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1 Introduction

The time evolution of an oligopoly system is often describs@n:-players
game which is played repeatedly, in the sense that at eactedidime pe-
riodt = 0, 1, ... , n producers choose their actions,(t), ... , zn(t),
by solving an optimization problem based on the knowledgihefactions
observed in the past. For example, the classical Cournostmgnt (see
Cournot, 1838, Teocharis, 1960, and many others) is olitdigeassuming
that at each period any player chooses its own productiategly which is
a best response to the choices of the competitors in thegqueperiod.

This is often expressed in the form of a discrete dynamicsibsy defined
in a given strategy space C R™. Given an initial condition:(0) € S, the
sequence of actions(t), t € N, is obtained inductively by the iteration of
amapl : S — S defined by

x' =T (x) 1)

where’ denotes the unit-time advancement operator, that is, ifigie hand
side variables represent the actions at time petitigbn the left hand side
represents the set of actions at tither 1).

A dynamic process defined by the iterated map (1) may coeveEr@
given steady state (or equilibrium) or to a more complexaator. Indeed, as
shown in a pioneering paper by Rand, 1978, quite complexrdigsa with
periodic and chaotic trajectories, may characterize thg fon behavior of
duopoly games (see also Postom and Stewart, 1978). Exaofdesnom-
ically interesting discrete time dynamic oligopoly gam&swing complex
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dynamics, have been given by Dana and Montrucchio, 1986, Fa@a,
1997, 2000, Kopel, 1996, Agiza et al., 1999, Bischi et alQd4) 2001a,
Agliari et al., 2000b, just to quote a few. In these papers ghown that dy-
namic Cournot oligopoly games may have time evolutions twhiver settle
to a steady state, and in the long run they exhibit boundedrdies which
may be periodic, or quasi-periodic or chaotic. In such casdslimitation of
a bounded region of the strategy space where the system dysare ulti-
mately trapped, despite of the complexity of the long-rametpatterns, may
be an useful information for practical applications. Moreo as some para-
meters are varied, global bifurcations may cause suddditajive changes
in the properties of the attracting sets (see the contaatdaifions in Mira et
al., 1996 and the so called crises in Grebogi et al., 1983).

Another problem which often arises in the study of nonlimeaps which
describe dynamic oligopoly games concerns the existensevefral attract-
ing sets, each with its own basin of attraction. In this caggpblem of equi-
librium selection arises (see Van Huyck et al., 1994, Biacli Kopel, 2001)
because the dynamic process becomes path-dependenthigh kind of
long run dynamics is chosen depends on the starting condifithe game.
This opens the question of the delimitation of the basinsttohetion and
their changes as the parameters of the model vary.

These two problems lead to two different routes to compjexibe re-
lated to the complexity of the attracting sets which chanaoé the long run
time evolution of the dynamic process, the other one rel&ieithe com-
plexity of the boundaries which separate the basins whegralesoexisting
attractors are present. These two different kinds of coxitylare not related
in general, in the sense that very complex attractors mag siawple basin
boundaries, whereas boundaries which separate the basinspbe attrac-
tors, such as coexisting stable equilibria, may have vemyptex structures.

Both the questions outlined above require an analysis oflivieal dy-
namical properties of the dynamical system, that is, anyarsalvhich is not
based on the linear approximation of the map (1). When the’friamonin-
vertible (i.e. “many-to-one”) the global dynamical profies can be usefully
characterized by the method of critical sets, a powerfulitdmoduced in the
seventies (see Gumovsky and Mira, 1980a,b and refereneesrthMira et
al. 1996, Abraham et al. 1997) but only recently employeti@study of dy-
namic modelling of economic and financial systems (see@agdini, 1992,
Bischi et al., 1999b,c, 2000b, Agliari et al, 2000a, Puu 2088chi and
Kopel 2001, Bischi et al., 2001b, Dieci et al., 2001, Chilaret al 2001a,b).
Indeed, several dynamic models of oligopoly games are septed by the
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iteration of a noninvertible map , i.e. a point transformafi” which maps
distinct points into the same point. Loosely speaking, ¢his be expressed
by saying that the map “folds and pleats” the state space. é\shall de-
scribe in the following, the folding action associated whbk application of
a noninvertible map, as well as the “unfolding” associatéti the geomet-
ric action of the inverses, can be described by using thedlism of critical
sets. The repeated application of a noninvertible map teghafolds the
state space along the critical sets and their images, aed fis allows one
to define a bounded region where asymptotic dynamics gupérh Instead,
the repeated application of the inverses “repeatedly defdahe state space,
so that a neighborhood of an attractor may have preimagé®farit. This
may give rise to complicated topological structures of tagits, which may
be formed by the union of non connected portions.

The paper is organized as follows. In section 2 we recall siefiaitions
and properties of noninvertible maps. In section 3 we desdtie construc-
tion of absorbing regions and in section 4 we recall the mairtact bifurca-
tions which lead to complex basins of attraction. In sechiove describe the
properties of a Cournot duopoly game and in section 6 we densiie spe-
cial case of with symmetric duopoly games (i.e. duopoly gawi¢h identi-
cal players) leading to chaos synchronization problemsiddted basins.

2 Noninvertible maps: Basic definitions and properties

In this section we give some basic definitions and propgriéed a mini-
mal vocabulary, about the theory of noninvertible maps effitane and the
method of critical sets. Amap : S — S, S C R", like the one defined
in (1), transforms a point € S into a unique point’ € S. The pointz’ is
called the rank-1 image af, and a pointz such thatl’'(z) = 2’ is a rank-
1 preimage ofr’. Starting from an initial conditiom, € S, the repeated
application (iteration) of" uniquely defines a trajectory

T(x0) = {x(t) = T"(x0),t = 0,1,2, ...}, (2)

whereT? is the identity map and™® = T'(7"~1).

A setA C R"™is trapping if it is mapped into itself['(A) C A, i.e.
if z € AthenT(z) € A. A trapping set is invariant if it is mapped onto
itself: T(A) = A, i.e. all the points ofd are images of points ofl. A
closed invariant setl is an attractor if it is asymptotically stable, i.e. if
a neighborhood’ of A exists such thaf'(U) C U andT%(z) — A as
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t — +oo for eachr € U.
The Basin of an attractot is the set of all points that generate trajecto-
ries converging tA

B(A) = {x|T"(x) = A ast — +oo} (3)

Starting from the definition of stability, le’(A) be a neighborhood of an
attractor A whose points converge td. Of courseU(A) C B(A), but
also the points of the phase space which are mapped ibsafeer a finite
number of iterations belong 8 (A4). Hence, the total basin of (or briefly
the basin ofA) is given by

B(A)=|JT(U(A) (4)
n=0

whereT~!(z) represents the set of the rahkpreimages of: (i.e. the points
mapped intac by T'), andT~"(x) represents the set of the ranlpreimages
of z (i.e. the points mapped intoaftern applications ofl").

If z # y impliesT'(z) # T (y) thenT is an invertible map, because
the inverse mapping that gives= 7! (x’) is uniquely definedotherwise
T is a noninvertible map. So, noninvertible means “many#e-pthat is,
distinct pointsz # y may have the same imadg(x) = T (y) = «’. Hence,
several rankt preimages may exist and the inverse relation 7! (x')
may be multivalued. Geometrically, the action of a nonitileée mapT
can be expressed by saying that it “folds and pleats” theeplan that the
two distinct pointsp; and p, are mapped into the same pojnt This is
equivalently stated by saying that several inverses aieatkeinp, and these
inverses “unfold” the plane.

For a noninvertible map (1™ can be subdivided into regiot,, k£ > 0,
whose points havé distinct rank-1 preimages. Generally, as the paint
varies inR", pairs of preimages appear or disappear as this point srdsse
boundaries separating different regions. Hence, suchdawies are charac-
terized by the presence of at least two coincident (mergingjjnages. This
leads to the definition of the critical sets, one of the digtiishing features
of noninvertible maps (Gumovski and Mira, 1980, Mira et 4996):

Definition. The critical se'S of a continuous maf#’ is defined as the
locus of points having at least two coincidefat:k — 1 preimages, located
on a set’'S_; called set of merging preimages.
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The critical setC'S is then-dimensional generalization of the notion of
critical value (when it is a local minimum or maximum valud)aone-
dimensional mah and of the notion of critical curvéC (from the French
“Ligne Critique”, following Gumowski and Mira, 1980), of soninvertible
two-dimensional map. The sétS_; is the generalization of the notion of
critical point (when it is a local extremum point) of a onerginsional map,
and of the fold curve.C_; of a two-dimensional noninvertible map. The
critical setC'S is generally formed byn — 1)-dimensional hypersurfaces of
R, and portions of”'S separate regions;, of the phase space characterized
by a different number ofank — 1 preimages, for examplg;, and.Z;. . 5 (this
is the standard occurrence).

From the definition given above it is clear that the relat@y =
T(CS_1) holds, and the points af'S_; in which the map is continuously
differentiable are necessarily points where the Jacob&archinant van-
ishes, so that if" is smooth we have :

CS_1 C Jo={peR" det DT (p) = 0} (5)

In fact, in any neighborhood of a point 6fS_; there are at least two distinct
points which are mapped 5 in the same point. Accordingly, the map is
not locally invertible in points 0€'S_;.

In order to explain the geometric meaning of the criticas skett us con-

sider a portion ofC'S, sayé?, which separates two regiod§ and 7, o
of the phase space, and I6t5_; be the corresponding locus of merging

preimages, i.eCS =T (6@_1). This means that two inverses Bfexist,

sayT* andT* which are defined in the regioﬁk+2 (and have respec-
tive ranges | in the regionB; and R, separated bﬁS 1). Both inverses
merge onCS_ 1 (i.e. they give merging preimages ars_ 1) and no Ionger
exist in the regionZ,. Now, letU Cc R"™ be a ball which |ntersect§S_1
inD =UNCS_,. ThenT (D) C Cs, andT (U) is “folded” alongC'S
into the regionZ; 5. In fact, considering the two portions bf separated by
6‘?,1, saylU; € Ry andUs € Ry, we have thafl'(U;) N T'(Us) is a non-
empty set included in the regidﬁkﬁ, which is the region whose points
have rank-1 preimages = 7; ' (p') € Uy andpy = T, * (p) € Us. This
means that two pointg; € U1 andp, € U,, located at opposﬂe sides with
respect toC'S_ 1, are mapped in the same side with respeoﬂlﬁ in the

This terminology, and notation, originates from the notidrritical points as it is used
in the classical works of Julia and Fatou.
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regionZx . This is also expressed by saying that the bai$ “folded” by

T alongC'S on the side with more preimages (examples in two dimensions
are given below, see e.g. Fig. 7). The same concept can beatmily
expressed by stressing the “unfolding” actiorfof!, obtained by the appli-
cation of the two distinct inverses iy, » which merge along’'S, because if

we consider abalV C Zj,,, then the set of itsank —1 preimaged; (V)
andT, *(V) is made up of two ballg} (V) € Ry andT, * (V) € Ry, and
these balls are disjoint i N C'S = (.

t 35
=3
ZO i
c=w4 © -1 Folding by T ¢
/_\
o D" ) fix)
fffffff S —
0 X, 112 X 1 f0) e
7 | ¢ I . f(x)
2 | | *
| |
| | Unfolding by T*
| T
‘ J—
. | | don < ¢
q L L w range
X < X3 \ 1.1
@ (b)

Figure 1: (a) The logistic map (b) Folding and unfolding ais.

For one-dimensional continuous mags= f(z), = € R, the critical set
is formed by the local maximum or minimum values. For examiple well

known logistic map (Fig.1a)
2’ = f(z) = pa(l - z) (6)

has a unique critical poirt= 1./4, which separates the real line into the two
subsetsZ, = (¢, +00), where no inverses are defined, atgd= (—o0, ¢),
whose points have two rank-1 preimages, computed by thenvenses

1 — 4q/ 1 I
ml:fll(x/)ziW; w2=f21(w’)=§+W
(7)

If 2/ € Zs, its two rank-1 preimages, computed according to (7), are lo
cated symmetrically with respect to the pointy = 1/2 = f; '(u/4) =
fyt(u/4), i.e. c_y is the point where the two merging preimages: @fre
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located. Of course, since the map (6) is differentiable, atthe first deriva-
tive vanishes. However, we remark that in general the cmmdif vanishing
derivative is not sufficient to define_;, because such condition may also
be satisfied by points which are not local extrema (e.g. riflegtion points
with horizontal tangent). Moreover, a critical point mayeavbe a point
where the map is not differentiable, as it happens for cantis piecewise
differentiable maps where critical points are located atkinks where local
maxima and minima are formed in the points at which two brasdtav-
ing slopes of opposite sign join, such as the well known teap wr other
piecewise linear maps (see Fig.2a).

The importance of the critical points lies in the fact thatiseparate re-
gionsZ; characterized by different number of preimages. We notesliew
that this property is not a characteristic only of the caitipoints, because
the boundary of a regiofd;, may also be a particular set, called prefocal set,
whose properties are associated with inverses not defirtbeé whole space,
as shown in Bischi et al. 1999a.

In order to explain the action of a critical point, let us coles again the
logistic map and let us notice that, asnoves from0 to 1, the correspond-
ing imagef(z) spans the intervdD, c] twice, the critical point: being the
turning point. In other words, if we consider how the segmert [0, 1] is
transformed by the map we can say that it is folded and pleated to obtain
the imagey’ = [0, ¢]. This folding gives a geometric reason why two dis-
tinct points ofy, sayx; andz,, located symmetrically with respect to the
pointc_; = 1/2, are mapped into the same poairite 4/ due to the folding
action of f (Fig.1b). This is a geometric interpretation of the fact & is
a two-to-one map.

The same arguments can be explained by looking at the twisEweap-
pings f; ' and f, ' defined in(—oo, 11/4] according to (7). We can con-
sider the range of the mapformed by the superposition of two half-lines
(—o0, /4], joined at the critical point = /4 (Fig.1b), and on each of
these half-lines a different inverse is defined. With otwerds, instead of
saying that two distinct maps are defined on the same radfvie say that
the range is formed by two distinct half lines on each of whachnique
inverse map is defined. This point of view gives a geometiscaization
of the definition of the critical point of rank-1 as the point in which two
distinct inverses merge. The action of the multivalued iggesayf ' =
frtu fyt, causes an unfolding of the range by mappingto ¢_; and by
opening the two half-lines one on the right and one on thefeft ;, so that
the whole real lineR is covered. Of course, a small segmehtnside Z»
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and not including;, is splitted by the two inverses into two disjoint segments,
located at opposite sides with respect 1q.

Up to now we have considered continuous maps, but the piepeart
critical points can easily be extended also to a discontiaunap!". In this
case a point of discontinuity may be a critical poinffofThis happens when
the ranges of the map on the two sides of the discontinuitg bavoverlap-
ping zone, so that at least one of the two limiting values ef filmction
at the discontinuity separates regions having a differemtlyer of rank-1
preimages. The difference with respect to the continuoae athat now
the number of distinct rank-1 preimages through a criticahpdiffers gen-
erally by one (instead of two), that is, a critical vatu@n general the critical
setC'S) separates regions;, and Z;.1. An example is shown in Fig.2b,
with a one-dimensional map. The discontinuity point is #ical pointc_,
and both the two limiting values of the function in; are critical points,
sayc, andcy, associated with_;, as bothc, andc, separate regions; and
Z5. Notice that now the critical points have no merging rank-dipages.
Consider for example the critical poisg in Fig.2b. The two distinct rank-1
preimages oty are the critical point_; and the so called “excess rank-1
preimage’c®, ,. More on the properties and bifurcations of discontinuous
maps of the plane can be found in Mira et al., 1996. In thefiotig sections
we shall only consider, for the sake of simplicity, contineanaps.

Figure 2: (a) A piecewise linear noninvertible map. (b) Acdistinuous
noninvertible map.

Another interpretation of the folding action of the unimbdgap f is
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the following. Sincef(z) is increasing forz € [0,1/2) and decreasing
for x € (1/2,1], then its application to a segment C [0,1/2) is ori-
entation preserving, whereas its application to a segment (1/2,1] is
orientation reversing. This suggests that an applicatfofi to a segment
vs = [a,b] including the pointc_; = 1/2 preserves the orientation of the
portiona, c_1], i.e. f([a,c-1]) = [f(a), c], whereas it reverses the portion
[c_1,b],1.e. f([c=1,b]) = [f(b), ], sothaty, = f (~3) is folded, the folding
point being the critical point of rank-d

The extension of these concepts to the case of two-dimealsiamin-
vertible maps leads us to the notion of critical curves. Vsent here some
geometric characterizations of the action of the criticaves, because they
present some new features with respect to the one dimehsias@, and
their properties can often be used as a useful visualizdtiothe analo-
gous properties of-dimensional cases, with > 2. Moreover, dynamic
duopoly games, represented by a continuous map of the phamétself
T :(x1(t), x2(t)) — (z1(t + 1), z2(t + 1)) defined as

2 =T, 29)
h { zy = To(w1,22) ®

constitute the simplest oligopolies, and are often stunti¢de literature.

If we solve the system of the two equations (8) with respec¢héoun-
knownsz; and z, then, for a given(z),z%), we may have several so-
lutions, representing rank-preimages (or backward iterates) (@f;, z5),
say (x1,z2) = T~ (2}, 7)), whereT~! is in general a multivalued rela-
tion. In this case we say th&t is noninvertible, and the critical curves
LC are the boundaries which separate regions of the planeatearad
by a different number of rank-1 preimages. Alohg’ at least two in-
verses give merging preimages, located on the set denotéd’by. For
a continuous and (at least piecewise) differentiable namtible map of the
plane, the study of the sign of the Jacobian determinant egm dne to
find the critical curves, because the €&t _; is included in the set where
det DT'(z1,x2) changes sign, sinc€ is locally an orientation preserving
map near pointéz;, x2) such thadet DT'(z1,x2) > 0 and orientation re-
versing ifdet DT'(z1,z2) < 0, andLC = T'(LC_,).

In order to understand this point, let us recall that whenesr transfor-
mationz’ = Ax of the plane onto itself

/

G- T1 = a1171 + a12%2 (9)

: ’
Ty = G2121 + A2222
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is applied to a plane figur, then the area of the transformed figure =
G(F') grows, or shrinks, by a factgr = |det A| with respect to the area of
F, being A the Jacobian matriXG, and ifdet A > 0 then the orientation of
the figure on which (9) is applied is preserved, wheredstifA < 0 then the
orientation is reversed. This property of a linear two-disienal map can
be applied to the linear approximation of (8) in a neighborhof a point
p = (z1,x2), given by an affine map, the Jacobian matbif” evaluated at
the pointp:

. 8T1 /8901 8T1/8x2
- 6T2/6x1 6T2/8x2

In fact, a small area around a pojnt= (x1,x2) is reduced (or expanded)
by a factorp (x1,z2) = |det DT (x1,x2)|, and if in a neighborhood qf
the Jacobian determinant is positive (negative), then thp (8) is locally
orientation preserving (reversing). This gives an iniaitrisualization of the
relation between the locus of points where the Jacobiamrdetant changes
sign and the folding properties of continuous two-dimenaimoninvertible
maps (see Fig.3).

14
LC
" det DT>0

(orientation
preserving)

DT (p) (10)

det DT<0

(orientation
reversing)

Figure 3: Folding properties of a continuous two-dimenaionap.

This implies that if the map (8) is continuously differetia in the
whole plane, then

LC_1C Jy= {(1‘1,1‘2) € R2| det DT(SL‘l,SL‘Q) = 0} (11)

Let us remark, however, that condition of vanishing Jaaolsanecessary
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for differentiable maps, but not sufficient to detect aicait point of LC'"_;
as defined above (i.e. the inclusion in (11) may be strict).

In order to give a geometrical interpretation of the actibnhe multi-
valued inverse relatiof —1, it is useful to consider a regiof;, as the su-
perposition ofk sheets, each one associated with a different inverse. Such a
representation is known as Riemann foliation of the plare ésg. Mira et
al., 1996). Different sheets are connected by folds joirvng sheets, and
the critical curveLC belongs to the projections of such folds on the phase
plane (note however that the vice-versa is not necessauidy tiue to the
properties associated with prefocal sets, see Bischi,et989a).

We illustrate these concepts by some examples. Let us aontid
guadratic map (see Mira et al., 1996, Abraham et al., 199Mabkby

' =ax+y
T.{y,:berQ (12)
This is a noninvertible map. In fact, giveri andy/, if we try to solve the
algebraic system with respect to the unknowrady we get two solutions,
given by

1. Jr==Vvy —> ] 1. Jr=vy —b
e {res SR e iy e
if 4/ > b, and no solutions if/ < b. In other words, (12) is &, — 75
noninvertible map, where; (region whose points have no preimages) is
the half planeZ, = {(z,v) |y < b} and Z, (region whose points have two
distinct rank-1 preimages) is the half plade = {(z,y) |y > b}. The line
y = b, which separates these two regions, is the locus of poinvisd&vo
merging rank-1 preimages, located on the line- 0. Hence the ling = b
is LC and the liner = 0 is LC_; (see Fig.4.). Being (12) a continuously
differentiable map, the points @fC'_; necessarily belong to the set of points
at which the Jacobian determinant vanishes,li€., C Jy, where

Jo = {(z,y) | det DT (z,y) = 0}

and, since for the map (12) we have

det (DT(z, y)) = det ([ . (1) D .

in this caseL.C_; coincides with.Jy (they axisz = 0). The critical curve
LC is the image by’ of LC_;

LC =T(LC-1) =T ({z = 0}) = {(z,y) [y = b}
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We can consider the regiati, of the two-dimensional noninvertible map
(12) as formed by the superposition of two sheets, and onafdbhse sheets

a different inverse map is defined. The two sheets join aliegcritical
line LC, where the two inverses merge (see Fig.4). This is the Riaman
foliation for the Zg — Z, map (12). The action of the inversés, ! = Tfl U

T, ! causes an unfolding of the sheets by opening these shesipaite
sides with respect to the lineC'_;. That is, given a pointz’, ') € Z» the
preimages| ! («/,y') andT, ! («',4/) are located on the right and on the
left of LC_; respectively.

LC,

LC b 2

=b

Figure 4: Riemann foliation associated with the niam (12).

We propose another example, given by the riap (z,y) — (2/,7/)
defined by

2=yl —y)+e(y—x)
T { Y = (1 — ) + ol — ) (14)

Thisis aZy — Z, — Z, noninvertible map. In fact, giver andy/’, if we solve
the fourth degree algebraic system with respect to the wnkeo andy we
may get four, two or no real solutions. The inverse maps areasy to write
by an elementary analytic form, since they are obtained hyrgpa fourth
degree algebraic system. Nevertheless, it is easy to ditieatcurves in
order to obtain the boundaries separating the regignsharacterized by
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different numbers of inverses. In fact, from the Jacobiatritna

—€1 pi(1=2y) + &1
DT =

(:E, y) ,u2(1 — 2:[,‘) + €92 —E&9

the equation of.C_, defined bydet DT'(x,y) = 0, is given by

Appomy — 20 (g + 1) @ — 2111 (g + €2) Y + piyfig + pa€2 + pogr = 0.

HenceLC_, is formed by the two branches, sé)ﬁ(fl) and LC'(f’}, of an
equilateral hyperbola (see Fig.5a). Also the critical $etmk-1 LC' =

Figure 5: (8)LC_;. (b) LC and the Zone%/, — Z4 — Zy. (c) Riemann
foliation for the map (14).

T(LC-4), obtained by taking the image Wy of LC_4, is formed by two
disjoint branchesZC = LC@ U LC®), whereLC(@ = T(LC') and
Lc® = 7(LC™) (see Fig.5b). The brandiC(@) separates the regiot
and Z,, the branchL.C® separates the regior#s and Z,. The Riemann
foliation associated with the map (14) is qualitatively ts&leed in Fig.5c.
Notice that the cusp point diC®) is characterized by three merging preim-
ages at the junction of two folds.

An important property of the critical curves is that when eegracrosses
LC_; then its imagdl'(~) is folded alongLC, so that it is entirely included
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in the region characterized by an higher number of preimayegialitative
picture is shown in Fig.6. The effect on a plane figure is shawFig.7,
where the map (12) is applied to a circle crossing throlgh ;.

Zk+2

Figure 6: Folding of arcs crossing througid'_; .

Figure 7: Folding of a circle crossing througld'_ .
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3 Absorbing regions, chaotic attractors and their delitinita

Portions of the critical sef’S and its image€'S, = T%(CS) can be used

to obtain the boundaries of trapping regions where the asytiopynam-

ics of the iterated points of a noninvertible map are comfin€his can be
easily explained for a one-dimensional noninvertible nfapgexample the
guadratic map (6). In fact, it is quite evident that if we @tr the logistic
map for2 < p < 4 starting from an initial condition inside the interval
[c1, c], with ¢; = f(c), no images can be obtained out of this interval (see
Fig.8), i.e. the interval formed by the critical poinand its rank-1 image;

is trapping. Moreover, any trajectory generated from atiainéondition in

1

Figure 8: Absorbing interval

(0,1), entersjey, c] after a finite number of iterations. Following the termi-
nology introduced in Mira et al., 1996, the interyal, ¢] is called absorbing.
In general, for am-dimensional map, an absorbing regidrintervals in R,
areas in R, volumes in R, ...) is defined as a bounded set whose boundary
is given by portions of the critical s&t'S and its images of increasing or-
derCS, = T*(CS), such that a neighborhodd > A exists whose point
enter A after a finite number of iterations and then never escapsrite
T(A) C A, i.e. Ais trapping (see e.g. Mira et al., 1996 for more details).
Loosely speaking, we can say that the iterated applicafiamoninvertible
map, folding and folding again the space, defines trappagipns bounded
by critical sets of increasing order.

Sometimes, smaller absorbing regions are nested insidggerbone.
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This can be illustrated, again, for the logistic map (6), la@ in Fig.9a,
where inside the absorbing interal, ¢| a trapping subset is obtained by
higher rank images of the critical point, given By= [c1, c3] U [c2,¢]. In
Fig.9b it is shown that, for the same parameter value 3.61 as in Fig.9a,
the iteration of the logistic map gives points which neveapeA.

u=3.61

eie)

Co

C3 o — - - c=f(c,)

[ . e - ¢=1(c)

(a) (b)

Figure 9: Absorbing intervals nested inside, c] .

An absorbing regio, for which the property’(A) C A holds, may be
invariant, i.e. exactly mapped into itseff{ A) = A, or strictly mapped into
itself, T'(A) C A. Moreover, several invariant absorbing regions may exist,
one embedded into the other. In these cases the conceptiafahinvariant
absorbing region is often useful, where minimal means thalest one, in
the sense that no other smaller absorbing regions are riasied it.

Inside an absorbing region one or more attractors may eisivever,
if a chaotic attractor exists which fills up the absorbingioa then it is also
called chaotic region, and the boundary of the chaotic ctirds formed
by portions of critical sets. This is the situation shown ig.#, where the
absorbing intervall = [c1, ¢3] U ez, ¢] is invariant and filled up by a chaotic
trajectory, as shown in Fig.9b. To better illustrate thisnpowve also give
a two-dimensional example, obtained by using the map (12)ig.10a a
chaotic trajectory is shown, and in Fig.10b an absorbing areund it is
obtained by the union of a segmentlof’ and three iteratesC; = T%(LC),
1=1,2,3.

Indeed, following Mira et al., 1996, a practical procedusa be outlined
in order to obtain the boundary of an absorbing area (althaig difficult
to give a general method). Starting from a portion.6f_,, approximately
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taken in the region occupied by the area of interest, its endiy T of in-
creasing rank are computed until a closed region is obtaitduken such a
region is mapped into itself, then it is an absorbing afealhe length of
the initial segment is to be taken, in general, by a trial amdremethod,
although several suggestions are given in the books refedesbbove. Once
an absorbing ared is found, in order to see if it is invariant or not the same
procedure must be repeated by taking only the portion

v=ANLC_4 (15)

as the starting segment. Then one of the following two casesrs:

(case 1) the union ofn iterates ofy (for a suitablem) covers the whole
boundary ofA4; in which caseA is an invariant absorbing area, and

OA C 6 T"(5) (16)

k=1

(case I1) no naturain exists such thatJi", T%(v) covers the whole
boundary ofA; in which caseA is not invariant but strictly mapped into
itself. An invariant absorbing area is obtainedry.,7™(A) (and may be
obtained by a finite number of images 4j.

The application of this procedure to the problem of the digdition of
the chaotic area of Fig.10 by portions of critical curvesgasys us, on the
basis of Fig.10b, to take a smaller segmerind to take an higher number
of iterates in order to obtain also the inner boundary. Tiseltds shown
in Fig.11. By five iterates we get the outer boundary, showRignlla, by
more iterates also the inner boundary of the chaotic areatisag shown
in Fig.11b. As it can be clearly seen, and as clearly expdelsgehe strict
inclusion in (16), the union of the images also include s&varcs internal
to the invariant areal. Indeed, the images of the critical arcs which are
mapped inside the area play a particular role, because ¢theges represent
the "foldings” of the plane under forward iterations of thapnand this is the
reason why these inner curves often denote the portiongogtfion which
are more frequently visited by a generic trajectory insidgeampare Fig.10a
and Fig.11b) many examples are given in the literature on noninvertible
maps, see e.g. Mira et al.,, 1996. The points close to a draical.C;,

i > 0, are more frequently visited because there are severahctigiarts
of the invariant area which are mapped in the same regiosdd’.C;) in
i + 1 iterations.
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LC

(@) (b)

Figure 10: (a) Chaotic trajectory for a two-dimensional m@y The outer
boundary of the chaotic area obtained by the segment&pf k = 1,2, 3.

LC,

@ (b)

Figure 11: (a) Five iterates of LC give the outer boundanhef¢haotic area
shown in of Fig.10. (b) More iterates also give the inner latzumg.
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4. Contact bifurcations and the creation of complex basins

From (4) it is clear that the properties of the inverses aggontant in order
to understand the structure of the basins and the main bifars which
change their qualitative properties. In the case of nomiile maps, the
multiplicity of preimages may lead to basins with complaxistures, such
as multiply connected or non connected sets, sometimegtbbyinfinitely

many non connected portions (see Mira et al., 1994, Mira aaukzig 1995,
Mira et al., 1996, ch.5, Abraham et al., 1997,ch.5). In th&text of nonin-

vertible maps it is useful to define the immediate bdsiiA), of an attract-
ing setA, as the widest connected component of the basin which csHai
Then the total basin can be expressed as

B(A) = T7"(Bo(4))
n=0

whereT " (x) represents the set of all the rankpreimages of, i.e. the set
of points which are mapped inaftern iterations of the mafi’. The back-
ward iteration of a noninvertible map repeatedly unfolds fthase space,
and this implies that the basins may be non-connected,areed by sev-
eral disjoint portions.

Also in this case, we first illustrate this property by usagne-dimen-
sional map In Fig.12 the graph of &; — Zs — Z; noninvertible map is
shown, where two stable fixed points exist, denoted(bynd p, whose
basinsB (O) and B (p) are represented along the diagonal by light and dark
grey thick lines respectively. In Fig.12a the two basins@menected sets,
bounded by the unstable fixed poirtendr. As a parameter is varied, the
critical point ¢ (the local minimum), which separates the lower region
from the regionZs, moves downwards, until it has a contact with the basin
boundaryg, and a crossing occurs if the parameter is further changed. B
fore the contact > ¢ (see the enlargement in Fig.12b), whereas after the
contact we have < ¢. This implies that a portion o3 (O) entersZs,

i.e. the segmerlt, q) = Hy, thus causing the appearance of non connected
portions of B (O) nested insideB (p). Indeed, infinitely many non con-
nected portions (or holes) are suddenly created at the atobifarcation,
given by the preimages of any rank of the portifig of B (O) included

into Z3, seeH_; = T~%(Hyp), i = 1,2, ..., in Fig.12c. Before the bifurca-
tion B (p) = (q,r) (Fig.12a), after the bifurcation the basin pis given

2The example is taken from an evolutionary game proposedsaHBet al., 2001b.
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by the immediate basiB, (p) = (¢,¢-1,1) (Fig.12c), and all its preimages,
B (p) = Us2o T~ "(Byo), given by infinitely many segments that have the
unstable fixed point- as limit point. So, the contact between the critical
pointc and the basin boundagymarks the transition from simple connected
to non connected basins.

1.1 0.6
r
Zy
oc
Z)
0
o 0.3
0 @) X; 11 0.3 (b) Xy 0.6
1
Ha
H.,
Q-2
Gn.—l H_1 '/
a P N
<l
7H
0'03 } ° L
. © X,

Figure 12: (a) Graph of &; — Z3 — Z; noninvertible map and basins of
attraction ofp and O, before the contact between the critical pairdand
the basin boundary. (b) Enlargement. (c) The basins@andO after the
contact.

Similar global bifurcations, due to contacts between aaltisets and
basin boundaries, also occur in higher dimensional mapgenheral, the
origin of complex topological structures of the basinse likose formed by
non connected sets, can be easily explained on the basie géthmetrical
properties of a noninvertible map. In fact, suppose thiata fixed point of
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T,i.e. T(p) = p. Hence one of the preimagesofs p itself, but if 7! is
multivalued inp, i.e. p € Z;, with k > 2, then other preimages of the fixed
point p exist. If the fixed point is stable, anlly(p) is its immediate basin,
then the total basin gf must also include all the rank-1 preimages of the
points of By (p), which may be also far (i.e. disjoint) frod (p). Whenever
such disjoint preimages belong to regions where many iegegsist, higher
rank preimages aBy(p) must be included in the basin paind so oA. Such
behavior of the multivalued inverse @f may be better visualized by using
the concept of Riemann foliation (see Fig.13).

- SH
am SH
y’ ;
- Z Z,
U LC
X1

Figure 13: Riemann foliation which visualizes the basic nagism for the
creation of disconnected basins

Also in higher dimensional cases, the global bifurcatiohgvgive rise
to complex topological structures of the basins, like thimsened by non
connected sets, can be explained in terms of contacts afbeundaries
and critical sets. In fact, if a parameter variation causessing between
a basin boundary and a critical set which separates diffeegiionsz, so
that a portion of a basin enters a region where an higher nuafleverses
is defined, then new components of the basin may suddenkyaami the
contact. However, for maps of dimension greater thauch kinds of bifur-
cations can be very rarely studied by analytical methodsgeghe analytical
equations of such singularities are not known in generahcd¢hese studies
are mainly performed by geometric and numerical methods.

3A similar reasoning applies to any kind of attractor, such geriodic orbit (a cycle) or
a chaotic set.
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4.1 Basin bifurcations in a duopoly game with two stable Nemthlibria

We consider a Cournot duopoly game proposed in Kopel, 19896, f
which the structure of the basins and their qualitative gearare analyzed
in Bischi et al., 1999b. This game describes a market wheéreach time
periodt¢, two firms decide their productions for the next period oe ba-
sis of best reply functions expressedg@ag + 1) = r;(g; (¢)), i,j = 1,2,

i # j, where the reaction functions assume the form of logistic maps
ri(q;) = w;q; (1 — g;) (in Kopel, 1996, these functions are derived as Best
Responses). The dynamic duopoly game is obtained by asguihgihcom-
petitors do not immediately adjust to the optimal quantigytcomputed on
the basis of the profit maximization problem, but that thelyikit some kind

of inertia: they only adjust their previous production qiitzes in the direc-
tion of the Best Response. The time evolution of the gametesiodd by the
iteration of the two-dimensional map: (q1, ¢2) — (¢}, ¢5) defined by

- { ¢t =1=M)q+Aipqe (1 — o) ‘ 17

g5 = (1= X2) g2 + Aopioqn (1 — q1)

where the parameters;, € [0,1], ¢ = 1,2, represent the speeds of ad-
justment. The fixed points of map (17), located at the iretisns of the
two reaction curves, coincide with the Nash equilibria & thuopoly game
(see Kopel, 1996). As shown in Bischi et al., 1999b, undeaggimption
= iy = i, the fixed points of (17) can be expressed by simple analytic
expressions, and a range of parameters;, As exist such that two of them
are both stable. For example, for the set of parameters ngéd.ll4a, given
by u = 3.5, A1 = 0.6, A2 = 0.8, four equilibria exist, indicated bg, S,
E7 andEs in the figure:O andS are saddle points, whereés and E» are
both stable, each with its own basin of attraction, &) and B (E»),
represented by white and light grey respectively (the dagly gegion rep-
resents the basin of infinity, i.e. the set of initial commlis which generate
unbounded trajectories).

In the presence of multiple stable Nash equilibria the nobbf equilib-
rium selection arises, and this naturally leads to the curesf the delimita-
tion of the basins of attraction. As argued in section 2, tloperties of the
inverses of the map become important in order to understamdttucture
of the basins and their qualitative changes. Indeed, the(@igps a non-
invertible map, as it can be easily deduced from the factdhetn a point
¢ = (q},q,) € R?, its rank-1 preimage# ' (q'), computed by solving
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the fourth degree algebraic system (17) with respect to tlaatifiesq; and
g2, may be up to four. Itis easy to realize that the map (17) israrvert-
ible map ofZy — Zy — Z, type, its Riemann foliation is similar to the one
associated with the map (14) analyzed in section 2, see Fig. 5

Being the magl’ continuously differentiableL.C_; coincides with the
set of points on whicldet DT = 0, which gives

1 Iy (1=X)(1—=X)
(q1 - 5) ((p - 5) S AN e, (18)

This equation represents an equilateral hyperbola, whasdtanches are
denoted byL.C'*) andLC") in Fig.14. It follows that alsd.C' = T(LC_ 1)

is the union of two branches, s&y@ = T(LC') andLC® = T(LC").
The branchL.C'®) separates the regidfy, whose points have no preimages,

from the regiorn?,, the other branctC(@) separates the regidfy from Zy,
whose points have four distinct preimages (see Fig.14).

Figure 14: (a) Simply connected basinigf. (b) Disconnected basin &,
due to a contact bifurcation.

In order to understand how complex basin structures arangatawe
start from a situation in which the basins are connected Bk¢sthe one
shown in Fig 14a. In this situation, the smaller baBif\F ) is a simply con-
nected set, and the boundary which separates the b@gifs) and B (E2)
is given by the whole stable s#t*(.S) of the saddle5. In Fig.14a,W#(5S)
is entirely included inside the regiois and Z,. However, the fact that a
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portion of W*(S) is close toLC®) suggests the occurrence of a global bi-
furcation. If the parameters are changed, so that a congéelnii’*(S)
andLC occurs, this contact will mark a bifurcation which causeaslifative
changes in the structure of the basins. If a portio®3@¢f; ) entersZ, after
a contact withLC'®), new rank-1 preimages of that portion will appear near

LCQ, and such preimages must belong2dFE;). Indeed, this is the situ-
ation shown in Fig.14b, obtained after a small chang&;ofThe portion of
B (E4) insideZ, is denoted byH,. It has two rank-1 preimages, denoted by
H(fl) andH(fl) , Which are located at opposite sides with respeﬁ(f@ and
merge on it (in fact, by definition, the rank-1 preimagestaf arc of LC(®)
which boundH, must merge alongC@). Theseti_; = H(fl) UH(fl) con-
stitutes a non connected portionBf £ ). Moreover, sinceé{_; belongs to
the regionZy, it has four rank-1 preimages, denotedH)(ZQ),j =1,..,4
in Fig.14b, which constitute other four “islands” &f (E;) , or “holes” of
B (E»). Points of these “islands” are mapped intfy in two iterations
of the mapT'. Indeed, infinitely many higher rank preimagesij exist,
thus giving infinitely many smaller and smaller disjoinsfands” of B (£ ).
Hence, at the contact betweBr? (S) = 0B (E;) andLC the basinB (E;)
is transformed from a simply connected into a non conne@tedsnstituted
by infinitely many disjoint components. The larger conegatomponent of
B (E1) which containsE; is the immediate basi®, (), and the whole
basin is given by the union of the infinitely many preimagésb (F1):
B(E1) = Upzo T~ (Bo (E1)) = Bo (E1) U |20 7" (Ho)|. So, also
in this two-dimensional example, the global bifurcatiorieticauses a trans-
formation of a basin from connected set into the union ohitdly many non
connected portions, is caused by a contact between a tsétand a basin
boundary. However, since the equations of the curves iedalvthe contact
cannot be analytically expressed in terms of elementagtikums, the occur-
rence of contact bifurcations can only be revealed numigridehis happens
frequently in nonlinear dynamical systems of dimensioragrethan one,
where the study of global bifurcations is generally obtditireough an inter-
play between theoretical and numerical methods, and the@e of these
bifurcations is shown by computer-assisted proofs, basddie@knowledge
of the properties of the critical curves and their graphieplesentation (see
e.g. Mira et al., 1996, for many examples). This “modus opdifas typical
in the study of the global bifurcations of nonlinear two-émsional maps.

This implies that an extension of such methods to the studiygbier di-
mensional noninvertible maps is not easy in general. Inde@de nontriv-
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ial practical problems arise, related to the obvious redéisanthe computer
screen is two-dimensional, so the visualization of objete phase spaces
of dimension greater than two, and the detection of conttisng these
objects as their shapes change, may become a very diffagit tin other
words, the extension to higher-dimensional systems ofdbelts on contact
bifurcations, which gave so many interesting and promiseslts in the
study of two-dimensional noninvertible maps, may becomers kiard and
challenging task, due to the difficulties met in the compuatgsisted graph-
ical visualization. For example, in Agiza et al., 1999, aeaed Cournot
game is considered, whose time evolution is obtained bytéhation of the

three-dimensional map : (q1, ¢2, ¢3) — (41, 45, ¢5)

@ =1 =A)q1+ A [g2 (1 —q2) + g3 (1 — g3)]
T:9 ¢5=010=X)g2+Napofgz(1—g3)+ a1 (1 —q1)] (19)
g3 = (1= 2X3) g3+ A3p13[q1 (1 — q1) + q2 (1 — g2))]

which can be seen as the extension of the game illustratege abothe
case of three players. In Agiza et al., 1999, two-dimengieeaations are
employed in order to visualize the basins of coexistingaators, but this
method is not useful to detect the occurrence of qualitathanges in the
structure of the basins and the contact bifurcations whacise such changes.
The same game has been re-examined in Bischi et al., 200kze veim-
hanced graphical methods have been used to modulate thityopfathe
outer objects in order “to see through”, in order to visuabbjects which are
nested inside other objects . Moreover, the critical seltéchlivare now two-
dimensional surfaces embedded in a three-dimensionak @Eece, have
been represented like semi-transparent veils, so thatdbeiacts with por-
tions of basin boundaries, also given by two-dimensiondbsas, can be
detected. Some example of the kind of graphical resultsreddaare shown
in Fig.15, which can be considered just as snapshots of éethsaquences
which allow interactive rotation of the three dimensioriglifes. In Fig.15
the basins of four coexisting stable Nash equilibria areasgnted by dif-
ferent colors, and the region outside is the outer boundangtitutes the
basin of infinity. The sequence of figures shown in Fig.l&acly show that
a contact bifurcation occurs at which one of the basins rsfoamed from
connected into a non connected set. The occurrence of tisligbifurca-
tions is caused by a contact between a basin boundary antitalgurface,
after which a portion of the immediate basin enters a zoneackerized by
a higher number of preimages, as explained above. In theegbe critical
surfaces are not shown, because a proper visualizatiomesdbe usage of
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several grades of colors. The animated sequences whichesmplthe con-
tacts can the seen in the web page associated with the papesdby et al.,
2001¢.

Figure 15: Example of contact bifurcation of basins of atica in a three-
dimensional map.

5 An important class of Cournot duopoly games

In this section we consider a repeated Cournot duopoly madgl naive
expectations, i.e. a classical discrete-time Cournohté&ment modeled by
the iteration of the two dimensional map

v =R e

wherer; andrs are the reaction functions (or best reply functions) define
in X andY respectively (so tha® is defined in the rectangl& x Y ).
In a famous paper by Rand, 1978, it is proved that quite caxgy@am-
ics, with periodic and chaotic trajectories, can emergmftioe iteration of
(20). Other peculiar properties of this kind of Cournot dolgpgames are
given in Dana and Montrucchio, 1986, where it is shown thatgtoper-
ties of the two-dimensional map (20) can be deduced from thpepties
of one-dimensional maps obtained by the composition ofehaetion func-
tions, while peculiar properties of the bifurcations assea with the two-
dimensional maps (20) are given in Lupini et al., 1997. 8tgrtrom these
papers, Bischi et al., 2000a, show that, in general, magsedbirm (20) are
characterized by multistability, i.e. coexistence of malrstinct attractors,

4See the URLht t p: / / bandvi z. cg. t uwi en. ac. at / basi nvi z/ di sj oi nt/
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that may be stable periodic cycles or cyclic chaotic attractand study the
structure of their basins of attraction.

We now recall some general properties of the dynamic duogaiges
(20), and we stress the peculiar structure of the critidsl aed the basins.

5.1 General properties of mags (z,y) — (r1 (y),r2 (x))

A trajectory of the mapd represents the Cournot tatonnement of
a duopoly game in which the producers simultaneously upitie pro-
ductions at each discrete time period. Moreover, as alreatiged in Dana
and Montrucchio, 1986, among the possible sequences getdnathe it-
eration of (20) there are also the so called Markov-Peifegtiibria (MPE
henceforth) processes, where at each discrete time onlplager moves,
that is, the two players move alternatively, each chooduegbest reply to
the previous action of the other player. This occurs if thegghpoin{x;, ;)
belongs alternatively to the graphs of the reaction cugves ro(x) and
x = r1(y). This condition is satisfied if the initial condition (i.benceforth)
(0, yo) belongs to a reaction curve, i.gy = r2(x) (player 1 moves first)
or o = r1(yo) (player two moves first). This follows from the fact that the
set

Riz =RiURy (21)

with Ry = {(r1(y),y) |y € Y}and Ry = {(z,7m2(z)) |z € X}, that rep-
resents the union of the graphs of the two reaction functisna trapping
set for®, i.e. (R12) C Ry9. Infact, it is easy to realize that the image
of a point belonging to a reaction curve belongs to the othaction curve,
SO any i.c. £o,y0)€ Ri2 generates a trajectory entirely belongingitg,,

D! (z0,90) € Ri2 Vt > 0. We shall call such a trajectory an MPE trajectory.

A particular MPE trajectory is a fixed point of the map In fact,

(z*,y*) is a fixed point of® iff z* = r (y*) andy* = re (z¥), i.e. a
point of intersection of the grapli$, and R, of the two reaction functions,

(z*,y") € Riz2. (22)

While an i.c. {o,y0)€ Ri2 generates an MPE trajectory, a “generic” i.c.
(z0,y0)¢ Ri2 shall give rise to a Cournot tatonnement, with, ;) not
belonging, in general, t&;2. Note, however, that a trajectory starting with
ani.c. (o, y0)¢ R12 may enter the trapping sé;» after a finite number of
steps, since a point of the skB{, can have preimages out &fi.
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Let us turn now to the generic dynamics. We first recall sonop@rties
of the map (20), that will be used in the following. Let

Fx)=rioryg(x) ,z€ X, and G(y) =reom (y) ,y €Y (23)

where we assume that the sé&fsandY are such that the maps andG
are well defined. Then the following three properties hade( Dana and
Montrucchio, 1986)

Property 1.0% (z,y) = (F*(z),G*(y)) for each integerk 1.

This property easily follows from the fact that the squarepndd (the sec-
ond iterate of®) is a decoupled map, sin@(z,y) = ®(r1(y),r2(x)) =
(ri(ra(x)), r2(r1(y))) = (F(z), G(y)).

Property 2. For each > 1 the two one-dimensional mags and G
satisfy:

rioG"(y) =riorgoryo..orgori(y) = F"ori(y)

roo F"(x) =rgorjorgo...oryory(x) =G"ory (x)

From Property 2 we deduce that the cycles of the nfapsid G (and their
stability properties), are strictly related. In partiaula correspondence be-
tween the cycles of the two maps is defined by the following

Property 3. Iz, ..., z,, } isan n-cycle o' then{yi, ..., yn} = {ra(x1), ..., r2(zn)}
is an n-cycle of~ .

If {y1,...,yn} is an n-cycle ofz then{xy,...,x,} = {r1(y1),...,71(yn)} is
an n-cycle ofF

Such kinds of cycles o' and G shall be called conjugate. That is,
for each cycle ofF’ (resp. G ), a conjugate one off (resp. F' ) exists,
and the two conjugate cycles have the same stability prpgbdth are
stable or both are unstable). In fact, due to the chain-raete deriv-
ative of composite functions, the cycles, ..., x,} of F' and the conju-
gate cycle{y; = ra(x1), ..., yn = r2(x,)} of G have the same eigenvalue
A =1l DF(z;) = [[;21 DG(yi) = [[;2q Dra(yi) Dra (zi).

These properties show that the cycles of the Cournotdnane related to
the cycles of the one-dimensional mapandG defined in (23). Now we an-

swer to the following questions: i andG have cycle'?) = {a3,....,23}
and C(GQ) = {y{, ...,y:;}, of periodp and g respectively, with eigenvalues
Ar = [[4_; DF(z}) and\¢ = [[{_; DG(y;) how many cycles of> are
generated by these cycles ? and how can the points of thesaytcle be
obtained ? and what are their stability properties ?.
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We first consider the cage= ¢ = 1, that is, the case of fixed points of
F andd@. Due to the correspondence defined by property’ &andG have
the same number of fixed points, say and if X* = {z7, ..., z},} is the set
of fixed points of F thenY™ = {y7, ..., y%,}, with y* = ro (2), is the set
of fixed points ofG. Let us consider the:? points of the phase space ®f
obtained by the Cartesian produ€t x Y*. Among these points there are
exactlym fixed points of the Cournot magp, belonging toR; N Rz, given
by

= (ahyl) = (@} (@}) i=1,.,m (24)

whereas the remaining? — m points of the form(a:;‘, yj) i # 7, belong
to 2-cycles of the magh. In fact

i) (sc;‘,y;‘) =0 (scf,rg (:L’;‘)) = (7’1 o 7’2(1:;7),7“2 (LL’;"))
= (F(z}),r2 (x})) = (2], 97)

and, analogously,
O (aF,y;) = @ («f,r2 (7)) = (2F,9]) -

Since each 2-cycle is formed by two pointsXf x Y* not belonging to the
trapping set?;, we haveN, = (m? —m) /2 cycles of® of period 2, given
by

O = {(af,ra(a?)), (¢f,ra(2l))} i< j, 4,5 =1.m.  (25)

Thus the existence of distinct fixed points ofF' (and consequently aF)
implies the existence, for the Cournot mé&pof
(a) m fixed points given by (24)
(b) m (m — 1) /2 cycles of period two given by (25).

The stability of the fixed points and of the 2-cyclesd®fcan be easily
obtained. For the fixed points (24) we have

N oy 0 Dry (2 (x}))
Do (xi7r2 (xz» = Dry ($:<> 0

so the eigenvalues avg » = £./DF(z}) = £1/DG(y}), i.e. the fixed
point is a stable or unstable node (focus) if the multiplieoat the fixed
pointx; is positive (negative) with modulus less or greater thanrespec-
tively. Note in particular that a fixed point d@f cannot be a saddle.
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For a 2-cycle, which is given by (25), we have

_ | DF(zj) 0

D (2 () = | 70 ppan)

so the eigenvalues avg = DF(z}) and\; = DF(z}). Then a 2-cycle
is a stable node if both the fixed points BfandG, whose coordinates give
the points of the cycle, are stable, whereas it is an unstatue (saddle) if
both the fixed points are unstable (one stable and one uektabh 2-cycle
of @ cannot be a focus cycle. Note also that a 2-cyclé afan never be a
MPE cycle, since if the points of* x Y* used to form the 2-cycle belong
to the trapping sef?;> then they necessarily are fixed pointsdaf We now
generalize these results to the case in wiiidas a cycle of odd period.

Cycles of the maj® due to cycles of of odd period.

Let F have a cycle of odd period = 2k + 1, sayCl(ﬁ) = {zF, ..., 2},
with eigenvalue\ = [];"_, DF(z}) (consequentlys has the conjugate cycle
C'((;”) = {y},...,yi} with y* = ro (z}), i = 1,...,n, with the same eigen-

value)\). By combining the points of the Cartesian prodﬁt}?) X 081) the
following distinct coexisting cycles of the Cournot mépare obtained:

(a) one cycle of the same odd peried= 2k + 1 given by
CS = {® (2f,79 (2}41)) t =1, .. m} (26)

with eigenvalues\; o = +V/A. HenceCfI,”) is a stable or unstable node (or
focus) depending on the modulus (and the signy.of

(b) k = (n — 1)/2 cycles of even perio@n given by

102 = (! (o}, 7> (a1)) .1 = 1,... 20}

2Cé)2n) _ {<I>t (xf,re (23)),t =1, ...,2n} (27)

bOg = (@ (wh,r2 (27)) t = 1,20} .

with eigenvalues\; = A\ = ) coincident with the common eigenvalue of
the conjugated n-cycles df andG, so thatinI,2"), i =1,..,k are stable
(unstable) star nodes if the cyclééw") and Cg‘) are stable (unstabfe) Of

5A star-node is a node-cycle with real eigenvalues havinglemoduli (see Mira, 1987,
p.194).



3 Global Analysis of Dynamic Games 31

these(k + 1) cycles onlylcgn) is formed by points belonging to the trap-
ping setR;o, i.e. onlylcgn) gives an MPE periodic trajectory (MPE cycle).
(c) Now let us suppose, as frequently happens, thaéias more than one
distinct cycles of periodh = 2k + 1, and hence the same holds fGr In
this case, in addition to the points of the phase plan® obtained by the

Cartesian product of the pairs of conjugate cycles, thexeakso the points
obtained by combining the points of the non-conjugate oRes.example,

let F have two n-cyclesZ*X}”) = {z%,...,2}} andCZ}") = {z%,...,2"}
with eigenvalues\, = [[;_; DF(z}) and\, =[], DF(z}) respectively.
This implies thaiG has the conjugate cycI@X(G") = {ra(x3), ..., 2(z})}
and CZé”) = {ra(27), ...,m2(=}) } with the same eigenvalues. In this case,
by combining thein? points of the Cartesian produéCX}") U CZ}")) X

(CX(G") U C’Z(G")) the2 (k + 1) cycles listed in (26) and (27) can be ob-
tained by using thén? points of(C’X}") X CZ(G")) U (C’Z}") X CX(G")),

and by the remainingn? points furthern cycles of® of period2n are ob-
tained, given by

TME = (@ (5,72 (2)) £ = 1, ..., 20}
2n * *

PMEY = {@ (27,72 (55)) , t =1, ..., 2} (28)

nM(gn) = {(I)t (fE?TQ (Z;D) t=1, "'72n}

The eigenvalues of the cycles (28) can be easily computade £102" is
diagonal, and are given, for each cycle,hy= A\, andX: = A,. We call
these cycles, formed by combining the points of pairs of conjugate cy-
cles of F" andG, cycles of mixed type, in order to distinguish them from the
cycles described in (a) and (b) (formed by combining the fsahconjugate
cycles of ' andG), which shall be denoted as cycles of homogeneous type.

These results can be easily generalized to the case in Wwhiasm dis-
tinct coexisting cycles of period = 2k + 1, sayXY}) ={a71, i b
XT(:} = {z},...,x},, }, and consequently¥ has the conjugate cyclésfg) =

{ra(@t))s ooy P2 (@) Fooees X% = {ro(a,y), oo ra(afyn) ). I this case we
have:

(a) m cycles of® of odd periodn given by
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8 (8 (o () £ ) D

(b) mk cycles of® of even perio®n, m of which are MPE cycles, of ho-
mogeneous type, i.e. made up of points belonging to the Slant@roducts
between pairs of conjugate cycles, according to;(27)

(c) m (m — 1)n/2 cycles of® of even perio®n, of mixed type, according
to (28).

Of course, iln = 1 (i.e. k£ = 0) these results coincide with those, already
shown above, of the case of fixed points of F.

Cycles of the maj® due to cycles of’ of even period.

Let us now consider the case in whi¢hhas a cycle of even periad =
2k, sayCl(m") = {7, ...,z }, with eigenvaluex = [, DF(z}), and let
C(G”) = {yi,...,yr }, with y¥ = ra(z}), be the conjugate cycle ¢, that, as
usual, has the same eigenvalue. By combining:thgoints of the Cartesian
productC}”) X Cg), n?/(2n) = n/2 = k cycles of® of period2n, of
homogeneous type, are obtained, given by

1CPY {8 (o, ra(a0)) £ = 1. 20)
2n * *
205" = {®" (af,72(25)) ,t = 1,..., 2n} (29)

kc«gn) — {(I)t (xT,TQ(ZﬁZ)) t=1,.., Qn}

Of thesen/2 cycles onlleg") is an MPE cycle. For each cyd@fl,Q"), i=
1,...,k, the eigenvalues arg = X2 = . Hence all the coexisting = n/2
cycles are star nodes with the same stability property asahgigate cycles
of F andG that generate them.

Also in this case cycles of mixed type can be obtained {and conse-
quentlyG) hasm > 1 coexisting cycles of period = 2k. In fact, in ad-
dition to them pairs of conjugated cycles, each generatrgycles of® of
period2n according to (29), the remaining? — m pairs of non-conjugate
cycles generatém? — m) n/2 further cycles of perio@n of mixed type,
with eigenvalues\; = [[;-; F(z}) and\y = [, F(z}), wherex andz;
are points of distinct cycles df. The periodic points of these cycles®fof
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mixed type are given by

M {8 (afra (o) = L 20}
2M n) {(I)t (z§)),t= 1,...,2n} (30)
nM‘gn = {(I)t (IETJAQ (Z:;,>) t=1, "'72n}

and none of these is an MPE cycle. We notice that the only aotisk dif-
ference between the case of cycleg:odf odd periodn = 2k + 1 and that

of cycles of even period = 2k is given by the presence, in the case of odd
n, of the cycle of the same odd period®fgenerated by pairs of conjugated
cycles by taking the “central point” of the cycles, accogdia (26).

Cycles of the maj® due to coexisting cycles df of different periods.

Let us now consider the cycles of the Cournot nbagbtained from the com-
bination of points of cycles of" andG having different periods. Of course
such cycles are not conjugate and will give rise to cycled of mixed type.

Let C}?) = {zf,...2}} andC? = {2, ...,z } be ap-cycle and a-cycle
of F, with eigenvalues,, = [_, DF(z}) andA, = [, DF (2 ) respec-
tively. The mapG has the conjugate cyclé%p = {ra(z7), ...,r2(x}) } and

C'((f) = {ra(2}), ..., r5(2%) } with the same eigenvalues. Lebe the least
common multiple betweemandq andn, ny the two natural numbers such
thats = ni1p = neq. ThenN = pq/s distinct cycles ofp of period2s are

obtained by combining thgg points ofOl(ﬁ’) X C((f) U Cﬁ?) X Cg’). These
cycles are given by

1M = {®" (21, 72(27)) ., t =1,...,2s}

i
2M & = {® (2},72(23)) st = 1,..., 25} (31)

NM(; %) = {‘I)t (a7, m2(2n)) t=1,..., 28}
All these cycles have the same eigenvalues, givenby= A\j' and Ay =

Ay?. Hence the cycles (31) are stable if and only if both the Q@%’) and
C’}?) are stable. We also note that none of the cycles (31) is a MBIE.cy

From the arguments given above, the following propositfoiiew:
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Proposition 1. Cycles of even peri@d of the map® are obtained from:

e pairs of conjugate cycles of peried odd or even, of’ andG accord-
ing to (27) or (29) respectively

e pairs of non-conjugate cycles of periadof F' and G, according to
(28) or (30)

e pairs of cycles off" andG of different periodg andgq, such that the
least common multiple betweerandq is n, according to (31).

Proposition 2. Cycles of odd periath + 1 of the map® are obtained
from pairs of conjugated cycles of odd peridd + 1 of F" andG according
to (26).

We recall that MPE cycles can only be obtained in case (i.ft) wi> 1
(as previously stated, MPE cycles of period 2 cannot exihe stability
properties of the cycles of the map (20) can be deduced frensttbility
properties of the cycles of andG that generate them. This important fea-
ture can be expressed by the following general statement:

Proposition 3. A cycle” of the map® is stable if and only if the two
cycles of F and G, from which the periodic points of' are obtained, are
both stable.

As an example, let us consider reaction functions exprdsged(y) =
1y(1 —y) andra(z) = pyx(1 — ). In this case the functions andG are
given by the fourth degree functions

Fz)=rioms(2) = mpsr (1) (L+ ppa® — ppr)  (32)

and
Gy) =raori(y) = ppoy (1 —y) (1 + my* — my) (33)

Let us consider the parametgrs = 3.4 andu, = 3.6, so that the function
F' has four fixed pointszy = 0, 27 = ¢*, x5 = p*, 23 = u*, all unstable.
The same holds fo€/, whose fixed points have coordinatgs = ra(x}),

i = 0,..,3. The Cartesian produdtz}} x {y’} is formed by 16 points
of R? and includes the four fixed points of the mdp located at the four
intersections between the reaction curves (these are lerag 1-cycles
belonging toR;2) and six 2-cycles with periodic points out &f 5 (i.e. not

MPE cycles) three of which are on the coordinate axes.
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From the properties state above, it follows that cycles of period of®
can only come from cycles of the same odd period'@nd, while cycles
of even period of can come from several kinds of cycles BfandG, of
even or odd period, with equal or different periods, conjaga not. From
Proposition 1 we can also deduce another property, whidhaisacteristic of
the Cournot maps (20):

Proposition 4. IfF' has a stable cycle of periad > 2 then the two-
dimensional ma@ is characterized by multistability, i.e. it has severat dis
tinct coexisting attracting sets.

As an example let us consider again two logistic reactiostions, as given
in (32) and (33). Fop; = 3.83 andp, = 3.84 the mapF has only one
attracting cycle of period 3, sayr1, x2, x3}, with eigenvalueh = 0.39.
Then from (26) and (27) we get the following coexisting attirag cycles of
the map (20):

e astable 3-cycld & (z1,72(x2)),i = 1,2,3} ¢ Ry (i.e. not MPE)
e astable 6-cycld ' (z1,72(21)),i =1,...,6} € Ri2 (MPE cycle)

all of homogeneous type.

The peculiar property of multistability of a Cournot map i@ more
evident wherF' has coexisting attracting cycles, because in this casahilso
the cycles of mixed type in (31) are attracting for

For example, consider; = 3.53 andpuy, = 3.55. In this caseF' has
a stable 2-cyclgx;, z2} coexisting with a stable 4-cyclgz, ..., z4}, and
the same occurs for the conjugate cyclegiof Then the mapb has five
coexisting attracting cycles:

e one homogeneous cycle of period 4, with periodic points
{®" (z1,72(21)),i =1,...,4} € Riz, an MPE cycle (according to
(29) for the 2-cycle)

e two homogeneous cycles of period 8, given by
C' = {®"(z1,72(21)),i = 1,...,8} € Ry, another MPE cycle, and
C? = {®" (z1,72(22)),i = 1,...,8} which is not MPE (according to
(29) for the 4-cycle)

¢ two cycles of mixed type of period 8, given by
M = {(I)Z ((El, T’Q(Zl)),i =1,..., 8} and
M? = {®" (z1,72(22)),i = 1, ..., 8}, (according to (30)).
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The periodic points of these cycles are represented in Fog.where also
their basins of attraction are shown, represented by diftezolors.

We close this section by noting that, due to Property 2, aecgt( is
always the image by, of a cycle of F, thus we can state that the study of
only one of the maps defined in (23) is sufficient to give a ptete under-
standing of all the cycles of the two-dimensional miand their stability
properties.

Figure 16: Basins of different coexisting attracting cgcle

5.2 Basins of attraction

As we have seen, the coexistence of attracting sets is actbastic
property of the class of maps (20), thus the structure of trasins of attrac-
tion becomes of particular interest in order to predict thgaptotic behav-
ior of the games starting from a given i.cxo(yo). The peculiar structure
of the basins of attraction, clearly visible in Fig.16, i9o#rer characteristic
property of the class of maps (20), and we recall in this eadfie results
presented in Bischi et al. 2000a.

From Propositions 1 and 2 of the previous section we knowahgt:-
cycleC of ®, of odd or even period, is necessarily associated with a cycle
of F' and one ofG, sayC, and G, respectively. Let us denote y(C') the
total basin of an attractaf'. It is given by B(C) = ;2 , 2" (Bim(C)) ,
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whereB;,, (C) is the immediate basin @f, made up of the connected com-
ponents of the basin containirfg. Analogously, for the one-dimensional
map F' we haveB(C;) = U, F " (Bim(Cy)) , whereB;,,(C;) is the
immediate 1-dimensional basin©f, along ther axis The following propo-
sitions hold (for a proof see Bischi et al. 2000):

Proposition 5. Let C be an attracting cycle ®fassociated with the
cyclesC,. and C of F', then

(i) BC)C [B(C:: )UB(C.)] x r2([B(Cx ) U B(C% )))

B;»(C) is made up of rectangles which include the points of C.

Proposition 6. Letb be a map of the form (20). Then:
(i) The image of a horizontal segment is a vertical segmethtvize-versa.
(i) The preimages of a horizontal segment, if any, are galsegments and
vice-versa.

Proposition 7. For any periodic point Ps( y1) of the map T of period
n> 1, the horizontal and vertical lines= y; andx = x1, issuing from P,
are trapping sets for the mapy.T

From the propositions stated above it follows that any sadgtle of
T has stable and unstable sets formed by the union of segmbitk are
parallel to the coordinate axes.

5.3 Chaotic attractors and their basins

As stressed in the seminal paper of Rand, attractors whéchmare com-
plex than periodic cycles can be easily observed in the tangdynamics of
Cournot maps (20). The transition from regular (i.e. pddptb chaotic (i.e.
aperiodic, or erratic) behavior of the Cournot tatonnemexatdeled by map
(20), is marked by sequences of local bifurcations thatteraa increasing
number of cycles, both stable and unstable. As it is well kmaavchaotic
regime is characterized by the presence of infinite unstpbtiodic points
and, as remarked in Rand (1978), it is interesting to knowt\imal of bi-
furcations cause the creation of such cycles as some pamaisiehanged.

Since the dynamical properties of the Cournot nkagre strictly linked
to those of the one-dimensional mapsindG, these local and global bifur-
cations are expected to extend also to the dajm fact, whenever a bifur-
cation occurs that creates (eliminates) cycles of the fggnd thus also of
G, many cycles of the Cournot map are simultaneously createdigated)
at the same parameter’s value. Such bifurcations of thednage often of
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particular type, due to the presence of two eigenvaluessihailtaneously
cross the unit circle, in which case we say that the cycle® ahdergo a
degenerate bifurcation, whose effects are generallyrdiftsfrom those of
a generic local bifurcation. In particular, a standard fotdlip bifurcation
for the one-dimensional maf (or equivalently forz), is always associated
with a degenerate bifurcation @fof fold-type (the eigenvalues cross the unit
circle with A\; = Ay = 1), or of flip-type (A1 = A2 = —1), or of saddle-type
(A1 =—-land)y =1).

We can extend our propositions to attractors which are monepéex
than point cycles. The existence of such attractors occhenhe reaction
functions are non monotonic functions. In fact, if the reactfunctions
r1(y) andry(z) are invertible, i.e. increasing or decreasing functiohent
the dynamical behavior of the Cournot mépis very simple, because in
this case also the magsandG are monotone. Instead, whepand/orrs
are noninvertible maps also the functiohsand G are noninvertible maps.
The attractors of" can be, besides k-cycles, also k-cyclic chaotic intervals
or Cantor sets (a Cantor set is an attractor in Milnor’s sékii@or, 1985),
that can occur at particular bifurcation values, as the drdgum points).
Let us call byA, (resp. A,) any one of the possible attractors Bf(resp.
(7). Then results similar to those given in Propositions 1 astllBhold:

Proposition 8. Let A be an attracting set®f Then attracting sets df
exist, say A and A, (A, =A, or A, #A,), such that

()AC (ALUA,) x (1r2(Az U Ay))

(i) B(A)C [B(A.)UB(A.)] x r3([B(Az ) U B(A. )

(iii) Bz’m(A)g [Bim(Az )UBim(Az )] X T2([Bim(Az) U Bim(Az )]) and
Bim(A) is made up of the rectangles which include the elemen#s of

More generally, the structure related to the Cartesianuymisdfor the
attracting sets ob holds for any invariant set @b, also repelling, that is:

Proposition 9. Let S be any invariant set®fi.e. ®(S)=S ), then there
exist invariant sets of', say S and S (S, =S, or S, #S,), such that
SC (S,US;) x (72(Sz U S2)).

As we have seen, when the attracting setg'aficlude something more
complex then a cycle, for example a chaotic set made up otkeoghaotic
intervals, then also the attracting setsbodire more complex. However, also
in this case the asymptotic sets®fmust belong to Cartesian products of
attracting sets of’ and, and such two-dimensional sets may include seg-
ments and rectangles. For example, if the nhamas cyclic chaotic intervals
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then, following the procedure indicated in Proposition Wlic chaotic at-
tractors of the Cournot map can be obtained by the Cartesian product of
the cyclic chaotic intervals of' and the conjugate ones Gf so that chaotic
rectangles are obtained in the phase plan®.of

We again consider the particular Cournot game (20) withslogreac-
tion functions. Consider; = 2.8131 anduy, = 3.85. The mapF has
3-cyclic chaotic interval§ I1, I, I3} inside which the generic dynamics are
aperiodic. Then{.Jy, Jo, J3} = {ro(I1),72(l2),r2(I3)} are the conjugate
chaotic intervals of5. In this case the nine rectangles of the Cartesian prod-
UCt{Il,IQ, 13} X {Jl, Ja, Jg} = {IZ X Jj, 1,7 =1,2, 3} include an attract-
ing set of® made up of 3-cyclic rectangles (see Fig.17a) coexisting wit
an attracting set made up of 6-cyclic rectangles (see Hiy,.1side which
the dynamics are chaotic. The two distinct basins of atba@re shown in
Fig.17c.

@ ®

Figure 17: (a) 3-cycling chaotic rectangles. (b) 6-cyclihgotic rectangles.
(c) Their basins of attraction.

As the cyclic chaotic intervals of the mdpare bounded by the critical
points of 7, sayc®) = F (%)), and their images,gF) = Fk(F), the
sides of the chaotic rectangles of the two-dimensional fmape formed by
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segments of lines through these critical points and péatallihe coordinate
axes. Hence the boundaries of these cyclic chaotic reesiagt completely

known on the basis of the knowledge of the critical po'mi@ of the one
dimensional mag’ (and those o€~, given byc,(fL)1 =1y (c,(fF) )-

This fact can be also seen from the more general point of vietheo
delimitation of the absorbing and the chaotic areas of tiérmwertible maps
of the plane. The critical manifold of rank-0, denoted b§'_;, belongs
to the locus of points at which the Jacobian determin&x@| = Dra(x) -
Dry(y) vanishes. Hencé&C'_; is given by the union of vertical lines and
horizontal lines related t®ry(z) and Dri(y) respectively. Among these
lines only those crossing through points of the local ex&r@fthe reaction
functions are branches d@fC_;. In other words, Ie‘m‘{l, j=1,..,N, be
the points of local maxima or minima of(z) andy* |, k = 1,..., M, be the
points of local maxima or minima of; (y), then

LC_lz{(x,y):x:Tj_l,jzl,...,N}U (34)

U {(l’,y) Yy =7" k= 1,...,M}.

The critical set of rank-1, denoted C, is obtained ad C = ®(LC_;).
From Proposition 6 we deduce tha€' is formed by segments belonging to
horizontal and vertical lines. In particular, the imagesibgf the linesz =
7’ , belong to the lines of equation= 7’ = ro (7’ , ) i.e. the horizontal
lines through the maximum and minimum values of the readimction
ro(z), and the images of the lings = 7* belong to the lines of equation
z =7T" = ry (y%,) which are the vertical lines through the maximum and
minimum values of the reaction functief(y).

The branches of the critical sé&tC' separate the phase plane into re-
gions whose points have different numbers of preimagesekample, for
the Cournot map with logistic reaction curves the critiaadve of rank-0 is

formed by the two branchdsC_; = LC(_al) u Lc®), where

1

LC’(_a):{(g;yy)‘ y:%} and LC(_I)%:{(.I‘,y)‘-T:i} (35)

Also LC is formed by two branche,C = LC(® U LC®), whereLC(®) =
® (z,1) is the half-line defined by

1 . 1
T =Tk with y < 1t (36)
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andLC®) = & (1,y) is the half-line defined by

1 . 1
Y= qH with z < i (37)

In this case the two branches 6 separate a region, denoted By in
Fig.18, whose points have no real preimages, from a regamted by7,,

whose pointgz, y) have four real preimages, given Jngf) X y(lf), where

(1,2):L + 274 . 172):L + 274
=g (uz \ Ha —4pey ) 5 oy G Vi — A

Critical sets of higher rank, i > 1, defined asLC; = &+ (LC_;) are
important because generally the absorbing areas and tléccheeas of a
noninvertible map are bounded by segments of critical curvéis is true
also for the absorbing and chaotic rectangles and segmigfits map (20).
For example in the situation shown in Fig.18 we have a chaatiactor
whose boundary is given by segmentsiaf’, LC;, and LCs>. As usual,
segments of critical curves of higher rank bound zones éntié@ chaotic
area where the points are more dense, i.e. are more freguesitid by the

phase point of a generic trajectory.

2.8197 w2= 3.85 iz 2.8197 u2E= 3.85

o 7

(&)
LC1

Lt Lc®

4 Lo
i Lc@

(@ (b)

Figure 18: (a) Chaotic attractor of the Cournot map with $agireaction
curves. (b) Boundary of the chaotic attractor obtained lgyrents ofLCy,
k=1,2.
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6 Duopoly games with identical players: synchronizati@fgling and inter-
mittency phenomena

In this section we consider a dynamic duopoly game, whose éwolution
is represented by the iteration of a two-dimensional mapii@he case of
identical players. This means that the dynamical systent nemsain the
same if the variables; andzs are interchanged, i.§.0c P = PoT , where
P : (x1,m9) — (z2,21) is the reflection through the diagonal

A= {(.’Kl,{tQ) S R2‘{K1 = {EQ} . (38)

This symmetry property implies that the diagonal is mappéal ikself, i.e.,

T (A) € A, which corresponds with the obvious statement that, in a de-
terministic framework, identical competitors, startingrh identical initial
conditions, behave identically for each time. The trajgegembedded into

A, i.e. characterized by, (t) = x2(t) for everyt, are called synchronized
trajectories, and they are governed by the one-dimensimaplgiven by the
restriction of7 to the invariant submanifold

x(t+1) = f(x(t)) with f=T|a:A — A. (39)

In Bischi, Gallegati and Naimzada, 1999, the one-dimeradiorodel (39)
has been considered as the model of a representative agess @ynamics
summarize the common behavior of the two synchronized cttope

A trajectory starting out of\, i.e. withxzy # yo, is said to synchronize
if |21(t) — x2(t)] — 0 ast — +oo. A question which naturally arises, in
the case of symmetric competition models, is whether idahtiompetitors
starting from different initial conditions will synchrare, so that the asymp-
totic behavior is governed by the simpler one-dimensionadeh (39). This
guestion can be reformulated as follows. &tbe an attractor of the one-
dimensional map (39). Is it also an attractor for the two-ehsional mag'?
Of course, an attractod; of the restrictionf is stable with respect to per-
turbations along\, so an answer to the question raised above can be given
through a study of the stability of; with respect to perturbations transverse
to A (transverse stability). 1/ is a cycle, then the study of the transverse
stability is the usual one, based on the modulus of the e&jees of the cycle
in the direction transverse #y, whereas the problem becomes more inter-
esting when the dynamics restricted to the invariant sulfoldrare chaotic.
Indeed, dynamical systems with chaotic trajectories emdednto an in-
variant submanifold of lower dimensionality than the tgithhse space have
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raised an increasing interest in the scientific commurgge(e.g. Ashwin et
al., 1996, Buescu, 1997, because the phenomenon of chadeaegization
may occur (see e.g. Fujisaka and Yamada, 1983, Pecora aral, 3800,
Hasler and Maistrenko, 1997), i.e., the time evolution eftthio competitors
synchronize in the long run even if each of them behaves idadigt More-
over, in this case, Milnor attractors (see Milnor, 1985)ethare not stable in
Lyapunov sense appear quite naturally in this context. Ttebanderstand
the meaning of this point, we recall some definitions.

Definition. A is an asymptotically stable attractor (or topologicalaattr
tor) if it is Lyapunov stable, i.e. for every neighborhobdof A there exists
a neighborhood” of A such thafl™ (V) c U vVt > 0, andB (A) contains a
neighborhood ofA.

In other words, IfA is a topological attractor then a neighborhd&do
A exists such thaf™®(z) — A ast — +oo foranyz € W. In this case
the stable seB (.A), also called basin of attraction, is an open set given by
B(A) = Upso T7HW).

Definition. A closed invariant sefl is said to be a weak attractor in
Milnor sense (or simply Milnor attractor) if its stable g8{.4) has positive
Lebesgue measure.

Note that a topological attractor is also a Milnor attractgnereas the
converse is not true. Really the more general notion of Milttractor has
been introduced to evidence the existence of invariantveeitsh “attract”
many points even if they are not attractors in the usual tagpchl sense.

We now recall some definitions and results related to thélpro of
chaos synchronization, see Buescu, 1997, for a more coenjpettment.
Let T be a map of the plané\ a one-dimensional trapping subspace dnd
a chaotic attractor (with absolutely continuous invariaegsure on it) of the
restriction (39) ofl" to A. The key property for the study of the transverse
stability of A, is that it includes infinitely many periodic orbits whicheann-
stable in the direction along. For any of these cycles it is easy to compute
the associated eigenvalues. In fact, due to the symmetheahtp, the Ja-
cobian matrix of’ computed at any point ak, sayDT'(z, ) = {T;; (x)},
is such thatl; = Ty andT12 = T»;. The two orthogonal eigenvectors
of such a symmetric matrix are one paralledgsayv = (1,1), and one
perpendicular to it, say, = (1, —1), with related eigenvalues given by

)\H (z) =T (x) +Ti2(x) and A} (x) =T11 (z) — Tha (2)
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respectively. Of course) (z) = f'(z). Since the product of matrices
with the structure ofDT'(z,z) has the same structure as wellk&ycle

{51, ..., s} embedded inta\ has eigenvalues| = [T, (si) and\s =

Hle AL (si), with eigenvectors) andv . respectively.

In the recent literature on chaos synchronization, stglsitatements are
given in terms of the transverse Lyapunov exponents, bywthie “average”
local behavior of the trajectories in a neighborhood of thaiiant set4,
can be understood, and new kinds of bifurcations can be tdetesuch as
the riddling bifurcation or the blowout bifurcation. Forlaemtic setd; C A,
infinitely many transverse Lyapunov exponents can be ddfas

N
. 1
AL = Jim ;m PYRED] (40)

where{s; = f'(so),i > 0} is a trajectory embedded i .

If 2o belongs to &-cycle thenA; = In|A% |, so that the cycle is trans-
versely stable i\, < 0, whereas ifzy belongs to a generic aperiodic tra-
jectory embedded inside the chaotic gktthen A is the natural trans-
verse Lyapunov exponett’, where by the term “natural” we mean the
Lyapunov exponent associated to the natural, or SBR (Boaien-Ruelle),
measure, i.e., computed for a typical trajectory taken énciiaotic attractor
As. Since infinitely many cycles, all unstable aloag are embedded inside
a chaotic attractod, a spectrum of transverse Lyapunov exponents can be
defined, see Buescu, 1997,

AP <L S AT <L S AP (41)

The meaning of the inequalities in (41) can be intuitivelylerstood on the
basis of the property that’}** expresses a sort of “weighted balance” be-
tween the transversely repelling and transversely aiigicl/cles (see Na-
gai and Lai, 1997). IfAT** < 0, i.e. all the cycles embedded i, are
transversely stable, thef, is asymptotically stable, in the usual Lyapunov
sense, for the two-dimensional mdp However, it may occur that some
cycles embedded in the chaotic s&f become transversely unstable, i.e.
AT# >0, while A’f” < 0. In this case A; is no longer Lyapunov stable,
but it continues to be a Milnor attractor, i.e. it attractsosipve (Lebesgue)
measure set of points of the two-dimensional phase spacd. $a Ais a
chaotic attractor of | o with absolutely continuous invariant measure, then
a sufficient condition for a4 be a Milnor, but not topological, attractor for
the two-dimensional map, is that
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(a) at least ond:-cycle embedded iM is transversely repelling, i.e.
‘)\(f)‘ >1,and

(b) the Lyapunov exponetit’* is negative.

This means that the majority of the trajectories Arare transversely
attracting, but some (even infinitely many) trajectorigsidle A can exist
whose transverse Lyapunov exponent is positive. In othedsydrans-
versely repelling trajectories can be embedded into a &haet which is
attracting only “on average”. In this case we have weak ktabi stability
in Milnor sense, but not asymptotic stability.

The transition from asymptotic stability to attractivityllg in Milnor
sense, marked by a change of sign/gf®* from negative to positive, is
denoted as the riddling bifurcation in Lai and Grebogi, 19@8 bubbling
bifurcation in Venkataramani et al., 1996). Even if the aoence of such
bifurcations is detected through the study of the trangveyapunov expo-
nents, their effects depend on the action of the non linearfar fromA,
that is, on the global properties of the dynamical systemfaét after the
riddling bifurcation two possible scenarios can be obsaaording to the
fate of the trajectories that are locally repelled alongr{@ar) the local un-
stable manifolds of the transversely repelling cycles:

(L) they can be reinjected towards, so that the dynamics of such tra-
jectories are characterized by some bursts far ftbimefore synchronizing
on it (a very long sequence of such bursts, which can be obdevtienA |
is close to zero, has been called on-off intermittency inabtt Sommerer,
1994)

(G) they may belong to the basin of another attractor, in tvic&se the
phenomenon of riddled basins (Alexander et al., 1992) iginbd.

Some authors call local riddling the situation (L) and, bytcast, global
riddling the situation (G) (see Ashwin et al. 1996, Maiskemrt al., 1997,
1998a). When alsd'/** becomes positive, due to the fact that the trans-
versely unstable periodic orbits embedded iAtohave a greater weight as
compared with the stable ones, a blowout bifurcation ocaafiter which
A, is no longer a Milnor attractor, because it attracts a seboftp of zero
measure, and becomes a chaotic saddle, see Buescu, 19@rtidalar, for

min > ( all the cycles embedded int are transversely repelling, ant
is called normally repelling chaotic saddle. Also the macaopic effect of
a blowout bifurcation is strongly influenced by the behawbthe dynam-
ical system far from the invariant submanifald The trajectories starting
close to the chaotic saddle may be attracted by some atigesett far fromA
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or remain inside a two-dimensional compact set locatedrattloe chaotic
saddleA,, thus giving on-off intermittency.

As noticed by many authors, (see e.g. Ashwin et al., 1996s8yd 997,
Hasler and Maistrenko, 1997, Maistrenko et al., 1998ayen & the occur-
rence of riddling and blowout bifurcations is detected tiyto the transverse
Lyapunov exponents, i.e. from a local analysis of the lireggsroximation
of the map neat), their effects are determined by the global properties of
the map. In fact, the effect of these bifurcations is reldtethe fate of
the trajectories which are locally repelled away from a hbarhood of the
Milnor attractor A,, since they may reach another attractor or they may be
folded back toward4, by the action of the non linearities acting far from
A. WhenT is a noninvertible map, as generally occurs in problems absh
synchronizatiof, the global dynamical properties can be usefully described
by the method of critical curves and the reinjection of theally repelled
trajectories can be described in terms of their foldingoecti

This idea has been recently proposed in Bischi et al., 1998hé study
of symmetric maps arising in game theory, and in Bischi etl&®99c, for
the study of the effects of small asymmetries due to paraseismatches.

In these two papers the critical curves have been used tmdb&boundary
of a compact absorbing area inside which intermittency doddut phe-

nomena are confined. In other words, the critical curvesuaesl to bound
a compact region of the phase plane that acts as a trappimgledwessel
inside which the trajectories starting neguare confined. In particular, in
Bischi and Gardini, 1998, the concept of minimal invarians@bing area
is used in order to give a global characterization of theed#fiit dynamical
scenarios related to riddling and blowout bifurcations.otder to give an
example, let us consider the map (14) in the symmetric case

Ee1=¢e2=¢ , Py = o = [ (42)
so that the map (14) becomes
S =py(l—y) +e(y—2)
R e v “3)

The restrictionTs|a to the invariant diagonal can be identified with the
one-dimensional logistic map

' = fu(z) = pa(l — ). (44)

8In fact the one-dimensional restrictighmust be a noninvertible map in order to have
chaotic motion along the invariant subspate
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The eigenvalues of the symmetric Jacobian mairi(z, =) are

p(@) =p—2pzx , py(x)=2px —p—2e.

with eigenvectors which are parallel v (v; = (1,1)) and orthogonal to
A (v; = (1,—1)) respectively. It is important to note that the coupling pa-
rametere only appears in the transverse eigenvalue i.e. ¢ is a normal
parameter: it has no influence on the dynamics along theianasubman-
ifold A, and only influences the transverse stability. This allowgo con-
sider fixed values of the parametersuch that a chaotic attractdr, C A

of the map (44) exists, with an absolutely continuous ira@rmeasure on
it. So, we can study the transverse stabilityZafas the coupling between
the two components, measured by the parameteries. Suitable values of
the parameter, at which chaotic intervals for the restriction (44) exete
obtained from the well known properties of the logistic mapg e.g. Col-
let and Eckmann, 1980, Mira, 1987). For example, at the patemvalue
Tis = 3.5748049387592... the period-4 cycle of the logistic map undergoes
the homoclinic bifurcation, at which four cyclic chaoticténvals are ob-
tained by the merging of 8 cyclic chaotic intervals. By usjiigwe get a
four-band chaotic set; along the diagonal, as shown in Fig.19a. In this
case, fore = 0.24 we haveA ™ > 0 andA’[* = —4.7 x 10~® < 0. Hence,
A, is a Milnor attractor and local riddling occurs. The gendrajectory
starting from initial conditions taken in the white regiohFég.19a leads to
asymptotic synchronization. In Fig.19a the asymptoti¢ pba trajectory is
shown, after a transient a6, 000 iterations has been discarded. Indeed, if
also the transient is represented, Fig.19b is obtainedin@tne transient,
the time evolution of the system is characterized by sebensits away from

A before synchronization occurs, as shown in Fig.20, whezaliffierence

x¢ — y, computed along the trajectory of Fig.19, is representesirgstime.

It it worth to note the intermittent behavior of the trajagtosometimes it
seems to synchronize for a quite long number of iteratidms) & sudden
burst occurs. This phenomenon is also called on-off intemey.

The Milnor attractorA; is included inside a minimal invariant absorbing
area whose boundary can be easily obtained by five itesatibran arc of
LC_4, as shown in Fig.21a. This absorbing area, obtained by thee=gdure
outlined in section 3, constitutes a trapping region insithéch the bursts
observed during the transient are contained. This meanse¥en if it is
difficult to predict the sequence of times at which asynolorg bursts occur,
an estimate of their maximum amplitude can be obtained bgdhstruction
of the minimal invariant absorbing area which includes thini attractor
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“ran. 15000
pl= 3.574805 p2= 3.574805 el=-.24 e2=-.24 pi= 3.574865 pe= 3.574805 ei=-.24 e2=-.24

(a) (b)

Figure 19: (a) The four-band chaotic attracting set alomgdiagonal. (b)
The transient part of a trajectory converging to the fourdoelmaotic set

Mi= 3.5748@5 p2= 3.574805 el=-.24 e2=-.24

L .5

uuuuuuuuuuuuuuuuuuuu

Figure 20: Bursts away from the diagonal before synchrdiozaccurs.
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on which synchronized dynamics take place. In such a siuaéi method
to obtain a trajectories which never synchronize, so trebtlrsts never stop
and the iterated points fill up the whole minimal absorbimgaa consists
in the introduction of a small parameters’ mismatch (see &gpchi and
Gardini, 1998), such as slightly different fromes or p; slightly different
from u4, SO that the symmetry is broken. This implies that the imrase of
A is lost, and consequently the one-dimensional Milnor etitreembedded
in no longer exists. The study of the effects of small paransétnismatches
may be important in economic dynamic modelling, as stress&ischi et
al., 1999c and Kopel et al., 2000.

CY (b)

Figure 21: (a) Minimal invariant absorbing area, obtaingddration of LC,
including the Milnor attractor. (b) A trajectory filling uilhve absorbing area,
after the introduction of a small parameters’ mismatch.

A similar effect is obtained even in the symmetric case, &f ¥alue of
the coupling parameteris increased so that’!** increases until it becomes
positive, i.e. a blowout bifurcation occurs. After thisumfation the bursts
which characterize the first part of the trajectory of Fif%and 20, never
stop, i.e. the firms never synchronizé, is now a chaotic saddle, and on-off
intermittency is observed. This is what happens in the stmashown in
Fig.21b, obtained for = 0.245, at whichA7* = 2.2 x 1072 > 0. Now
the point of a generic trajectory starting from the whiteioedill the whole
absorbing area, still bounded by segments of critical arcs.
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We end this section noticing that in the case
€1 =¢e2=0 (45)

we obtain the Cournot map with logistic reaction curves

[ =my(—y)
R o

whose properties have been analyzed in the previous section

Acknowledgments. This work has been performed under the@sof
CNR, Italy, and under the activity of the national reseanqzt “Dynamic
Models in Economics and Finance: Evolution, Uncertaintgt &orecast-
ing”, MURST, ltaly.

References

Abraham, R., L. Gardini and C. Mira, 1987, Chaos in discrgteathical
systems (a visual introduction in two dimension), Sprirgerag.

Agliari, A., L. Gardini, D. Delli Gatti and M. Gallegati, 2@&, “Global
dynamics in a nonlinear model for the equity ratio”, Chaasit&ns & Frac-
tals, 11, 961-985.

Agliari, A., L. Gardini and T. Puu, 2000b, “The dynamics ofrepoly
game”, Chaos, Solitons & Fractals, 11, 2531-2560.

Agiza, H.N., G.I. Bischi and M. Kopel, 1999, “Multistabyitin a Dy-
namic Cournot Game with Three Oligopolists”, Mathematitd @omputers
in Simulation, 51, 63-90.

Alexander, J.C., J.A. Yorke, Z. You and |. Kan, 1992, “Ridtlmsins”,
Int. Jou. of Bif. & Chaos, 2, 795-813

Ashwin, P., J. Buescu and I. Stewart, 1996, “From attracarhaotic
saddle: a tale of transverse instability”, Nonlinearity703-737.

Bischi, G.I. and L. Gardini, 1998, “Role of invariant and nmral ab-
sorbing areas in chaos synchronization”, Physical Revigb8E5710-5719.

Bischi, G.1., L. Stefanini and L. Gardini, 1998 “Synchroaiion, inter-
mittency and critical curves in duopoly games”, Mathensaticd Computers
in Simulations, 44, 559-585.

Bischi, G.I., L. Gardini and C. Mira, 1999a, “Plane maps wd#momi-
nator. Part I: some generic properties”, Internationatdaluof Bifurcation
and Chaos, 9(1), 119-153.



3 Global Analysis of Dynamic Games 51

Bischi, G.I., L. Gardini and M. Kopel, 1999b, "Noninvertébimaps and
complex basin boundaries in dynamic economic models wiéxistng at-
tractors”, Proceedings SICC99, Verbania, Italy, 1999.

Bischi, G.I., M. Gallegati and A. Naimzada, 1999c, “SymmeBreaking
bifurcations and representative firm in dynamic duopoinga”’, Annals o f
Operations Research, 89, 253-272.

Bischi, G.I., C. Mammana and L. Gardini, 2000a, “Multistapiand
cyclic attractors in duopoly games”, Chaos, Solitons & Eaksg 11, pp. 543-
564

Bischi, G.1., L. Gardini and M. Kopel, 2000b, “Analysis of @lal Bifur-
cations in a Market Share Attraction Model”, Journal of Emmic Dynamics
and Control , 24, 855-879.

Bischi, G.I. and M. Kopel, 2001, “Equilibrium Selection ifNonlinear
Duopoly Game with Adaptive Expectations”, Journal of EaoimBehavior
and Organization, 46(1), 73-100.

Bischi, G.l., M. Kopel and A. Naimzada, 2001a, “On a rentkieg
game described by a non-invertible iterated map with denatai”, Non-
linear Analysis, Theory, Methods & Applications , 47(8)0885324.

Bischi, G.I., H. Dawid and M. Kopel, 2001b, “Spillover Effiscand the
Evolution of Firm Clusters”, Journal of Economic BehaviodaOrganiza-
tion (to appear).

Bischi, G.I., L. Mroz and H. Hauser, 2001c, “Studying basfatzations
in nonlinear triopoly games by using 3D visualization” Nioelar Analysis,
Theory, Methods & Applications, 47(8), 5325-5341.

Buescu, J., 1997, Exotic Attractors, Birkhauser, Boston.

Chiarella, C., R. Dieci and L. Gardini, 2001a, “Asset prig@a@mics in a
financial market with fundamentalists and chartists ” Dete Dynamics in
Nature and Society, 6, 69-99.

Chiarella, C., R. Dieci and L. Gardini, 2001b, “Speculat®ehaviour
and Complex Asset Price Dynamics: A Global Analysis”, Jaliof Eco-
nomic Behavior and Organization (to appear).

Collet, P. and J.P. Eckmann, 1980, Iterated maps on thevahtas dy-
namical systems, Birkhauser, Boston.

Cournot, A., 1938, Recherches sur les principes matenestide la the-
orie de la richesse, Hachette, Paris.

Dana, R.A. and L. Montrucchio, 1986, “Dynamic Complexitylimopoly
games”, Journal of Economic Theory, 40, 40-56.

Dieci, R., G.I. Bischi and L. Gardini, 2001, “From bi-statyilto chaotic
oscillations in a macroeconomic model”, Chaos, Solitong&ckals , 5(12),



52 Anna Agliari, Gian Italo Bischi and Laura Gardini

805-822.

Fujisaka, H. and T. Yamada, 1983, “Stability theory of syncized mo-
tion in coupled-oscillator systems”, Progress of Theoe¢tPhysics, 69 (1),
32-47.

Gardini, L., 1992, “Some global bifurcations of two-dimemsl endo-
morphisms by use of critical lines”, Nonlinear Analysis by, Methods &
Applications, 18, 361-399.

Grebogi, C., E. Ott and J.A. Yorke, 1983, “Crises, suddemgha in
chaotic attractors and transient chaos”, Physica 7D, &1-20

Gumowski, I. and C. Mira, 1980d)ynamique Chaotique, Cepadues
Editions, Toulose.

Gumowski, I. and C. Mira, 1980b, Recurrences and Discreteabycal
Systems, Springer Verlag, Berlin.

Hasler, M. and Yu. Maistrenko, 1997, “An introduction to thenchro-
nization of chaotic systems: coupled skew tent maps”, IEEHS. Circuits
Syst., 44 (10), 856-866.

Kopel M., 1996, “Simple and Complex Adjustment Dynamics ou@hot
Duopoly Models”, Chaos, Solitons & Fractals,.7(12), 2@818.

Kopel, M., G.I. Bischi and L. Gardini, 2000, “On new phenoraémdy-
namic promotional competition models with homogeneoustaragi-homo-
geneous firms” in Interaction and Market Structure. Essapdeterogeneity
in Economics D. Delli Gatti, M. Gallegati and A.P. Kirman @&y Springer-
Verlag, pp. 57-87.

Lai, Y.C.and C. Grebogi, 1996, “Noise-induced riddling imaotic sys-
tems”, Physical Review Letters 77, 5047-5050.

Lupini R., S. Lenci and L. Gardini, 1997, “Bifurcations andiltmstabil-
ity in a class of two dimensional endomorphisms”, Nonlingaalysis T. M.
& A. 28(1) 61-85.

Maistrenko, Yu., T. Kapitaniak. and P. Szuminski, 1997, ¢ally and
globally riddled basins in two coupled piecewise-lineapsiaPhysical Re-
view E, 57 (3), 6393-6399.

Maistrenko, Yu., V.L. Maistrenko, A. Popovich and E. Moddkj 1998a,
“Role of the Absorbing Area in Chaotic Synchronization”yBitcal Review
Letters, 80 (8), 1638-1641.

Maistrenko, Yu., V.L. Maistrenko, A. Popovich and E. Moddk| 1998Db,
“Transverse instability and riddled basins in a system of¢aupled logistic
maps”, Physical Review E, 57 (3), 2713-2724.

Milnor, J., 1985, “On the concept of attractor’”, Commun. Na&thys,
99, 177-195.



3 Global Analysis of Dynamic Games 53

Mira, C., 1987, Chaotic Dynamics, Word Scientific, Singagpo

Mira, C., D. Fournier-Prunaret, L. Gardini, H. Kawakami adcdC.
Cathala, 1994, “Basin bifurcations of two-dimensional ingartible maps:
fractalization of basins”, International Journal of Bifation and Chaos, 4,
343-381.

Mira, C. and C. Rauzy, 1995, “Fractal aggregation of badanis in
two-dimensional quadratic noninvertible maps”, Inteiorgl Journal of Bi-
furcations and Chaos, 5(4), 991-1019.

Mira, C., L. Gardini, A. Barugola and J.C. Cathala, 1996, @ltaDy-
namics in Two-Dimensional Noninvertible Maps, World S¢ifny, Singa-
pore.

Nagai, Y. and Y.-C. Lai, 1997, “Periodic-orbit theory of thiwwout bi-
furcation”, Physical Review E, 56 (4), 4031-4041.

Ott, E. and J.C. Sommerer, 1994, “Blowout bifurcations:dbeurrence
of riddled basins and on-off intermittency”, Phys. Lett.188, 39-47.

Pecora, L.M. and T.L. Carrol, 1990, “Synchronization in afi@ sys-
tems”, Physical Review Letters, 64 (8) pp. 821-824.

Poston T. and |. Stewart, 1978, Catastrophe Theory and jiicgpions,
Pitman.

Puu, T., 1991, “Chaos in Duopoly Pricing”, Chaos, Solitonfi&ctals,
1(6), 573-581.

Puu, T., 1997, Nonlinear Economic Dynamics, Springer \égererlin.

Puu, T., 2000, Attractors, Bifurcations and Chaos, Springdag, Berlin.

Rand, D., 1978, “Exotic phenomena in games and duopoly regdkl
Math. Econ., 5, 173-184.

Teocharis, R.D., 1960 “On the stability of the Cournot soluton the
oligopoly problem” Rev. Econ. Studies, 27, 133-134.

Van Huyck, J.B., J.P. Cook and R.C. Battalio, 1994, “Setectlynam-
ics, asymptotic stability, and adaptive behavior”, JougidPolitical Econ-
omy, 102, 975-1005.

Venkataramani, S.C., B.R. Hunt and E. Ott, 1996, “Bubblnagsition”,
Physical Review E, 54, 1346-1360.



