folding and unfolding actions.

For one-dimensional continuous mapsx′ = f(x), x ∈ R, the critical set
is formed by the local maximum or minimum values. For example, the well
known logistic map (Fig.1a)

x′ = f(x) = µx(1− x) (6)

has a unique critical pointc = µ/4, which separates the real line into the two
subsets:Z0 = (c,+∞), where no inverses are defined, andZ2 = (−∞, c),
whose points have two rank-1 preimages, computed by the two inverses

x1 = f
−1
1 (x′) =

1

2
−
√
µ (µ− 4x′)
2µ

; x2 = f
−1
2 (x′) =

1

2
+

√
µ (µ− 4x′)
2µ

(7)
If x′ ∈ Z2, its two rank-1 preimages, computed according to (7), are lo-
cated symmetrically with respect to the pointc−1 = 1/2 = f−11 (µ/4) =
f−12 (µ/4), i.e. c−1 is the point where the two merging preimages ofc are
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located. Of course, since the map (6) is differentiable, atc−1 the first deriva-
tive vanishes. However, we remark that in general the condition of vanishing
derivative is not sufficient to definec−1, because such condition may also
be satisfied by points which are not local extrema (e.g. the inflection points
with horizontal tangent). Moreover, a critical point may even be a point
where the map is not differentiable, as it happens for continuous piecewise
differentiable maps where critical points are located at the kinks where local
maxima and minima are formed in the points at which two branches hav-
ing slopes of opposite sign join, such as the well known tent map or other
piecewise linear maps (see Fig.2a).

The importance of the critical points lies in the fact that they separate re-
gionsZk characterized by different number of preimages. We note however
that this property is not a characteristic only of the critical points, because
the boundary of a regionZk may also be a particular set, called prefocal set,
whose properties are associated with inverses not defined in the whole space,
as shown in Bischi et al. 1999a.

In order to explain the action of a critical point, let us consider again the
logistic map and let us notice that, asx moves from0 to 1, the correspond-
ing imagef(x) spans the interval[0, c] twice, the critical pointc being the
turning point. In other words, if we consider how the segmentγ = [0, 1] is
transformed by the mapf we can say that it is folded and pleated to obtain
the imageγ′ = [0, c]. This folding gives a geometric reason why two dis-
tinct points ofγ, sayx1 andx2, located symmetrically with respect to the
point c−1 = 1/2, are mapped into the same pointx′ ∈ γ′ due to the folding
action off (Fig.1b). This is a geometric interpretation of the fact that (6) is
a two-to-one map.

The same arguments can be explained by looking at the two inverse map-
pingsf−11 andf−12 defined in(−∞, µ/4] according to (7). We can con-
sider the range of the mapf formed by the superposition of two half-lines
(−∞, µ/4], joined at the critical pointc = µ/4 (Fig.1b), and on each of
these half-lines a different inverse is defined. With otherwords, instead of
saying that two distinct maps are defined on the same half-line we say that
the range is formed by two distinct half lines on each of whicha unique
inverse map is defined. This point of view gives a geometric visualization
of the definition of the critical pointc of rank-1 as the point in which two
distinct inverses merge. The action of the multivalued inverse, sayf−1 =
f−11 ∪ f−12 , causes an unfolding of the range by mappingc into c−1 and by
opening the two half-lines one on the right and one on the leftof c−1, so that
the whole real lineR is covered. Of course, a small segmentγ′ insideZ2
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and not includingc, is splitted by the two inverses into two disjoint segments,
located at opposite sides with respect toc−1.

Up to now we have considered continuous maps, but the properties of
critical points can easily be extended also to a discontinuous mapT . In this
case a point of discontinuity may be a critical point ofT . This happens when
the ranges of the map on the two sides of the discontinuity have an overlap-
ping zone, so that at least one of the two limiting values of the function
at the discontinuity separates regions having a different number of rank-1
preimages. The difference with respect to the continuous case is that now
the number of distinct rank-1 preimages through a critical point differs gen-
erally by one (instead of two), that is, a critical valuec (in general the critical
setCS) separates regionsZk andZk+1. An example is shown in Fig.2b,
with a one-dimensional map. The discontinuity point is a critical pointc−1,
and both the two limiting values of the function inc−1 are critical points,
sayca andcb, associated withc−1, as bothca andcb separate regionsZ1 and
Z2. Notice that now the critical points have no merging rank-1 preimages.
Consider for example the critical pointcb in Fig.2b. The two distinct rank-1
preimages ofcb are the critical pointc−1 and the so called “excess rank-1
preimage”ce−1,b. More on the properties and bifurcations of discontinuous
maps of the plane can be found in Mira et al., 1996. In the following sections
we shall only consider, for the sake of simplicity, continuous maps.

c-1
M c-1

m

cM

cm

(a) (b)

ce
-1,a

cb

ca

2Z

ce
-1,bc-1

Figure 2: (a) A piecewise linear noninvertible map. (b) A discontinuous
noninvertible map.

Another interpretation of the folding action of the unimodal map f is
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the following. Sincef(x) is increasing forx ∈ [0, 1/2) and decreasing
for x ∈ (1/2, 1], then its application to a segmentγ1 ⊂ [0, 1/2) is ori-
entation preserving, whereas its application to a segmentγ2 ⊂ (1/2, 1] is
orientation reversing. This suggests that an application of f to a segment
γ3 = [a, b] including the pointc−1 = 1/2 preserves the orientation of the
portion [a, c−1], i.e. f([a, c−1]) = [f(a), c], whereas it reverses the portion
[c−1, b], i.e. f([c−1, b]) = [f(b), c], so thatγ′3 = f (γ3) is folded, the folding
point being the critical point of rank-1c.

The extension of these concepts to the case of two-dimensional nonin-
vertible maps leads us to the notion of critical curves. We present here some
geometric characterizations of the action of the critical curves, because they
present some new features with respect to the one dimensional case, and
their properties can often be used as a useful visualizationfor the analo-
gous properties ofn-dimensional cases, withn > 2. Moreover, dynamic
duopoly games, represented by a continuous map of the plane into itself
T : (x1(t), x2(t))→ (x1(t+ 1), x2(t+ 1)) defined as

T :

{
x′1 = T1(x1, x2)
x′2 = T2(x1, x2) ,

(8)

constitute the simplest oligopolies, and are often studiedin the literature.
If we solve the system of the two equations (8) with respect tothe un-

knownsx1 and x2, then, for a given(x′1, x
′
2), we may have several so-

lutions, representing rank-1 preimages (or backward iterates) of(x′1, x
′
2),

say(x1, x2) = T−1 (x′1, x
′
2), whereT−1 is in general a multivalued rela-

tion. In this case we say thatT is noninvertible, and the critical curves
LC are the boundaries which separate regions of the plane characterized
by a different number of rank-1 preimages. AlongLC at least two in-
verses give merging preimages, located on the set denoted byLC−1. For
a continuous and (at least piecewise) differentiable noninvertible map of the
plane, the study of the sign of the Jacobian determinant can help one to
find the critical curves, because the setLC−1 is included in the set where
detDT (x1, x2) changes sign, sinceT is locally an orientation preserving
map near points(x1, x2) such thatdetDT (x1, x2) > 0 and orientation re-
versing ifdetDT (x1, x2) < 0, andLC = T (LC−1).

In order to understand this point, let us recall that when a linear transfor-
mationx′ = Ax of the plane onto itself

G :

{
x′1 = a11x1 + a12x2
x′2 = a21x1 + a22x2

(9)
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is applied to a plane figureF , then the area of the transformed figureF
′

=
G(F ) grows, or shrinks, by a factorρ = |detA| with respect to the area of
F, beingA the Jacobian matrixDG, and ifdetA > 0 then the orientation of
the figure on which (9) is applied is preserved, whereas ifdetA < 0 then the
orientation is reversed. This property of a linear two-dimensional map can
be applied to the linear approximation of (8) in a neighborhood of a point
p = (x1, x2), given by an affine map, the Jacobian matrixDT evaluated at
the pointp:

DT (p) =

[
∂T1/∂x1 ∂T1/∂x2
∂T2/∂x1 ∂T2/∂x2

]
(10)

In fact, a small area around a pointp = (x1, x2) is reduced (or expanded)
by a factorρ (x1, x2) = |detDT (x1, x2)|, and if in a neighborhood ofp
the Jacobian determinant is positive (negative), then the map (8) is locally
orientation preserving (reversing). This gives an intuitive visualization of the
relation between the locus of points where the Jacobian determinant changes
sign and the folding properties of continuous two-dimensional noninvertible
maps (see Fig.3).

1−LC

LC

Figure 3: Folding properties of a continuous two-dimensional map.

This implies that if the map (8) is continuously differentiable in the
whole plane, then

LC−1 ⊆ J0 =
{
(x1, x2) ∈ R2| detDT (x1, x2) = 0

}
(11)

Let us remark, however, that condition of vanishing Jacobian is necessary
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for differentiable maps, but not sufficient to detect a critical point ofLC−1
as defined above (i.e. the inclusion in (11) may be strict).

In order to give a geometrical interpretation of the action of the multi-
valued inverse relationT−1, it is useful to consider a regionZk as the su-
perposition ofk sheets, each one associated with a different inverse. Such a
representation is known as Riemann foliation of the plane (see e.g. Mira et
al., 1996). Different sheets are connected by folds joiningtwo sheets, and
the critical curveLC belongs to the projections of such folds on the phase
plane (note however that the vice-versa is not necessarily true, due to the
properties associated with prefocal sets, see Bischi et al., 1999a).

We illustrate these concepts by some examples. Let us consider the
quadratic map (see Mira et al., 1996, Abraham et al., 1997) defined by

T :

{
x′ = ax+ y
y′ = b+ x2

(12)

This is a noninvertible map. In fact, givenx′ andy′, if we try to solve the
algebraic system with respect to the unknownsx andy we get two solutions,
given by

T−11 :

{
x = −√y′ − b
y = x′ + a

√
y′ − b ; T−12 :

{
x =

√
y′ − b

y = x′ − a√y′ − b (13)

if y′ ≥ b, and no solutions ify′ < b. In other words, (12) is aZ0 − Z2
noninvertible map, whereZ0 (region whose points have no preimages) is
the half planeZ0 = {(x, y) |y < b} andZ2 (region whose points have two
distinct rank-1 preimages) is the half planeZ2 = {(x, y) |y > b}. The line
y = b, which separates these two regions, is the locus of points having two
merging rank-1 preimages, located on the linex = 0. Hence the liney = b
is LC and the linex = 0 is LC−1 (see Fig.4.). Being (12) a continuously
differentiable map, the points ofLC−1 necessarily belong to the set of points
at which the Jacobian determinant vanishes, i.e.LC−1 ⊆ J0, where

J0 = {(x, y) | detDT (x, y) = 0}
and, since for the map (12) we have

det (DT (x, y)) = det

([
a 1
2x 0

])
= −2x

in this caseLC−1 coincides withJ0 (they axisx = 0). The critical curve
LC is the image byT of LC−1

LC = T (LC−1) = T ({x = 0}) = {(x, y) |y = b}
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We can consider the regionZ2 of the two-dimensional noninvertible map
(12) as formed by the superposition of two sheets, and on eachof these sheets
a different inverse map is defined. The two sheets join alongthe critical
line LC, where the two inverses merge (see Fig.4). This is the Riemann
foliation for theZ0−Z2 map (12). The action of the inverses,T−1 = T−11 ∪
T−12 , causes an unfolding of the sheets by opening these sheets atopposite
sides with respect to the lineLC−1. That is, given a point(x′, y′) ∈ Z2 the
preimagesT−11 (x′, y′) andT−12 (x′, y′) are located on the right and on the
left of LC−1 respectively.

Z0

Z2

R1 R2
LC-1

LC 

SH1

SH2

1
1
−T

1
2
−T

y=b
x=0

Figure 4: Riemann foliation associated with the mapT in (12).

We propose another example, given by the mapT : (x, y) → (x′, y′)
defined by

T :

{
x′ = µ1y(1− y) + ε1(y − x)
y′ = µ2x(1− x) + ε2(x− y)

(14)

This is aZ0−Z2−Z4 noninvertible map. In fact, givenx′ andy′, if we solve
the fourth degree algebraic system with respect to the unknownsx andy we
may get four, two or no real solutions. The inverse maps are not easy to write
by an elementary analytic form, since they are obtained by solving a fourth
degree algebraic system. Nevertheless, it is easy to draw critical curves in
order to obtain the boundaries separating the regionsZk characterized by
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different numbers of inverses. In fact, from the Jacobian matrix

DT (x, y) =

[
−ε1 µ1(1− 2y) + ε1

µ2(1− 2x) + ε2 −ε2

]

the equation ofLC−1, defined bydetDT (x, y) = 0, is given by

4µ1µ2xy − 2µ2 (µ1 + ε1)x− 2µ1 (µ2 + ε2) y+ µ1µ2 + µ1ε2 + µ2ε1 = 0.

HenceLC−1 is formed by the two branches, sayLC(a)−1 andLC(b)−1, of an
equilateral hyperbola (see Fig.5a). Also the critical set of rank-1 LC =

Z0

(c)

Z4

Z2LC a
−1
( )

LC b
−1
( ) LC b( )

LC a( )

(a)

LC a
−1
( )

LC b
−1
( )

(b)

Z4

Z2

Z0

LC b( )

LC a( )

Figure 5: (a)LC−1. (b) LC and the ZonesZ2 − Z4 − Z0. (c) Riemann
foliation for the map (14).

T (LC−1), obtained by taking the image byT of LC−1, is formed by two

disjoint branches:LC = LC(a) ∪ LC(b), whereLC(a) = T (LC
(a)
−1 ) and

LC(b) = T (LC
(b)
−1) (see Fig.5b). The branchLC(a) separates the regionsZ0

andZ2, the branchLC(b) separates the regionsZ2 andZ4. The Riemann
foliation associated with the map (14) is qualitatively sket-ched in Fig.5c.
Notice that the cusp point ofLC(b) is characterized by three merging preim-
ages at the junction of two folds.

An important property of the critical curves is that when an arc γ crosses
LC−1 then its imageT (γ) is folded alongLC, so that it is entirely included
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in the region characterized by an higher number of preimages. A qualitative
picture is shown in Fig.6. The effect on a plane figure is shown in Fig.7,
where the map (12) is applied to a circle crossing throughLC−1.

a0

b0

c0

α

β

γ
γ

β

α

a1

b1

c1T

1LC−

LC

Zk

Zk+2

Figure 6: Folding of arcs crossing throughLC−1.

F
    

T

LC-1

LC

( )FTF' =

Figure 7: Folding of a circle crossing throughLC−1.
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3 Absorbing regions, chaotic attractors and their delimitation.

Portions of the critical setCS and its imagesCSk = T k(CS) can be used
to obtain the boundaries of trapping regions where the asymptotic dynam-
ics of the iterated points of a noninvertible map are confined. This can be
easily explained for a one-dimensional noninvertible map,for example the
quadratic map (6). In fact, it is quite evident that if we iterate the logistic
map for2 < µ < 4 starting from an initial condition inside the interval
[c1, c], with c1 = f(c), no images can be obtained out of this interval (see
Fig.8), i.e. the interval formed by the critical pointc and its rank-1 imagec1
is trapping. Moreover, any trajectory generated from an initial condition in

c

c1

0
0 1

1

Figure 8: Absorbing interval

(0, 1), enters[c1, c] after a finite number of iterations. Following the termi-
nology introduced in Mira et al., 1996, the interval[c1, c] is called absorbing.
In general, for ann-dimensional map, an absorbing regionA (intervals in R,
areas in R2, volumes in R3, ...) is defined as a bounded set whose boundary
is given by portions of the critical setCS and its images of increasing or-
derCSk = T k (CS), such that a neighborhoodU ⊃ A exists whose point
enterA after a finite number of iterations and then never escape it,since
T (A) ⊆ A, i.e. A is trapping (see e.g. Mira et al., 1996 for more details).
Loosely speaking, we can say that the iterated application of a noninvertible
map, folding and folding again the space, defines trapping regions bounded
by critical sets of increasing order.

Sometimes, smaller absorbing regions are nested inside a bigger one.



16 Anna Agliari, Gian Italo Bischi and Laura Gardini

This can be illustrated, again, for the logistic map (6), as shown in Fig.9a,
where inside the absorbing interval[c1, c] a trapping subset is obtained by
higher rank images of the critical point, given byA = [c1, c3] ∪ [c2, c]. In
Fig.9b it is shown that, for the same parameter valueµ = 3.61 as in Fig.9a,
the iteration of the logistic map gives points which never escapeA.

c1=f(c)

c2=f(c1)

c

c3=f(c2)

(b)

c1

c3

c2

c

(a)

0
0 1

1
µ = 3.61

Figure 9: Absorbing intervals nested inside[c1, c] .

An absorbing regionA, for which the propertyT (A) ⊆ A holds, may be
invariant, i.e. exactly mapped into itself,T (A) = A, or strictly mapped into
itself, T (A) ⊂ A. Moreover, several invariant absorbing regions may exist,
one embedded into the other. In these cases the concept of minimal invariant
absorbing region is often useful, where minimal means the smallest one, in
the sense that no other smaller absorbing regions are nestedinside it.

Inside an absorbing region one or more attractors may exist.However,
if a chaotic attractor exists which fills up the absorbing region then it is also
called chaotic region, and the boundary of the chaotic attractor is formed
by portions of critical sets. This is the situation shown in Fig.9, where the
absorbing intervalA = [c1, c3]∪ [c2, c] is invariant and filled up by a chaotic
trajectory, as shown in Fig.9b. To better illustrate this point, we also give
a two-dimensional example, obtained by using the map (12). In Fig.10a a
chaotic trajectory is shown, and in Fig.10b an absorbing area around it is
obtained by the union of a segment ofLC and three iteratesLCi = T i(LC),
i = 1, 2, 3.

Indeed, following Mira et al., 1996, a practical procedure can be outlined
in order to obtain the boundary of an absorbing area (although it is difficult
to give a general method). Starting from a portion ofLC−1, approximately
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taken in the region occupied by the area of interest, its images byT of in-
creasing rank are computed until a closed region is obtained. When such a
region is mapped into itself, then it is an absorbing areaA. The length of
the initial segment is to be taken, in general, by a trial and error method,
although several suggestions are given in the books referenced above. Once
an absorbing areaA is found, in order to see if it is invariant or not the same
procedure must be repeated by taking only the portion

γ = A∩ LC−1 (15)

as the starting segment. Then one of the following two cases occurs:

(case I) the union ofm iterates ofγ (for a suitablem) covers the whole
boundary ofA; in which caseA is an invariant absorbing area, and

∂A ⊂
m⋃

k=1

T k(γ) (16)

(case II) no naturalm exists such that
⋃m
i=1 T

i(γ) covers the whole
boundary ofA; in which caseA is not invariant but strictly mapped into
itself. An invariant absorbing area is obtained by∩n>0Tn(A) (and may be
obtained by a finite number of images ofA).

The application of this procedure to the problem of the delimitation of
the chaotic area of Fig.10 by portions of critical curves suggests us, on the
basis of Fig.10b, to take a smaller segmentγ and to take an higher number
of iterates in order to obtain also the inner boundary. The result is shown
in Fig.11. By five iterates we get the outer boundary, shown inFig.11a, by
more iterates also the inner boundary of the chaotic area is get, as shown
in Fig.11b. As it can be clearly seen, and as clearly expressed by the strict
inclusion in (16), the union of the images also include several arcs internal
to the invariant areaA. Indeed, the images of the critical arcs which are
mapped inside the area play a particular role, because thesecurves represent
the ”foldings” of the plane under forward iterations of the map, and this is the
reason why these inner curves often denote the portions of the region which
are more frequently visited by a generic trajectory inside it (compare Fig.10a
and Fig.11b); many examples are given in the literature on noninvertible
maps, see e.g. Mira et al., 1996. The points close to a critical arc LCi,
i ≥ 0, are more frequently visited because there are several distinct parts
of the invariant area which are mapped in the same region (close toLCi) in
i+ 1 iterations.
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(b)

LC2

LC1

LC

LC3

LC-1

(a)

Figure 10: (a) Chaotic trajectory for a two-dimensional map. (b) The outer
boundary of the chaotic area obtained by the segments ofLCk, k = 1, 2, 3.

LC1

LC5

LC

LC4

(a)

LC3
LC-1

LC2

LC6

(b)

Figure 11: (a) Five iterates of LC give the outer boundary of the chaotic area
shown in of Fig.10. (b) More iterates also give the inner boundary.
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4. Contact bifurcations and the creation of complex basins

From (4) it is clear that the properties of the inverses are important in order
to understand the structure of the basins and the main bifurcations which
change their qualitative properties. In the case of noninvertible maps, the
multiplicity of preimages may lead to basins with complex structures, such
as multiply connected or non connected sets, sometimes formed by infinitely
many non connected portions (see Mira et al., 1994, Mira and Rauzy, 1995,
Mira et al., 1996, ch.5, Abraham et al., 1997,ch.5). In the context of nonin-
vertible maps it is useful to define the immediate basinB0(A), of an attract-
ing setA, as the widest connected component of the basin which containsA.
Then the total basin can be expressed as

B (A) =
∞⋃

n=0

T−n(B0(A))

whereT−n(x) represents the set of all the rank-n preimages ofx, i.e. the set
of points which are mapped inx aftern iterations of the mapT . The back-
ward iteration of a noninvertible map repeatedly unfolds the phase space,
and this implies that the basins may be non-connected, i.e. formed by sev-
eral disjoint portions.

Also in this case, we first illustrate this property by usinga one-dimen-
sional map2 In Fig.12 the graph of aZ1 − Z3 − Z1 noninvertible map is
shown, where two stable fixed points exist, denoted byO and p, whose
basinsB (O) andB (p) are represented along the diagonal by light and dark
grey thick lines respectively. In Fig.12a the two basins areconnected sets,
bounded by the unstable fixed pointsq andr. As a parameter is varied, the
critical point c (the local minimum), which separates the lower regionZ1
from the regionZ3, moves downwards, until it has a contact with the basin
boundaryq, and a crossing occurs if the parameter is further changed. Be-
fore the contactc > q (see the enlargement in Fig.12b), whereas after the
contact we havec < q. This implies that a portion ofB (O) entersZ3,
i.e. the segment[c, q) = H0, thus causing the appearance of non connected
portions ofB (O) nested insideB (p). Indeed, infinitely many non con-
nected portions (or holes) are suddenly created at the contact bifurcation,
given by the preimages of any rank of the portionH0 of B (O) included
into Z3, seeH−i = T−i(H0), i = 1, 2, ..., in Fig.12c. Before the bifurca-
tion B (p) = (q, r) (Fig.12a), after the bifurcation the basin ofp is given

2The example is taken from an evolutionary game proposed in Bischi et al., 2001b.
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by the immediate basinB0 (p) = (q, q−1,1) (Fig.12c), and all its preimages,
B (p) =

⋃∞
n=0 T

−n(B0), given by infinitely many segments that have the
unstable fixed pointr as limit point. So, the contact between the critical
pointc and the basin boundaryq marks the transition from simple connected
to non connected basins.

H-2

H-3

0.3
0.3

q p
c

0H

1,1 −q

2,1 −q

(c)

H-1

1x1

1

0

0

1.1

1.1

x1

q p

Z1

Z3

Z1

O

r

(a)
0.3

0.3
0.6

0.6

x1

q

p

c

(b)

Figure 12: (a) Graph of aZ1 − Z3 − Z1 noninvertible map and basins of
attraction ofp andO, before the contact between the critical pointc and
the basin boundaryq. (b) Enlargement. (c) The basins ofp andO after the
contact.

Similar global bifurcations, due to contacts between critical sets and
basin boundaries, also occur in higher dimensional maps. Ingeneral, the
origin of complex topological structures of the basins, like those formed by
non connected sets, can be easily explained on the basis of the geometrical
properties of a noninvertible map. In fact, suppose thatp is a fixed point of
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T , i.e. T (p) = p. Hence one of the preimages ofp is p itself, but if T−1 is
multivalued inp, i.e. p ∈ Zk, with k ≥ 2, then other preimages of the fixed
point p exist. If the fixed point is stable, andB0(p) is its immediate basin,
then the total basin ofp must also include all the rank-1 preimages of the
points ofB0(p), which may be also far (i.e. disjoint) fromB0(p). Whenever
such disjoint preimages belong to regions where many inverses exist, higher
rank preimages ofB0(p)must be included in the basin ofp and so on3. Such
behavior of the multivalued inverse ofT may be better visualized by using
the concept of Riemann foliation (see Fig.13).

LC

LC-1

SH2

SH1

R2 R1

Z2 Z0

1
1

−T

1
2
−T

UU-1,2

U-1,1

x’

y’
y

x

Figure 13: Riemann foliation which visualizes the basic mechanism for the
creation of disconnected basins

Also in higher dimensional cases, the global bifurcations which give rise
to complex topological structures of the basins, like thoseformed by non
connected sets, can be explained in terms of contacts of basins boundaries
and critical sets. In fact, if a parameter variation causes acrossing between
a basin boundary and a critical set which separates different regionsZk so
that a portion of a basin enters a region where an higher number of inverses
is defined, then new components of the basin may suddenly appear at the
contact. However, for maps of dimension greater than1, such kinds of bifur-
cations can be very rarely studied by analytical methods, since the analytical
equations of such singularities are not known in general. Hence these studies
are mainly performed by geometric and numerical methods.

3A similar reasoning applies to any kind of attractor, such asa periodic orbit (a cycle) or
a chaotic set.
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4.1 Basin bifurcations in a duopoly game with two stable Nashequilibria

We consider a Cournot duopoly game proposed in Kopel, 1996, for
which the structure of the basins and their qualitative changes are analyzed
in Bischi et al., 1999b. This game describes a market where, at each time
periodt, two firms decide their productions for the next period on the ba-
sis of best reply functions expressed asqi(t + 1) = ri(qj (t)), i, j = 1, 2,
i �= j, where the reaction functionsri assume the form of logistic maps
ri(qj) = µiqj (1− qj) (in Kopel, 1996, these functions are derived as Best
Responses). The dynamic duopoly game is obtained by assuming that com-
petitors do not immediately adjust to the optimal quantity they computed on
the basis of the profit maximization problem, but that they exhibit some kind
of inertia: they only adjust their previous production quantities in the direc-
tion of the Best Response. The time evolution of the game is obtained by the
iteration of the two-dimensional mapT : (q1, q2)→ (q′1, q

′
2) defined by

T :

{
q′1 = (1− λ1) q1 + λ1µ1q2 (1− q2)
q′2 = (1− λ2) q2 + λ2µ2q1 (1− q1)

. (17)

where the parametersλi ∈ [0, 1], i = 1, 2, represent the speeds of ad-
justment. The fixed points of map (17), located at the intersections of the
two reaction curves, coincide with the Nash equilibria of the duopoly game
(see Kopel, 1996). As shown in Bischi et al., 1999b, under theassumption
µ1 = µ2 = µ , the fixed points of (17) can be expressed by simple analytical
expressions, and a range of parametersµ, λ1, λ2 exist such that two of them
are both stable. For example, for the set of parameters used in Fig.14a, given
by µ = 3.5, λ1 = 0.6, λ2 = 0.8, four equilibria exist, indicated byO, S,
E1 andE2 in the figure:O andS are saddle points, whereasE1 andE2 are
both stable, each with its own basin of attraction, sayB (E1) andB (E2),
represented by white and light grey respectively (the dark grey region rep-
resents the basin of infinity, i.e. the set of initial conditions which generate
unbounded trajectories).

In the presence of multiple stable Nash equilibria the problem of equilib-
rium selection arises, and this naturally leads to the question of the delimita-
tion of the basins of attraction. As argued in section 2, the properties of the
inverses of the map become important in order to understand the structure
of the basins and their qualitative changes. Indeed, the map(17) is a non-
invertible map, as it can be easily deduced from the fact thatgiven a point
q′ = (q′1, q

′
2) ∈ R2, its rank-1 preimagesT−1 (q′), computed by solving
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the fourth degree algebraic system (17) with respect to the quantitiesq1 and
q2, may be up to four. It is easy to realize that the map (17) is a noninvert-
ible map ofZ0 − Z2 − Z4 type, its Riemann foliation is similar to the one
associated with the map (14) analyzed in section 2, see Fig. 5.

Being the mapT continuously differentiable,LC−1 coincides with the
set of points on whichdetDT = 0, which gives

(
q1 −

1

2

)(
q2 −

1

2

)
=
(1− λ1) (1− λ2)
4λ1λ2µ1µ2

(18)

This equation represents an equilateral hyperbola, whose two branches are
denoted byLC(a)−1 andLC(b)−1 in Fig.14. It follows that alsoLC = T (LC−1)

is the union of two branches, sayLC(a) = T (LC(a)−1 ) andLC(b) = T (LC(b)−1).
The branchLC(b) separates the regionZ0, whose points have no preimages,
from the regionZ2, the other branchLC(a) separates the regionZ2 fromZ4,
whose points have four distinct preimages (see Fig.14).
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Figure 14: (a) Simply connected basin ofE1. (b) Disconnected basin ofE1
due to a contact bifurcation.

In order to understand how complex basin structures are obtained, we
start from a situation in which the basins are connected sets, like the one
shown in Fig 14a. In this situation, the smaller basinB (E1) is a simply con-
nected set, and the boundary which separates the basinsB (E1) andB (E2)
is given by the whole stable setW s(S) of the saddleS. In Fig.14a,W s(S)
is entirely included inside the regionsZ2 andZ0. However, the fact that a
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portion ofW s(S) is close toLC(b) suggests the occurrence of a global bi-
furcation. If the parameters are changed, so that a contact betweenW s(S)
andLC occurs, this contact will mark a bifurcation which causes qualitative
changes in the structure of the basins. If a portion ofB (E1) entersZ4 after
a contact withLC(b), new rank-1 preimages of that portion will appear near
LC

(b)
−1, and such preimages must belong toB (E1). Indeed, this is the situ-

ation shown in Fig.14b, obtained after a small change ofλ1. The portion of
B (E1) insideZ4 is denoted byH0. It has two rank-1 preimages, denoted by

H
(1)
−1 andH(2)

−1 , which are located at opposite sides with respect toLC
(b)
−1 and

merge on it (in fact, by definition, the rank-1 preimages of the arc ofLC(b)

which boundH0 must merge alongLC(b)−1). The setH−1 = H
(1)
−1∪H

(2)
−1 con-

stitutes a non connected portion ofB (E1). Moreover, sinceH−1 belongs to

the regionZ4, it has four rank-1 preimages, denoted byH(j)
−2 , j = 1, ..., 4

in Fig.14b, which constitute other four “islands” ofB (E1) , or “holes” of
B (E2). Points of these “islands” are mapped intoH0 in two iterations
of the mapT . Indeed, infinitely many higher rank preimages ofH0 exist,
thus giving infinitely many smaller and smaller disjoint “islands” ofB (E1).
Hence, at the contact betweenW s (S) = ∂B (E1) andLC the basinB (E1)
is transformed from a simply connected into a non connected set, constituted
by infinitely many disjoint components. The larger connected component of
B (E1) which containsE1 is the immediate basinB0 (E1), and the whole
basin is given by the union of the infinitely many preimages of B0 (E1):

B (E1) =
⋃
n≥0 T

−n (B0 (E1)) = B0 (E1) ∪
[⋃

n≥0 T
−n (H0)

]
. So, also

in this two-dimensional example, the global bifurcation which causes a trans-
formation of a basin from connected set into the union of infinitely many non
connected portions, is caused by a contact between a critical set and a basin
boundary. However, since the equations of the curves involved in the contact
cannot be analytically expressed in terms of elementary functions, the occur-
rence of contact bifurcations can only be revealed numerically. This happens
frequently in nonlinear dynamical systems of dimension greater than one,
where the study of global bifurcations is generally obtained through an inter-
play between theoretical and numerical methods, and the occurrence of these
bifurcations is shown by computer-assisted proofs, based on the knowledge
of the properties of the critical curves and their graphicalrepresentation (see
e.g. Mira et al., 1996, for many examples). This “modus operandi” is typical
in the study of the global bifurcations of nonlinear two-dimensional maps.

This implies that an extension of such methods to the study ofhigher di-
mensional noninvertible maps is not easy in general. Indeed, some nontriv-
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ial practical problems arise, related to the obvious reasonthat the computer
screen is two-dimensional, so the visualization of objectsin a phase spaces
of dimension greater than two, and the detection of contactsamong these
objects as their shapes change, may become a very difficult task. In other
words, the extension to higher-dimensional systems of the results on contact
bifurcations, which gave so many interesting and promisingresults in the
study of two-dimensional noninvertible maps, may become a very hard and
challenging task, due to the difficulties met in the computer-assisted graph-
ical visualization. For example, in Agiza et al., 1999, a repeated Cournot
game is considered, whose time evolution is obtained by the iteration of the
three-dimensional mapT : (q1, q2, q3)→ (q′1, q

′
2, q

′
3)

T :




q′1 = (1− λ1) q1 + λ1µ1 [q2 (1− q2) + q3 (1− q3)]
q′2 = (1− λ2) q2 + λ2µ2 [q3 (1− q3) + q1 (1− q1)]
q′3 = (1− λ3) q3 + λ3µ3 [q1 (1− q1) + q2 (1− q2)]

(19)

which can be seen as the extension of the game illustrated above to the
case of three players. In Agiza et al., 1999, two-dimensional sections are
employed in order to visualize the basins of coexisting attractors, but this
method is not useful to detect the occurrence of qualitativechanges in the
structure of the basins and the contact bifurcations which cause such changes.
The same game has been re-examined in Bischi et al., 2001c, where en-
hanced graphical methods have been used to modulate the opacity of the
outer objects in order “to see through”, in order to visualize objects which are
nested inside other objects . Moreover, the critical sets, which are now two-
dimensional surfaces embedded in a three-dimensional phase space, have
been represented like semi-transparent veils, so that their contacts with por-
tions of basin boundaries, also given by two-dimensional surfaces, can be
detected. Some example of the kind of graphical results obtained are shown
in Fig.15, which can be considered just as snapshots of animated sequences
which allow interactive rotation of the three dimensional figures. In Fig.15
the basins of four coexisting stable Nash equilibria are represented by dif-
ferent colors, and the region outside is the outer boundary constitutes the
basin of infinity. The sequence of figures shown in Fig.15 clearly show that
a contact bifurcation occurs at which one of the basins is transformed from
connected into a non connected set. The occurrence of this global bifurca-
tions is caused by a contact between a basin boundary and a critical surface,
after which a portion of the immediate basin enters a zone characterized by
a higher number of preimages, as explained above. In the figures the critical
surfaces are not shown, because a proper visualization requires the usage of
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several grades of colors. The animated sequences which emphasize the con-
tacts can the seen in the web page associated with the paper byBischi et al.,
2001c4.

Figure 15: Example of contact bifurcation of basins of attraction in a three-
dimensional map.

5 An important class of Cournot duopoly games

In this section we consider a repeated Cournot duopoly modelwith naive
expectations, i.e. a classical discrete-time Cournot tâtonnement modeled by
the iteration of the two dimensional map

Φ :

{
x′ = r1 (y)
y′ = r2 (x)

(20)

wherer1 andr2 are the reaction functions (or best reply functions) defined
in X andY respectively (so thatΦ is defined in the rectangleX × Y ).
In a famous paper by Rand, 1978, it is proved that quite complex dynam-
ics, with periodic and chaotic trajectories, can emerge from the iteration of
(20). Other peculiar properties of this kind of Cournot duopoly games are
given in Dana and Montrucchio, 1986, where it is shown that the proper-
ties of the two-dimensional map (20) can be deduced from the properties
of one-dimensional maps obtained by the composition of the reaction func-
tions, while peculiar properties of the bifurcations associated with the two-
dimensional maps (20) are given in Lupini et al., 1997. Starting from these
papers, Bischi et al., 2000a, show that, in general, maps of the form (20) are
characterized by multistability, i.e. coexistence of manydistinct attractors,

4See the URLhttp://bandviz.cg.tuwien.ac.at/basinviz/disjoint/
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that may be stable periodic cycles or cyclic chaotic attractors, and study the
structure of their basins of attraction.

We now recall some general properties of the dynamic duopolygames
(20), and we stress the peculiar structure of the critical sets and the basins.

5.1 General properties of mapsΦ: (x, y)→ (r1 (y) , r2 (x))

A trajectory of the mapΦ represents the Cournot tâtonnement of
a duopoly game in which the producers simultaneously updatetheir pro-
ductions at each discrete time period. Moreover, as alreadynoticed in Dana
and Montrucchio, 1986, among the possible sequences generated by the it-
eration of (20) there are also the so called Markov-Perfect-Equilibria (MPE
henceforth) processes, where at each discrete time only oneplayer moves,
that is, the two players move alternatively, each choosing the best reply to
the previous action of the other player. This occurs if the phase point(xt, yt)
belongs alternatively to the graphs of the reaction curvesy = r2(x) and
x = r1(y). This condition is satisfied if the initial condition (i.c.henceforth)
(x0, y0) belongs to a reaction curve, i.e.y0 = r2(x0) (player 1 moves first)
or x0 = r1(y0) (player two moves first). This follows from the fact that the
set

R12 = R1 ∪R2 (21)

with R1 = {(r1(y), y) |y ∈ Y }and R2 = {(x, r2(x)) |x ∈ X}, that rep-
resents the union of the graphs of the two reaction functions, is a trapping
set forΦ, i.e. Φ(R12) ⊆ R12. In fact, it is easy to realize that the image
of a point belonging to a reaction curve belongs to the other reaction curve,
so any i.c. (x0, y0)∈ R12 generates a trajectory entirely belonging toR12,
Φt(x0, y0) ∈ R12 ∀t ≥ 0. We shall call such a trajectory an MPE trajectory.

A particular MPE trajectory is a fixed point of the mapΦ. In fact,
(x∗, y∗) is a fixed point ofΦ iff x∗ = r1 (y

∗) and y∗ = r2 (x
∗), i.e. a

point of intersection of the graphsR1 andR2 of the two reaction functions,

(x∗, y∗) ∈ R12 . (22)

While an i.c. (x0, y0)∈ R12 generates an MPE trajectory, a “generic” i.c.
(x0, y0)/∈ R12 shall give rise to a Cournot tâtonnement, with (xt, yt) not
belonging, in general, toR12. Note, however, that a trajectory starting with
an i.c. (x0, y0)/∈ R12 may enter the trapping setR12 after a finite number of
steps, since a point of the setR12 can have preimages out ofR12.
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Let us turn now to the generic dynamics. We first recall some properties
of the map (20), that will be used in the following. Let

F (x) = r1 ◦ r2 (x) , x ∈ X, and G(y) = r2 ◦ r1 (y) , y ∈ Y (23)

where we assume that the setsX andY are such that the mapsF andG
are well defined. Then the following three properties hold (see Dana and
Montrucchio, 1986)

Property 1.Φ2k (x, y) =
(
F k(x),Gk(y)

)
for each integer k≥ 1.

This property easily follows from the fact that the square map Φ2 (the sec-
ond iterate ofΦ) is a decoupled map, sinceΦ2(x, y) = Φ(r1(y), r2(x)) =
(r1(r2(x)), r2(r1(y))) = (F (x), G(y)).

Property 2. For eachn ≥ 1 the two one-dimensional mapsF andG
satisfy:
r1 ◦Gn(y) = r1 ◦ r2 ◦ r1 ◦ ... ◦ r2 ◦ r1(y) = Fn ◦ r1(y)
r2 ◦ Fn (x) = r2 ◦ r1 ◦ r2 ◦ ... ◦ r1 ◦ r2 (x) = Gn ◦ r2 (x)

From Property 2 we deduce that the cycles of the mapsF andG (and their
stability properties), are strictly related. In particular, a correspondence be-
tween the cycles of the two maps is defined by the following

Property 3. If{x1, ..., xn} is an n-cycle ofF then{y1, ..., yn} = {r2(x1), ..., r2(xn)}
is an n-cycle ofG .
If {y1, ..., yn} is an n-cycle ofG then{x1, ..., xn} = {r1(y1), ..., r1(yn)} is
an n-cycle ofF

Such kinds of cycles ofF andG shall be called conjugate. That is,
for each cycle ofF (resp. G ), a conjugate one ofG (resp. F ) exists,
and the two conjugate cycles have the same stability property (both are
stable or both are unstable). In fact, due to the chain-rule for the deriv-
ative of composite functions, the cycle{x1, ..., xn} of F and the conju-
gate cycle{y1 = r2(x1), ..., yn = r2(xn)} of G have the same eigenvalue
λ =

∏n
i=1DF (xi) =

∏n
i=1DG(yi) =

∏n
i=1Dr1(yi)Dr2 (xi).

These properties show that the cycles of the Cournot mapΦ are related to
the cycles of the one-dimensional mapsF andG defined in (23). Now we an-
swer to the following questions: ifF andG have cyclesC(p)F =

{
x∗1, ..., x

∗
p

}

andC(q)G =
{
y∗1, ..., y

∗
q

}
, of periodp andq respectively, with eigenvalues

λF =
∏p
i=1DF (x

∗
i ) andλG =

∏q
i=1DG(y

∗
i ) how many cycles ofΦ are

generated by these cycles ? and how can the points of the cycles of Φ be
obtained ? and what are their stability properties ?.
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We first consider the casep = q = 1, that is, the case of fixed points of
F andG. Due to the correspondence defined by property 3,F andG have
the same number of fixed points, saym, and ifX∗ = {x∗1, ..., x∗m} is the set
of fixed points ofF thenY ∗ = {y∗1, ..., y∗m}, with y∗i = r2 (x

∗
i ), is the set

of fixed points ofG. Let us consider them2 points of the phase space ofΦ
obtained by the Cartesian productX∗ × Y ∗. Among these points there are
exactlym fixed points of the Cournot mapΦ, belonging toR1 ∩R2, given
by

p∗i = (x
∗
i , y

∗
i ) = (x

∗
i , r2 (x

∗
i )) i = 1, ...,m (24)

whereas the remainingm2 −m points of the form
(
x∗i , y

∗
j

)
, i �= j, belong

to 2-cycles of the mapΦ. In fact

Φ
(
x∗i , y

∗
j

)
= Φ

(
x∗i , r2

(
x∗j
))
=
(
r1 ◦ r2(x∗j), r2 (x∗i )

)

=
(
F (x∗j), r2 (x

∗
i )
)
=
(
x∗j , y

∗
i

)

and, analogously,

Φ
(
x∗j , y

∗
i

)
= Φ

(
x∗j , r2 (x

∗
i )
)
=
(
x∗i , y

∗
j

)
.

Since each 2-cycle is formed by two points ofX∗×Y ∗ not belonging to the
trapping setR12 we haveN2 =

(
m2 −m

)
/2 cycles ofΦ of period 2, given

by

C
(2)
Φ =

{(
x∗i , r2(x

∗
j)
)
,
(
x∗j , r2(x

∗
i )
)}

i < j, i, j = 1...m . (25)

Thus the existence ofm distinct fixed points ofF (and consequently ofG)
implies the existence, for the Cournot mapΦ, of
(a)m fixed points given by (24);
(b)m (m− 1) /2 cycles of period two given by (25).

The stability of the fixed points and of the 2-cycles ofΦ can be easily
obtained. For the fixed points (24) we have

DΦ(x∗i , r2 (x
∗
i )) =

[
0 Dr1 (r2 (x

∗
i ))

Dr2 (x∗i ) 0

]

so the eigenvalues areλ1,2 = ±
√
DF (x∗i ) = ±

√
DG(y∗i ), i.e. the fixed

point is a stable or unstable node (focus) if the multiplier of F at the fixed
pointx∗i is positive (negative) with modulus less or greater than onerespec-
tively. Note in particular that a fixed point ofΦ cannot be a saddle.
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For a 2-cycle, which is given by (25), we have

DΦ2
(
x∗i , r2

(
x∗j
))
=

[
DF (x∗j) 0

0 DF (x∗i )

]

so the eigenvalues areλ1 = DF (x∗j ) andλ2 = DF (x∗i ). Then a 2-cycle
is a stable node if both the fixed points ofF andG, whose coordinates give
the points of the cycle, are stable, whereas it is an unstablenode (saddle) if
both the fixed points are unstable (one stable and one unstable). A 2-cycle
of Φ cannot be a focus cycle. Note also that a 2-cycle ofΦ can never be a
MPE cycle, since if the points ofX∗ × Y ∗ used to form the 2-cycle belong
to the trapping setR12 then they necessarily are fixed points ofΦ. We now
generalize these results to the case in whichF has a cycle of odd period.

Cycles of the mapΦ due to cycles ofF of odd period.

Let F have a cycle of odd periodn = 2k + 1, sayC(n)F = {x∗1, ..., x∗n},
with eigenvalueλ =

∏n
i=1DF (x

∗
i ) (consequentlyG has the conjugate cycle

C
(n)
G = {y∗1, ..., y∗n} with y∗i = r2 (x

∗
i ), i = 1, ..., n, with the same eigen-

valueλ). By combining the points of the Cartesian productC
(n)
F ×C(n)G the

following distinct coexisting cycles of the Cournot mapΦ are obtained:

(a) one cycle of the same odd periodn = 2k + 1 given by

C
(n)
Φ =

{
Φt
(
x∗1, r2

(
x∗k+1

))
, t = 1, ..., n

}
(26)

with eigenvaluesλ1,2 = ±
√
λ. HenceC(n)Φ is a stable or unstable node (or

focus) depending on the modulus (and the sign) ofλ.

(b) k = (n− 1)/2 cycles of even period2n given by

1C
(2n)
Φ =

{
Φt (x∗1, r2 (x

∗
1)) , t = 1, ..., 2n

}
2C

(2n)
Φ =

{
Φt (x∗1, r2 (x

∗
2)) , t = 1, ..., 2n

}

:
kC

(2n)
Φ =

{
Φt (x∗1, r2 (x

∗
k)) , t = 1, ..., 2n

}
.

(27)

with eigenvaluesλ1 = λ2 = λ coincident with the common eigenvalue of
the conjugated n-cycles ofF andG, so thatiC(2n)Φ , i = 1, ..., k are stable

(unstable) star nodes if the cyclesC(n)F andC(n)G are stable (unstable)5. Of

5A star-node is a node-cycle with real eigenvalues having equal moduli (see Mira, 1987,
p.194).
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these(k + 1) cycles only1C(2n)Φ is formed by points belonging to the trap-

ping setR12, i.e. only1C(2n)Φ gives an MPE periodic trajectory (MPE cycle).

(c) Now let us suppose, as frequently happens, thatF has more than one
distinct cycles of periodn = 2k + 1, and hence the same holds forG. In
this case, in addition to the points of the phase plane ofΦ obtained by the
Cartesian product of the pairs of conjugate cycles, there are also the points
obtained by combining the points of the non-conjugate ones.For example,
let F have two n-cyclesCX(n)

F = {x∗1, ..., x∗n} andCZ(n)F = {z∗1, ..., z∗n}
with eigenvaluesλx =

∏n
i=1DF (x

∗
i ) andλz =

∏n
i=1DF (z

∗
i ) respectively.

This implies thatG has the conjugate cyclesCX(n)
G = {r2(x∗1), ..., r2(x∗n)}

andCZ(n)G = {r2(z∗1), ..., r2(z∗n)} with the same eigenvalues. In this case,

by combining the4n2 points of the Cartesian product
(
CX

(n)
F ∪CZ(n)F

)
×

(
CX

(n)
G ∪CZ(n)G

)
the 2 (k + 1) cycles listed in (26) and (27) can be ob-

tained by using the2n2 points of
(
CX

(n)
F ×CZ(n)G

)
∪
(
CZ

(n)
F ×CX(n)

G

)
,

and by the remaining2n2 points furthern cycles ofΦ of period2n are ob-
tained, given by

1M
(2n)
Φ =

{
Φt (x∗1, r2 (z

∗
1)) , t = 1, ..., 2n

}
2M

(2n)
Φ =

{
Φt (x∗1, r2 (z

∗
2)) , t = 1, ..., 2n

}

:
nM

(2n)
Φ =

{
Φt (x∗1, r2 (z

∗
n)) , t = 1, ..., 2n

}
(28)

The eigenvalues of the cycles (28) can be easily computed, sinceDΦ2n is
diagonal, and are given, for each cycle, byλ1 = λx andλ2 = λz. We call
these cycles, formed by combining the points of pairs of non-conjugate cy-
cles ofF andG, cycles of mixed type, in order to distinguish them from the
cycles described in (a) and (b) (formed by combining the points of conjugate
cycles ofF andG), which shall be denoted as cycles of homogeneous type.

These results can be easily generalized to the case in whichF hasm dis-
tinct coexisting cycles of periodn = 2k + 1, sayX(n)

1F = {x∗11, ..., x∗1n},...,
X
(n)
mF = {x∗m1, ..., x∗mn}, and consequentlyG has the conjugate cyclesX(n)

1G =

{r2(x∗11), ..., r2(x∗1n)},..., X
(n)
mG = {r2(x∗m1), ..., r2(x∗mn)}. In this case we

have:

(a)m cycles ofΦ of odd periodn given by
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C
(n)
Φ =

{
Φt
(
x∗i1 , r2

(
x∗i(k+1)

))
, t = 1, ..., n

}
, i = 1, ...,m;

(b)mk cycles ofΦ of even period2n, m of which are MPE cycles, of ho-
mogeneous type, i.e. made up of points belonging to the Cartesian products
between pairs of conjugate cycles, according to (27);

(c)m (m− 1)n/2 cycles ofΦ of even period2n, of mixed type, according
to (28).

Of course, ifn = 1 (i.e. k = 0) these results coincide with those, already
shown above, of the case ofm fixed points ofF .

Cycles of the mapΦ due to cycles ofF of even period.

Let us now consider the case in whichF has a cycle of even periodn =
2k, sayC(n)F = {x∗1, ..., x∗n}, with eigenvalueλ =

∏n
i=1DF (x

∗
i ), and let

C
(n)
G = {y∗1, ..., y∗n}, with y∗i = r2(x

∗
i ), be the conjugate cycle ofG, that, as

usual, has the same eigenvalue. By combining then2 points of the Cartesian
productC(n)F × C(n)G , n2/(2n) = n/2 = k cycles ofΦ of period2n, of
homogeneous type, are obtained, given by

1C
(2n)
Φ =

{
Φt (x∗1, r2(x

∗
1)) , t = 1, ..., 2n

}
2C

(2n)
Φ =

{
Φt (x∗1, r2(x

∗
2)) , t = 1, ..., 2n

}

:
kC

(2n)
Φ =

{
Φt (x∗1, r2(x

∗
k)) , t = 1, ..., 2n

}
(29)

Of thesen/2 cycles only1C(2n)Φ is an MPE cycle. For each cycleiC(2n)Φ , i =
1, ..., k, the eigenvalues areλ1 = λ2 = λ. Hence all the coexistingk = n/2
cycles are star nodes with the same stability property as theconjugate cycles
of F andG that generate them.

Also in this case cycles of mixed type can be obtained ifF (and conse-
quentlyG) hasm > 1 coexisting cycles of periodn = 2k. In fact, in ad-
dition to them pairs of conjugated cycles, each generatingk cycles ofΦ of
period2n according to (29), the remainingm2 −m pairs of non-conjugate
cycles generate

(
m2 −m

)
n/2 further cycles of period2n of mixed type,

with eigenvaluesλ1 =
∏n
i=1 F (x

∗
i ) andλ2 =

∏n
i=1 F (z

∗
i ), wherex∗i andz∗i

are points of distinct cycles ofF . The periodic points of these cycles ofΦ of



3 Global Analysis of Dynamic Games 33

mixed type are given by

1M
(2n)
Φ =

{
Φt (x∗1, r2 (z

∗
1)) , t = 1, ..., 2n

}
2M

(2n)
Φ =

{
Φt (x∗1, r2 (z

∗
2)) , t = 1, ..., 2n

}

:
nM

(2n)
Φ =

{
Φt (x∗1, r2 (z

∗
n)) , t = 1, ..., 2n

}
(30)

and none of these is an MPE cycle. We notice that the only substantial dif-
ference between the case of cycles ofF of odd periodn = 2k + 1 and that
of cycles of even periodn = 2k is given by the presence, in the case of odd
n, of the cycle of the same odd period ofΦ generated by pairs of conjugated
cycles by taking the “central point” of the cycles, according to (26).

Cycles of the mapΦ due to coexisting cycles ofF of different periods.

Let us now consider the cycles of the Cournot mapΦ obtained from the com-
bination of points of cycles ofF andG having different periods. Of course
such cycles are not conjugate and will give rise to cycles ofΦ of mixed type.
LetC(p)F =

{
x∗1, ..., x

∗
p

}
andC(q)F =

{
z∗1, ..., z

∗
q

}
be ap-cycle and aq-cycle

of F , with eigenvaluesλp =
∏p
i=1DF (x

∗
i ) andλq =

∏q
i=1DF (z

∗
i ) respec-

tively. The mapG has the conjugate cyclesC(p)G =
{
r2(x

∗
1), ..., r2(x

∗
p)
}

and

C
(q)
G =

{
r2(z

∗
1), ..., r

∗
2(z

∗
q )
}

with the same eigenvalues. Lets be the least
common multiple betweenp andq andn1, n2 the two natural numbers such
thats = n1p = n2q. ThenN = pq/s distinct cycles ofΦ of period2s are

obtained by combining thepq points ofC(p)F × C(q)G ∪ C(q)F × C(p)G . These
cycles are given by

1M
(2s)
Φ =

{
Φt (x∗1, r2(z

∗
1)) , t = 1, ..., 2s

}
2M

(2s)
Φ =

{
Φt (x∗1, r2(z

∗
2)) , t = 1, ..., 2s

}

:
NM

(2s)
Φ =

{
Φt (x∗1, r2(z

∗
N)) , t = 1, ..., 2s

}
(31)

All these cycles have the same eigenvalues, given byλ1 = λn1p andλ2 =

λn2q . Hence the cycles (31) are stable if and only if both the cyclesC(p)F and

C
(q)
F are stable. We also note that none of the cycles (31) is a MPE cycle.

From the arguments given above, the following propositionsfollow:
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Proposition 1. Cycles of even period2n of the mapΦ are obtained from:

• pairs of conjugate cycles of periodn, odd or even, ofF andG accord-
ing to (27) or (29) respectively;

• pairs of non-conjugate cycles of periodn of F andG, according to
(28) or (30);

• pairs of cycles ofF andG of different periodsp andq, such that the
least common multiple betweenp andq is n, according to (31).

Proposition 2. Cycles of odd period2n + 1 of the mapΦ are obtained
from pairs of conjugated cycles of odd period2n+ 1 of F andG according
to (26).

We recall that MPE cycles can only be obtained in case (i.1) with n > 1
(as previously stated, MPE cycles of period 2 cannot exist).The stability
properties of the cycles of the map (20) can be deduced from the stability
properties of the cycles ofF andG that generate them. This important fea-
ture can be expressed by the following general statement:

Proposition 3. A cycleC of the mapΦ is stable if and only if the two
cycles ofF andG, from which the periodic points ofC are obtained, are
both stable.

As an example, let us consider reaction functions expressedby r1(y) =
µ1y(1− y) andr2(x) = µ1x(1− x). In this case the functionsF andG are
given by the fourth degree functions

F (x) = r1 ◦ r2 (x) = µ1µ2x (1− x)
(
1 + µ2x

2 − µ2x
)

(32)

and
G(y) = r2 ◦ r1(y) = µ1µ2y (1− y)

(
1 + µ1y

2 − µ1y
)

(33)

Let us consider the parametersµ1 = 3.4 andµ2 = 3.6, so that the function
F has four fixed points:x∗0 = 0, x

∗
1 = q

∗, x∗2 = p
∗, x∗3 = u

∗, all unstable.
The same holds forG, whose fixed points have coordinatesy∗i = r2(x

∗
i ),

i = 0, ..., 3. The Cartesian product{x∗i } × {y∗i } is formed by 16 points
of R2 and includes the four fixed points of the mapΦ, located at the four
intersections between the reaction curves (these are homogenous 1-cycles
belonging toR12) and six 2-cycles with periodic points out ofR12 (i.e. not
MPE cycles) three of which are on the coordinate axes.
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From the properties state above, it follows that cycles of odd period ofΦ
can only come from cycles of the same odd period ofF andG, while cycles
of even period ofΦ can come from several kinds of cycles ofF andG, of
even or odd period, with equal or different periods, conjugate or not. From
Proposition 1 we can also deduce another property, which is characteristic of
the Cournot maps (20):

Proposition 4. IfF has a stable cycle of periodn > 2 then the two-
dimensional mapΦ is characterized by multistability, i.e. it has several dis-
tinct coexisting attracting sets.
As an example let us consider again two logistic reaction functions, as given
in (32) and (33). Forµ1 = 3.83 andµ2 = 3.84 the mapF has only one
attracting cycle of period 3, say{x1, x2, x3}, with eigenvalueλ = 0.39.
Then from (26) and (27) we get the following coexisting attracting cycles of
the map (20):

• a stable 3-cycle
{
Φi (x1, r2(x2)), i = 1, 2, 3

}
/∈ R12 (i.e. not MPE)

• a stable 6-cycle
{
Φi (x1, r2(x1)), i = 1, ..., 6

}
∈ R12 (MPE cycle)

all of homogeneous type.
The peculiar property of multistability of a Cournot map is even more

evident whenF has coexisting attracting cycles, because in this case alsoall
the cycles of mixed type in (31) are attracting forΦ.

For example, considerµ1 = 3.53 andµ2 = 3.55. In this caseF has
a stable 2-cycle{x1, x2} coexisting with a stable 4-cycle{z1, ..., z4}, and
the same occurs for the conjugate cycles ofG . Then the mapΦ has five
coexisting attracting cycles:

• one homogeneous cycle of period 4, with periodic points{
Φi (x1, r2(x1)), i = 1, ..., 4

}
∈ R12, an MPE cycle (according to

(29) for the 2-cycle);

• two homogeneous cycles of period 8, given by

C1 =
{
Φi (z1, r2(z1)), i = 1, ..., 8

}
∈ R12, another MPE cycle, and

C2 =
{
Φi (z1, r2(z2)), i = 1, ..., 8

}
which is not MPE (according to

(29) for the 4-cycle);

• two cycles of mixed type of period 8, given by

M1 =
{
Φi (x1, r2(z1)), i = 1, ..., 8

}
and

M2 =
{
Φi (x1, r2(z2)), i = 1, ..., 8

}
, (according to (30)).
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The periodic points of these cycles are represented in Fig. 16, where also
their basins of attraction are shown, represented by different colors.

We close this section by noting that, due to Property 2, a cycle ofG is
always the image byr2 of a cycle ofF, thus we can state that the study of
only one of the maps defined in (23) is sufficient to give a complete under-
standing of all the cycles of the two-dimensional mapΦ and their stability
properties.

Figure 16: Basins of different coexisting attracting cycles.

5.2 Basins of attraction

As we have seen, the coexistence of attracting sets is a characteristic
property of the class of maps (20), thus the structure of their basins of attrac-
tion becomes of particular interest in order to predict the asymptotic behav-
ior of the games starting from a given i.c. (x0, y0). The peculiar structure
of the basins of attraction, clearly visible in Fig.16, is another characteristic
property of the class of maps (20), and we recall in this section the results
presented in Bischi et al. 2000a.

From Propositions 1 and 2 of the previous section we know thatanyn-
cycleC of Φ, of odd or even periodn, is necessarily associated with a cycle
of F and one ofG, sayCx and Cy respectively. Let us denote byB(C) the
total basin of an attractorC. It is given byB(C) =

⋃∞
n=0Φ

−n(Bim(C)) ,
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whereBim(C) is the immediate basin ofC, made up of the connected com-
ponents of the basin containingC. Analogously, for the one-dimensional
mapF we haveB(Cx) =

⋃∞
n=0 F

−n(Bim(Cx)) , whereBim(Cx) is the
immediate 1-dimensional basin ofCx along thex axis. The following propo-
sitions hold (for a proof see Bischi et al. 2000):

Proposition 5. Let C be an attracting cycle ofΦ associated with the
cyclesCx and Cz of F , then

(i) B(C)⊆ [B(Cx )∪B(Cz )]× r2([B(Cx ) ∪B(Cz )])
(ii) Bim(C)⊆ [Bim(Cx )∪Bim(Cz )]× r2([Bim(Cx ) ∪Bim(Cz )]) and
Bim(C) is made up of rectangles which include the points of C.

Proposition 6. LetΦ be a map of the form (20). Then:
(i) The image of a horizontal segment is a vertical segment and vice-versa.
(ii) The preimages of a horizontal segment, if any, are vertical segments and
vice-versa.

Proposition 7. For any periodic point P=(x1, y1) of the map T of period
n≥ 1, the horizontal and vertical linesy = y1 andx = x1, issuing from P,
are trapping sets for the map Tn.

From the propositions stated above it follows that any saddle cycle of
T has stable and unstable sets formed by the union of segmentswhich are
parallel to the coordinate axes.

5.3 Chaotic attractors and their basins

As stressed in the seminal paper of Rand, attractors which are more com-
plex than periodic cycles can be easily observed in the long-run dynamics of
Cournot maps (20). The transition from regular (i.e. periodic) to chaotic (i.e.
aperiodic, or erratic) behavior of the Cournot tâtonnement, modeled by map
(20), is marked by sequences of local bifurcations that create an increasing
number of cycles, both stable and unstable. As it is well known, a chaotic
regime is characterized by the presence of infinite unstable periodic points
and, as remarked in Rand (1978), it is interesting to know what kind of bi-
furcations cause the creation of such cycles as some parameter is changed.

Since the dynamical properties of the Cournot mapΦ are strictly linked
to those of the one-dimensional mapsF andG, these local and global bifur-
cations are expected to extend also to the mapΦ. In fact, whenever a bifur-
cation occurs that creates (eliminates) cycles of the mapF , and thus also of
G, many cycles of the Cournot map are simultaneously created (eliminated)
at the same parameter’s value. Such bifurcations of the mapΦ are often of
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particular type, due to the presence of two eigenvalues thatsimultaneously
cross the unit circle, in which case we say that the cycles ofΦ undergo a
degenerate bifurcation, whose effects are generally different from those of
a generic local bifurcation. In particular, a standard foldor flip bifurcation
for the one-dimensional mapF (or equivalently forG), is always associated
with a degenerate bifurcation ofΦ of fold-type (the eigenvalues cross the unit
circle withλ1 = λ2 = 1), or of flip-type(λ1 = λ2 = −1), or of saddle-type
( λ1 = −1 andλ2 = 1).

We can extend our propositions to attractors which are more complex
than point cycles. The existence of such attractors occurs when the reaction
functions are non monotonic functions. In fact, if the reaction functions
r1(y) andr2(x) are invertible, i.e. increasing or decreasing functions, then
the dynamical behavior of the Cournot mapΦ is very simple, because in
this case also the mapsF andG are monotone. Instead, whenr1 and/orr2
are noninvertible maps also the functionsF andG are noninvertible maps.
The attractors ofF can be, besides k-cycles, also k-cyclic chaotic intervals
or Cantor sets (a Cantor set is an attractor in Milnor’s sense(Milnor, 1985),
that can occur at particular bifurcation values, as the Feigenbaum points).
Let us call byAx (resp.Ay) any one of the possible attractors ofF (resp.
G). Then results similar to those given in Propositions 1 and 5still hold:

Proposition 8. Let A be an attracting set ofΦ. Then attracting sets ofF
exist , say Ax and Az (Az =Ax or Az �=Ax), such that

(i) A⊆ (Ax∪Az )× ( r2(Ax ∪ Az))
(ii) B(A)⊆ [B(Ax )∪B( Az )]× r2([B(Ax ) ∪B(Az )])
(iii) Bim(A)⊆ [Bim(Ax )∪Bim(Az )]× r2([Bim(Ax ) ∪Bim(Az )]) and

Bim(A) is made up of the rectangles which include the elements ofA.

More generally, the structure related to the Cartesian products for the
attracting sets ofΦ holds for any invariant set ofΦ, also repelling, that is:

Proposition 9. Let S be any invariant set ofΦ (i.e. Φ(S)=S ), then there
exist invariant sets ofF , say Sx and Sz (Sz =Sx or Sz �=Sx), such that

S⊆ (Sx∪Sz )× ( r2(Sx ∪ Sz)).
As we have seen, when the attracting sets ofF include something more

complex then a cycle, for example a chaotic set made up of k-cyclic chaotic
intervals, then also the attracting sets ofΦ are more complex. However, also
in this case the asymptotic sets ofΦ must belong to Cartesian products of
attracting sets ofF andG, and such two-dimensional sets may include seg-
ments and rectangles. For example, if the mapF has cyclic chaotic intervals
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then, following the procedure indicated in Proposition 8, cyclic chaotic at-
tractors of the Cournot mapΦ can be obtained by the Cartesian product of
the cyclic chaotic intervals ofF and the conjugate ones ofG, so that chaotic
rectangles are obtained in the phase plane ofΦ.

We again consider the particular Cournot game (20) with logistic reac-
tion functions. Considerµ1 = 2.8131 andµ2 = 3.85. The mapF has
3-cyclic chaotic intervals{I1, I2, I3} inside which the generic dynamics are
aperiodic. Then{J1, J2, J3} = {r2(I1), r2(I2), r2(I3)} are the conjugate
chaotic intervals ofG. In this case the nine rectangles of the Cartesian prod-
uct{I1, I2, I3} × {J1, J2, J3} = {Ii × Jj , i, j = 1, 2, 3} include an attract-
ing set ofΦ made up of 3-cyclic rectangles (see Fig.17a) coexisting with
an attracting set made up of 6-cyclic rectangles (see Fig.17b), inside which
the dynamics are chaotic. The two distinct basins of attraction are shown in
Fig.17c.

(a) (b)

(c)

Figure 17: (a) 3-cycling chaotic rectangles. (b) 6-cyclingchaotic rectangles.
(c) Their basins of attraction.

As the cyclic chaotic intervals of the mapF are bounded by the critical

points ofF , sayc(F ) = F
(
c
(F )
−1

)
, and their imagesc(F )k = F k(c(F )), the

sides of the chaotic rectangles of the two-dimensional mapΦ are formed by
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segments of lines through these critical points and parallel to the coordinate
axes. Hence the boundaries of these cyclic chaotic rectangles are completely
known on the basis of the knowledge of the critical pointsc(F )k of the one

dimensional mapF (and those ofG, given byc(G)k+1 = r2
(
c
(F )
k

)
).

This fact can be also seen from the more general point of view of the
delimitation of the absorbing and the chaotic areas of the noninvertible maps
of the plane. The critical manifold of rank-0, denoted byLC−1, belongs
to the locus of points at which the Jacobian determinant|DΦ| = Dr2(x) ·
Dr1(y) vanishes. HenceLC−1 is given by the union of vertical lines and
horizontal lines related toDr2(x) andDr1(y) respectively. Among these
lines only those crossing through points of the local extrema of the reaction
functions are branches ofLC−1. In other words, letxj−1, j = 1, ...,N , be
the points of local maxima or minima ofr2(x) andyk−1, k = 1, ...,M , be the
points of local maxima or minima ofr1(y), then

LC−1 =
{
(x, y) : x = xj−1, j = 1, ...,N

}
∪ (34)

∪
{
(x, y) : y = yk−1, k = 1, ...,M

}
.

The critical set of rank-1, denoted byLC, is obtained asLC = Φ(LC−1).
From Proposition 6 we deduce thatLC is formed by segments belonging to
horizontal and vertical lines. In particular, the images byΦ of the linesx =

xj−1 belong to the lines of equationy = yj = r2
(
xj−1

)
i.e. the horizontal

lines through the maximum and minimum values of the reactionfunction
r2(x), and the images of the linesy = yk belong to the lines of equation
x = xk = r1

(
yk−1

)
which are the vertical lines through the maximum and

minimum values of the reaction functionr1(y).
The branches of the critical setLC separate the phase plane into re-

gions whose points have different numbers of preimages. Forexample, for
the Cournot map with logistic reaction curves the critical curve of rank-0 is
formed by the two branchesLC−1 = LC

(a)
−1 ∪LC

(b)
−1, where

LC
(a)
−1 =

{
(x, y) | y = 1

2

}
and LC

(b)
−1 =

{
(x, y) | x = 1

2

}
. (35)

AlsoLC is formed by two branches,LC = LC(a) ∪LC(b), whereLC(a) =
Φ
(
x, 12

)
is the half-line defined by

x =
1

4
µ1, with y ≤ 1

4
µ2 (36)
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andLC(b) = Φ
(
1
2 , y
)

is the half-line defined by

y =
1

4
µ2 with x ≤ 1

4
µ1 (37)

In this case the two branches ofLC separate a region, denoted byZ0 in
Fig.18, whose points have no real preimages, from a region, denoted byZ4,
whose points(x, y) have four real preimages, given byx(1,2)−1 × y(1,2)−1 , where

x
(1,2)
−1 =

1

2µ2

(
µ2 ±

√
µ22 − 4µ2y

)
; y

(1,2)
−1 =

1

2µ1

(
µ1 ±

√
µ21 − 4µ1x

)
.

Critical sets of higher ranki, i ≥ 1, defined asLCi = Φi+1 (LC−1) are
important because generally the absorbing areas and the chaotic areas of a
noninvertible map are bounded by segments of critical curves. This is true
also for the absorbing and chaotic rectangles and segments of the map (20).
For example in the situation shown in Fig.18 we have a chaoticattractor
whose boundary is given by segments ofLC, LC1, andLC2. As usual,
segments of critical curves of higher rank bound zones inside the chaotic
area where the points are more dense, i.e. are more frequently visited by the
phase point of a generic trajectory.

(a) (b)

Figure 18: (a) Chaotic attractor of the Cournot map with logistic reaction
curves. (b) Boundary of the chaotic attractor obtained by segments ofLCk,
k = 1, 2.
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6 Duopoly games with identical players: synchronization, riddling and inter-
mittency phenomena

In this section we consider a dynamic duopoly game, whose time evolution
is represented by the iteration of a two-dimensional map (8), in the case of
identical players. This means that the dynamical system must remain the
same if the variablesx1 andx2 are interchanged, i.e.T ◦P = P ◦T , where
P : (x1, x2)→ (x2, x1) is the reflection through the diagonal

∆ =
{
(x1, x2) ∈ R2|x1 = x2

}
. (38)

This symmetry property implies that the diagonal is mapped into itself, i.e.,
T (∆) ⊆ ∆ , which corresponds with the obvious statement that, in a de-
terministic framework, identical competitors, starting from identical initial
conditions, behave identically for each time. The trajectories embedded into
∆, i.e. characterized byx1(t) = x2(t) for everyt, are called synchronized
trajectories, and they are governed by the one-dimensionalmap given by the
restriction ofT to the invariant submanifold∆

x(t+ 1) = f(x(t)) with f = T |∆ : ∆→ ∆. (39)

In Bischi, Gallegati and Naimzada, 1999, the one-dimensional model (39)
has been considered as the model of a representative agent whose dynamics
summarize the common behavior of the two synchronized competitors.

A trajectory starting out of∆, i.e. withx0 �= y0, is said to synchronize
if |x1(t)− x2(t)| → 0 ast → +∞. A question which naturally arises, in
the case of symmetric competition models, is whether identical competitors
starting from different initial conditions will synchronize, so that the asymp-
totic behavior is governed by the simpler one-dimensional model (39). This
question can be reformulated as follows. LetAs be an attractor of the one-
dimensional map (39). Is it also an attractor for the two-dimensional mapT?
Of course, an attractorAs of the restrictionf is stable with respect to per-
turbations along∆, so an answer to the question raised above can be given
through a study of the stability ofAs with respect to perturbations transverse
to∆ (transverse stability). IfAs is a cycle, then the study of the transverse
stability is the usual one, based on the modulus of the eigenvalues of the cycle
in the direction transverse to∆, whereas the problem becomes more inter-
esting when the dynamics restricted to the invariant submanifold are chaotic.
Indeed, dynamical systems with chaotic trajectories embedded into an in-
variant submanifold of lower dimensionality than the totalphase space have
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raised an increasing interest in the scientific community (see e.g. Ashwin et
al., 1996, Buescu, 1997, because the phenomenon of chaos synchronization
may occur (see e.g. Fujisaka and Yamada, 1983, Pecora and Carrol, 1990,
Hasler and Maistrenko, 1997), i.e., the time evolution of the two competitors
synchronize in the long run even if each of them behaves chaotically. More-
over, in this case, Milnor attractors (see Milnor, 1985) which are not stable in
Lyapunov sense appear quite naturally in this context. To better understand
the meaning of this point, we recall some definitions.

Definition. A is an asymptotically stable attractor (or topological attrac-
tor) if it is Lyapunov stable, i.e. for every neighborhoodU of A there exists
a neighborhoodV of A such thatT t(V ) ⊂ U ∀t ≥ 0, andB (A) contains a
neighborhood ofA.

In other words, IfA is a topological attractor then a neighborhoodW ⊃
A exists such thatT t(x) → A ast → +∞ for anyx ∈ W . In this case
the stable setB (A), also called basin of attraction, is an open set given by
B (A) = ⋃t≥0 T−t(W ).

Definition. A closed invariant setA is said to be a weak attractor in
Milnor sense (or simply Milnor attractor) if its stable setB (A) has positive
Lebesgue measure.

Note that a topological attractor is also a Milnor attractor, whereas the
converse is not true. Really the more general notion of Milnor attractor has
been introduced to evidence the existence of invariant setswhich “attract”
many points even if they are not attractors in the usual topological sense.

We now recall some definitions and results related to the problem of
chaos synchronization, see Buescu, 1997, for a more complete treatment.
Let T be a map of the plane,∆ a one-dimensional trapping subspace andAs
a chaotic attractor (with absolutely continuous invariantmeasure on it) of the
restriction (39) ofT to∆. The key property for the study of the transverse
stability ofAs is that it includes infinitely many periodic orbits which are un-
stable in the direction along∆. For any of these cycles it is easy to compute
the associated eigenvalues. In fact, due to the symmetry of the map, the Ja-
cobian matrix ofT computed at any point of∆, sayDT (x, x) = {Tij (x)},
is such thatT11 = T22 andT12 = T21. The two orthogonal eigenvectors
of such a symmetric matrix are one parallel to∆, sayv‖ = (1, 1), and one
perpendicular to it, sayv⊥ = (1,−1), with related eigenvalues given by

λ‖ (x) = T11 (x) + T12 (x) and λ⊥ (x) = T11 (x)− T12 (x)
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respectively. Of course,λ‖ (x) = f ′(x). Since the product of matrices
with the structure ofDT (x, x) has the same structure as well, ak-cycle
{s1, ..., sk} embedded into∆ has eigenvaluesλk‖ =

∏k
i=1 λ‖ (si) andλk⊥ =∏k

i=1 λ⊥ (si), with eigenvectorsv‖ andv⊥ respectively.
In the recent literature on chaos synchronization, stability statements are

given in terms of the transverse Lyapunov exponents, by which the “average”
local behavior of the trajectories in a neighborhood of the invariant setAs
can be understood, and new kinds of bifurcations can be detected , such as
the riddling bifurcation or the blowout bifurcation. For a chaotic setAs ⊂ ∆,
infinitely many transverse Lyapunov exponents can be defined as

Λ⊥ = lim
N→∞

1

N

N∑

i=0

ln |λ⊥ (si)| (40)

where
{
si = f

i(s0), i ≥ 0
}

is a trajectory embedded inAs.
If x0 belongs to ak-cycle thenΛ⊥ = ln

∣∣λk⊥
∣∣, so that the cycle is trans-

versely stable ifΛ⊥ < 0, whereas ifx0 belongs to a generic aperiodic tra-
jectory embedded inside the chaotic setAs thenΛ⊥ is the natural trans-
verse Lyapunov exponentΛnat⊥ , where by the term “natural” we mean the
Lyapunov exponent associated to the natural, or SBR (Sinai-Bowen-Ruelle),
measure, i.e., computed for a typical trajectory taken in the chaotic attractor
As. Since infinitely many cycles, all unstable along∆, are embedded inside
a chaotic attractorAs, a spectrum of transverse Lyapunov exponents can be
defined, see Buescu, 1997,

Λmin⊥ ≤ ... ≤ Λnat⊥ ≤ ... ≤ Λmax⊥ (41)

The meaning of the inequalities in (41) can be intuitively understood on the
basis of the property thatΛnat⊥ expresses a sort of “weighted balance” be-
tween the transversely repelling and transversely attracting cycles (see Na-
gai and Lai, 1997). IfΛmax⊥ < 0, i.e. all the cycles embedded inAs are
transversely stable, thenAs is asymptotically stable, in the usual Lyapunov
sense, for the two-dimensional mapT . However, it may occur that some
cycles embedded in the chaotic setAs become transversely unstable, i.e.
Λmax⊥ > 0, whileΛnat⊥ < 0. In this case,As is no longer Lyapunov stable,
but it continues to be a Milnor attractor, i.e. it attracts a positive (Lebesgue)
measure set of points of the two-dimensional phase space. So, if A ⊂ ∆ is a
chaotic attractor ofT |∆ with absolutely continuous invariant measure, then
a sufficient condition for aA be a Milnor, but not topological, attractor for
the two-dimensional mapT , is that
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(a) at least onek-cycle embedded inA is transversely repelling, i.e.∣∣∣λ(k)⊥
∣∣∣ > 1, and

(b) the Lyapunov exponentΛnat⊥ is negative.
This means that the majority of the trajectories onA are transversely

attracting, but some (even infinitely many) trajectories insideA can exist
whose transverse Lyapunov exponent is positive. In other words, trans-
versely repelling trajectories can be embedded into a chaotic set which is
attracting only “on average”. In this case we have weak stability or stability
in Milnor sense, but not asymptotic stability.

The transition from asymptotic stability to attractivity only in Milnor
sense, marked by a change of sign ofΛmax⊥ from negative to positive, is
denoted as the riddling bifurcation in Lai and Grebogi, 1996, (or bubbling
bifurcation in Venkataramani et al., 1996). Even if the occurrence of such
bifurcations is detected through the study of the transverse Lyapunov expo-
nents, their effects depend on the action of the non linearities far from∆,
that is, on the global properties of the dynamical system. Infact, after the
riddling bifurcation two possible scenarios can be observed according to the
fate of the trajectories that are locally repelled along (ornear) the local un-
stable manifolds of the transversely repelling cycles:

(L) they can be reinjected towards∆, so that the dynamics of such tra-
jectories are characterized by some bursts far from∆ before synchronizing
on it (a very long sequence of such bursts, which can be observed whenΛ⊥
is close to zero, has been called on-off intermittency in Ottand Sommerer,
1994);

(G) they may belong to the basin of another attractor, in which case the
phenomenon of riddled basins (Alexander et al., 1992) is obtained.

Some authors call local riddling the situation (L) and, by contrast, global
riddling the situation (G) (see Ashwin et al. 1996, Maistrenko et al., 1997,
1998a). When alsoΛnat⊥ becomes positive, due to the fact that the trans-
versely unstable periodic orbits embedded intoAs have a greater weight as
compared with the stable ones, a blowout bifurcation occurs, after which
As is no longer a Milnor attractor, because it attracts a set of points of zero
measure, and becomes a chaotic saddle, see Buescu, 1997. In particular, for
λmin⊥ > 0 all the cycles embedded into∆ are transversely repelling, andAs
is called normally repelling chaotic saddle. Also the macroscopic effect of
a blowout bifurcation is strongly influenced by the behavior of the dynam-
ical system far from the invariant submanifold∆: The trajectories starting
close to the chaotic saddle may be attracted by some attracting set far from∆
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or remain inside a two-dimensional compact set located around the chaotic
saddleAs, thus giving on-off intermittency.

As noticed by many authors, (see e.g. Ashwin et al., 1996, Buescu, 1997,
Hasler and Maistrenko, 1997, Maistrenko et al., 1998a,b), even if the occur-
rence of riddling and blowout bifurcations is detected through the transverse
Lyapunov exponents, i.e. from a local analysis of the linearapproximation
of the map near∆, their effects are determined by the global properties of
the map. In fact, the effect of these bifurcations is relatedto the fate of
the trajectories which are locally repelled away from a neighborhood of the
Milnor attractorAs, since they may reach another attractor or they may be
folded back towardAs by the action of the non linearities acting far from
∆. WhenT is a noninvertible map, as generally occurs in problems of chaos
synchronization6, the global dynamical properties can be usefully described
by the method of critical curves and the reinjection of the locally repelled
trajectories can be described in terms of their folding action.

This idea has been recently proposed in Bischi et al., 1998, for the study
of symmetric maps arising in game theory, and in Bischi et al., 1999c, for
the study of the effects of small asymmetries due to parameters mismatches.
In these two papers the critical curves have been used to obtain the boundary
of a compact absorbing area inside which intermittency and blowout phe-
nomena are confined. In other words, the critical curves areused to bound
a compact region of the phase plane that acts as a trapping bounded vessel
inside which the trajectories starting nearS are confined. In particular, in
Bischi and Gardini, 1998, the concept of minimal invariant absorbing area
is used in order to give a global characterization of the different dynamical
scenarios related to riddling and blowout bifurcations. Inorder to give an
example, let us consider the map (14) in the symmetric case

ε1 = ε2 = ε , µ1 = µ2 = µ (42)

so that the map (14) becomes

Ts :

{
x′ = µy(1− y) + ε(y − x)
y′ = µx(1− x) + ε(x− y) (43)

The restrictionTs|∆ to the invariant diagonal∆ can be identified with the
one-dimensional logistic map

x′ = fµ(x) = µx(1− x). (44)

6In fact the one-dimensional restrictionf must be a noninvertible map in order to have
chaotic motion along the invariant subspace∆.



3 Global Analysis of Dynamic Games 47

The eigenvalues of the symmetric Jacobian matrixDT (x, x) are

ρ‖(x) = µ− 2µx , ρ⊥(x) = 2µx− µ− 2ε.

with eigenvectors which are parallel to∆ (v‖ = (1, 1)) and orthogonal to
∆ (v⊥ = (1,−1)) respectively. It is important to note that the coupling pa-
rameterε only appears in the transverse eigenvalueλ⊥, i.e. ε is a normal
parameter: it has no influence on the dynamics along the invariant subman-
ifold ∆, and only influences the transverse stability. This allowsus to con-
sider fixed values of the parameterµ, such that a chaotic attractorAs ⊂ ∆
of the map (44) exists, with an absolutely continuous invariant measure on
it. So, we can study the transverse stability ofAs as the coupling between
the two components, measured by the parameterε, varies. Suitable values of
the parameterµ, at which chaotic intervals for the restriction (44) exist,are
obtained from the well known properties of the logistic map (see e.g. Col-
let and Eckmann, 1980, Mira, 1987). For example, at the parameter value
µ2 = 3.5748049387592... the period-4 cycle of the logistic map undergoes
the homoclinic bifurcation, at which four cyclic chaotic intervals are ob-
tained by the merging of 8 cyclic chaotic intervals. By usingµ2 we get a
four-band chaotic setAs along the diagonal∆, as shown in Fig.19a. In this
case, forε = 0.24 we haveΛmax⊥ > 0 andΛnat⊥ = −4.7×10−3 < 0. Hence,
As is a Milnor attractor and local riddling occurs. The generictrajectory
starting from initial conditions taken in the white region of Fig.19a leads to
asymptotic synchronization. In Fig.19a the asymptotic part of a trajectory is
shown, after a transient of15, 000 iterations has been discarded. Indeed, if
also the transient is represented, Fig.19b is obtained. During the transient,
the time evolution of the system is characterized by severalbursts away from
∆ before synchronization occurs, as shown in Fig.20, where the difference
xt − yt, computed along the trajectory of Fig.19, is represented versus time.
It it worth to note the intermittent behavior of the trajectory: sometimes it
seems to synchronize for a quite long number of iterations, then a sudden
burst occurs. This phenomenon is also called on-off intermittency.

The Milnor attractorAs is included inside a minimal invariant absorbing
area whose boundary can be easily obtained by five iterations of an arc of
LC−1, as shown in Fig.21a. This absorbing area, obtained by the procedure
outlined in section 3, constitutes a trapping region insidewhich the bursts
observed during the transient are contained. This means that, even if it is
difficult to predict the sequence of times at which asynchronous bursts occur,
an estimate of their maximum amplitude can be obtained by theconstruction
of the minimal invariant absorbing area which includes the Milnor attractor
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(a) (b)

Figure 19: (a) The four-band chaotic attracting set along the diagonal. (b)
The transient part of a trajectory converging to the four band chaotic set

Figure 20: Bursts away from the diagonal before synchronization occurs.
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on which synchronized dynamics take place. In such a situation, a method
to obtain a trajectories which never synchronize, so that the bursts never stop
and the iterated points fill up the whole minimal absorbing area, consists
in the introduction of a small parameters’ mismatch (see e.g. Bischi and
Gardini, 1998), such asε1 slightly different fromε2 or µ1 slightly different
from µ2, so that the symmetry is broken. This implies that the invariance of
∆ is lost, and consequently the one-dimensional Milnor attractor embedded
in no longer exists. The study of the effects of small parameters’ mismatches
may be important in economic dynamic modelling, as stressedin Bischi et
al., 1999c and Kopel et al., 2000.

(a) (b)

Figure 21: (a) Minimal invariant absorbing area, obtained by iteration ofLC,
including the Milnor attractor. (b) A trajectory filling upthe absorbing area,
after the introduction of a small parameters’ mismatch.

A similar effect is obtained even in the symmetric case, if the value of
the coupling parameterε is increased so thatΛnat⊥ increases until it becomes
positive, i.e. a blowout bifurcation occurs. After this bifurcation the bursts
which characterize the first part of the trajectory of Fig.s19 and 20, never
stop, i.e. the firms never synchronize.As is now a chaotic saddle, and on-off
intermittency is observed. This is what happens in the situation shown in
Fig.21b, obtained forε = 0.245, at whichΛnat⊥ = 2.2 × 10−2 > 0. Now
the point of a generic trajectory starting from the white region fill the whole
absorbing area, still bounded by segments of critical arcs.
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We end this section noticing that in the case

ε1 = ε2 = 0 (45)

we obtain the Cournot map with logistic reaction curves

Tε=0 :

{
x′ = µ1y(1− y)
y′ = µ2x(1− x)

(46)

whose properties have been analyzed in the previous section.
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