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Abstract

The time evolution of a dynamic oligopoly game with three competing firms is modeled by a discrete dynamical system

obtained by the iteration of a three-dimensional non-invertible map. For the symmetric case of identical players a complete

analytical study of the stability conditions for the fixed points, which are Nash equilibria of the game, is given. For the

situation of several coexisting stable Nash equilibria a numerical study of their basins of attraction is provided. This gives,

evidence of the occurrence of global bifurcations at which the basins are transformed from simply connected sets into non-

connected sets, a basin structure which is peculiar of non-invertible maps. The presence of several coexisting attractors (or

multistability) is observed even when complex attractors exist. Two different routes to complexity are presented: one related to

the creation of more and more complex attractors; the other related to the creation of more and more complex structures of the

basins. Starting from the benchmark case of identical players, the effects of heterogeneous behavior of the players, causing the

loss of the symmetry properties of the dynamical system, are investigated through numerical explorations. # 1999 IMACS/

Elsevier Science B.V. All rights reserved.
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1. Introduction

About 160 years ago Cournot [9] introduced a model of imperfect competition between firms, and by
now it has become a central concept in the field of industrial organization. The Cournot model analyzes
a situation of an oligopoly, a market structure between monopoly and perfect competition. In an
oligopoly there are only few firms in the market, and strategic considerations play an important role:
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each of the competitors tries to outguess what the other firms will do in order to gain a comparative
advantage over the other firms, i.e. they form expectations concerning how their rivals will act. The
expectations on the competitor's actions can be used to calculate the firm's own most preferred action,
which is the profit-maximizing choice given these expectations3. For economists one constellation is of
particular interest, namely a situation where all actions and expectations are consistent, i.e. where the
expected and the actually taken choices coincide. Such a situation can be characterized by the fact that
no firm has an incentive to unilaterally deviate from it's chosen strategy given the (expected) choices of
it's rivals, and it is referred to as Cournot±Nash-Equilibrium in the economics literature4. Such a Nash
equilibrium might then serve as a prediction of what outcome will be observed in an oligopoly market.

However, it seems unlikely that firms would immediately coordinate on such an equilibrium.
Accordingly, economists started to ask if competitors would learn to play according to a Nash
equilibrium profile over time, and this led them to an analysis of the stability properties of the emerging
Nash equilibria and to the consideration of various dynamic adjustment processes. In the original work
of Cournot, as well as in many subsequent papers, the reaction functions of the firms are decreasing
(often linear) functions, and their unique intersection point gives the unique Nash equilibrium (see [5]
for references). In such a case, the equilibrium in the oligopoly model has simple stability properties for
a broad range of adjustment processes as the trajectories can either converge to the Nash equilibrium or
diverge.

In this paper we consider a Cournot oligopoly game with three competitors5. Our model generalizes
the duopoly model which was introduced in [16] and recently studied in [2,5,6]. In contrast to various
existing studies, in these papers it is assumed that the optimal actions of the duopolists are characterized
by unimodal reaction curves. Non-monotonic reaction functions arise quite naturally in several
economic contexts: they might be due to externalities in the cost functions, competitors might regard
their products as strategic complements, or the market can be described by a demand function with
constant elasticity. In order to clarify the economic meaning of such sources of non-monotonicities the
following examples may be helpful: interfirm externalities in the cost function capture the fact that a
firm's costs might depend on the actions of the competitors. Consider, for example, a firm which sells
books. This firm might profit from the actions of other book sellers, since customers develop a habit of
buying books as they become more aware of them. Unimodal reaction curves arise since the sales of
one firm will be best when the other firms sell a positive but moderate amount. A similar example
might serve to illustrate a situation where products are strategic complements: the (marginal) profit of
one firm increases with the competitors' actions. A Cournot game with three oligopolists and unimodal
reaction functions has been recently studied by Puu [21]. Also in this case, the model extends a duopoly
model proposed by the same author in [19]. The unimodal reaction functions in these papers are
obtained by assuming a non-linear (isoelastic) demand function and constant marginal costs. The same
demand and cost functions have been considered in [3], where an extension of the study of local

3The decision rule which describes the profit-maximizing actions of a firm given the expectations about the rival's choices is

referred to as % reaction function in what follows.
4A Nash Equilibrium is a profile of strategies such that each firm's strategy is an optimal response to the other firms'

strategies. In the Nash equilibrium none of the firms has an incentive to deviate, since each firm's strategy is that firm's best

response to the other firms' predicted strategies. The equilibria are simply the profiles given by the intersection points of the

reaction functions of the oligopolists.
5An oligopoly with two firms is often called a duopoly and an oligopoly with three firms is sometimes referred to as a

triopoly.
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stability to the case of n competitors is given. Our paper differs, however, from these studies: whereas
the models analyzed there give rise to a unique Nash equilibrium, the dynamic Cournot game we
consider is characterized by the presence of several Nash equilibria. In fact, in our model up to eight
Nash equilibria may exist, and several of them (up to four) can be simultaneously stable. This leads to
two somehow related questions, which are of considerable importance for economists as well as
mathematicians: first, which of the Nash equilibria (fixed points) will be selected in the long run?
Second, which role do the initial actions chosen by the firms play in determining the long run outcome
of the market? The main focus of this paper is to give an answer to these questions.

Due to the coexistence of several stable Nash equilibria, an answer requires not only a study of the
stability regions in the space of the model's parameters, but also a study of the basins of attraction in the
phase space, in order to ascertain the role of the starting conditions of the game in the selection of the
final outcome. The study of the general Cournot game with three heterogeneous players is not an easy
task, however, since no analytic expression can be obtained for the fixed points, as well as for their
stability conditions. For this reason, we make an assumption which is often found in the literature to
simplify the analysis: the present paper is mainly devoted to the study of the particular case of three
identical (or homogeneous) oligopolists. Under this assumption the dynamical system which describes
the time evolution of the repeated game has reflectional as well as rotational symmetries. In this case it
is possible to obtain the analytical expressions of the fixed points (Nash equilibria of the Cournot game)
and of the conditions for their local bifurcations. The symmetry properties imply that coexisting stable
Nash equilibria, as well as more complex coexisting attractors, might be present. Moreover, in order to
show that the property of coexistence of attracting sets is robust ± in the sense that they also exist after
the introduction of small heterogeneities ± we also present numerical simulations for the case of
heterogeneous players. The results suggest that the particular case of identical players constitutes a
useful benchmark case for the understanding of the more general (and realistic) case of oligopolists
exhibiting heterogeneous behavior.

The aim of our paper is two-fold. From an economic point of view, the paper deals with an extension
of a Cournot duopoly game to the case of three competitors. Typical questions which arise in the study
of competition models (actually not only in the context of economic systems, but also in a larger class
of models, such as those studied, e.g., in ecology) are: what is the effect of introducing a new
competitor? Is the system more stable or more vulnerable? Are the dynamics more complex? Our
analysis will point out analogies and differences between the duopoly and the triopoly case. We shall
not only consider the question of local stability, but also the problem of the delimitation of the basins of
attraction, at least by numerical methods.

The second goal of the paper concerns the mathematical properties of the proposed model. In fact, we
give a fairly complete study of a three-dimensional discrete-time dynamical system which exhibits
rather complex behavior. This is due to both the creation of complex attractors in the three-dimensional
phase space and to the coexistence of attracting sets with rather complicated basin boundaries. It should
be pointed out here that in the last 20 years a good level of understanding of one-dimensional non-
invertible discrete dynamical systems has been reached. Furthermore, some important insights have
been obtained in the analysis of two-dimensional non-invertible maps, see [1,14,17]. These results have
been recently applied to the study of Cournot duopoly games (see [4,5,7,22]). However, the
mathematical treatment of three-dimensional non-invertible maps, like the one considered in the
present paper, is an almost unexplored field. Since the example proposed here ± due to its symmetry
properties ± allows us to obtain a complete determination of the local stability regions and the local
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bifurcation curves in the parameters space by simple analytical expressions, it may constitute a good
starting point for a more complete study of the global properties and bifurcations of the complex
attractors and their basins.

The paper is organized as follows. In Section 2 a description of the model is provided, and the three-
dimensional map whose iteration gives the time evolution of the repeated game is defined. In Section 3
the fixed points of the map, which are Nash equilibria of the game, are computed. In Section 4 we
describe the symmetry properties of the model with identical players. In Section 5 we study the local
stability of the fixed points, together with their local bifurcations. In Section 6 the basins of the
coexisting stable equilibria are numerically studied and some changes of their topological properties are
evidenced. In Section 7 numerical simulations of the model are given in the case of coexisting quasi-
periodic or chaotic attractors. In Section 8 the case of heterogeneous players is considered, and some
phenomena related to the loss of symmetry properties are discussed. We end the paper with a discussion
of the significance of our results from an economic as well as from a mathematical point of view.

2. The model

To introduce our dynamic Cournot oligopoly model with three firms, let us consider a quantity-
setting triopoly, where the firms produce a homogeneous good. The environment of our dynamic game
is described by the strategy sets of the firms, from which they can choose their output quantities qi,
i � 1, 2, 3, and the resulting instantaneous payoffs Ui�q1; q2; q3�; i � 1; 2; 3. The functions ri, i � 1, 2,
3 are called `Cournot reaction functions' or best replies if6:

maxq1
U1�q1; q2; q3� � U1�r1�q2; q3�; q2; q3�

maxq2
U2�q1; q2; q3� � U2�q1; r2�q3; q1�; q3�

maxq3
U3�q1; q2; q3� � U3�q1; q2; r3�q1; q2��

(1)

These reactions functions specify each firm's optimal output quantity for given quantities of the
opponents. In order to introduce dynamics into the model, we first look again at the work of Cournot.
He considered a dynamic adjustment process, which describes how firms adjust their output quantities
in response to the quantities observed in the previous period. This process nowadays is referred to as
Best Response Dynamic (or Cournot taÃtonnement), and assumes that each firm sets the current output
equal to the best response (i.e. current period payoff maximizing choice) to the last period output of its
opponents7. Formally, the Best Response Dynamic can be described in terms of the reaction functions
as:

q1�t � 1� � r1�q2�t�; q3�t��
q2�t � 1� � r2�q3�t�; q1�t��
q3�t � 1� � r3�q1�t�; q2�t��

(2)

6Extensive references for questions about the existence, uniqueness and continuity of the reaction functions can be found in

[10].
7To establish a relationship to the introduction, where we mentioned that firms react to the expected quantities of the rivals,

we note that the Best Response Dynamic is obtained if we assume that each firm expects that the rivals will offer in the current

period the same quantities as in the previous period. In the literature such type of expectations are called `naive', which can be

interpreted to mean that the firm's prediction of the competitors' choice is not very sophisticated.
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In what follows, however, we do not consider the Best Response Dynamic. Instead we assume that
the firms only partially adjust to the Best Response. This incorporates the fact that firms might be
insecure if their forecast of the opponent's choices is correct. Furthermore, our formulation might also
capture some element of inertia in the decision making process of the firms. In these cases the
competitors may use an adjustment process which is more conservative than the Best Response.
Formally, we assume that competitors do not immediately offer the optimal quantity they computed on
the basis of the (bounded rationality) profit maximization problem, but that they adjust the previous
quantity in the direction of the computed one according to:

q1�t � 1� � q1�t� � �1 r1�q2�t�; q3�t�� ÿ q1�t�� �
q2�t � 1� � q2�t� � �2 r2�q3�t�; q1�t�� ÿ q2�t�� �
q3�t � 1� � q3�t� � �3 r3�q1�t�; q2�t�� ÿ q3�t�� �

(3)

The parameters �i 2 �0; 1�; i � 1; 2, represent the speeds of adjustment, a measure of a firm's trust in
its own prediction or of the degree of inertia. Note that if �i � 1; i � 1; 2; 3, (instantaneous adjustment)
then we get as a limiting case the usual Cournot taÃtonnement Eq. (2). In this particular case, the
decision of each firm only depends on the competitors' realized quantities of the previous period. This
is the case which has been considered by Puu [20,21].

To obtain a complete characterization of the model, we have to specify the reaction functions ri,
i � 1, 2, 3. As one particular example we consider in this paper the following specification of the
reaction functions:

r1�q2; q3� � �1 q2 1ÿ q2� � � q3 1ÿ q3� �� �
r2�q3; q1� � �2 q3 1ÿ q3� � � q1 1ÿ q1� �� �
r3�q1; q2� � �3 q1 1ÿ q1� � � q2 1ÿ q2� �� �

(4)

These functional forms of the reaction functions can be derived by assuming a linear demand
function and a suitable definition of the cost function of the firms. The cost function of the firms
incorporates an interfirm externality as described above, and the parameters �i, i � 1, 2, 3 represent the
extent of this externality. Since the reaction curves can be derived by the same procedure as introduced
in [16], we do not reiterate it here, but instead leave the task to the interested reader.

3. Nash equilibria of the game

The time evolution of the oligopoly game Eq. (3) with reaction functions Eq. (4) is obtained by the
iteration of the three-dimensional mapT : q1; q2; q3� � ! q01; q

0
2; q
0
3

ÿ �
:

T :
q01 � 1ÿ �1� �q1 � �1�1 q2 1ÿ q2� � � q3 1ÿ q3� �� �
q02 � 1ÿ �2� �q2 � �2�2 q3 1ÿ q3� � � q1 1ÿ q1� �� �
q03 � 1ÿ �3� �q3 � �3�3 q1 1ÿ q1� � � q2 1ÿ q2� �� �

8<: (5)

with �i > 0 and �i 2 �0; 1�, where 0 denotes the unit-time advancement operator. That is, if the right
hand side includes quantities of period t then the left hand side represents quantities of period (t � 1).
Starting from a given initial condition

q1�0�; q2�0�; q3�0�� � � q10
; q20

; q30
� � (6)
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the iteration of Eq. (5) uniquely determines an infinite sequence of points, the trajectory:

� q10
; q20

; q30
� � � �q1�t�; q2�t�; q3�t�� � Tt�q10

; q20
; q30
�; t � 0; 1; 2; . . .f g: (7)

The map Eq. (5) is a three-dimensional non-invertible map which depends on six parameters. Non-
invertible means that even if the image of a point (q1, q2, q3) is uniquely determined as
q01; q

0
2; q
0
3

ÿ � � T q1; q2; q3� �, the set of points which are mapped to a given q01; q
0
2; q
0
3

ÿ �
, i.e. the rank-1

preimages Tÿ1 q01; q
0
2; q
0
3

ÿ �
, may be more than one, i.e. Tÿ1 is a multivalued relation. In fact, the rank-1

preimages of q01; q
0
2; q
0
3

ÿ �
may be up to eight, since they are obtained by solving the eighth degree

algebraic system Eq. (5) with respect to the unknowns q1; q2; q3� �:
We are concerned with the qualitative changes of the asymptotic (or long-run) dynamics of the

iterated map and the influence of the initial conditions as the parameters vary. As usual, the first step to
start the qualitative study of the asymptotic behavior of a dynamic model is the localization of the
steady states of the dynamical system and the determination of the sets of parameters for which they are
locally stable. The fixed points of the map Eq. (5), which are Nash equilibria for the oligopoly, are the
solutions of the following algebraic system of degree 8:

�1 q2 1ÿ q2� � � q3 1ÿ q3� �� � � q1

�2 q1 1ÿ q1� � � q3 1ÿ q3� �� � � q2

�3 q2 1ÿ q2� � � q1 1ÿ q1� �� � � q3

(8)

It is worth noticing that the system Eq. (8) does not depend on the rate parameters �i. An analytic
solution of Eq. (8) is not an easy task. Two real solutions of Eq. (8) exist for each value of �i, i � 1, 2,
3: one is given by:

E1 � �0; 0; 0� (9)

and another one must exist, since the degree of the algebraic system Eq. (8) is even.
A complete analytical solution of the system Eq. (8) can be found under the assumption:

�1 � �2 � �3 � � (10)

which means that the positive externality which the actions of each firm exerts on the payoffs of the
other firms is equal. Under this assumption, the second fixed point which exists for each value of � is
given by the symmetric8 Nash equilibrium:

E2 � 1ÿ 1

2�
; 1ÿ 1

2�
; 1ÿ 1

2�

� �
: (11)

Moreover, other six fixed points exist provided that:

� >
���
2
p
� 1

2
: (12)

In fact, if Eq. (12) is satisfied, the function

	��� � 4�2 ÿ 4�ÿ 7 (13)

8Symmetric means that it is characterized by three identical outputs of the competing firms.

68 H. Nabih Agiza et al. / Mathematics and Computers in Simulation 51 (1999) 63±90



is positive, and the following fixed points exist:

E3 � 1� 2�� ����
	
p

4�
;
1� 2�� ����

	
p

4�
;
3� 2�ÿ ����

	
p

4�

 !
(14)

E4 � 1� 2�ÿ ����
	
p

4�
;
1� 2�ÿ ����

	
p

4�
;
3� 2�� ����

	
p

4�

 !
(15)

E5 � 3� 2�ÿ ����
	
p

4�
;
1� 2�� ����

	
p

4�
;
1� 2�� ����

	
p

4�

 !
(16)

E6 � 3� 2�� ����
	
p

4�
;
1� 2�ÿ ����

	
p

4�
;
1� 2�ÿ ����

	
p

4�

 !
(17)

E7 � 1� 2�� ����
	
p

4�
;
3� 2�ÿ ����

	
p

4�
;
1� 2�� ����

	
p

4�

 !
(18)

E8 � 1� 2�ÿ ����
	
p

4�
;
3� 2�� ����

	
p

4�
;
1� 2�ÿ ����

	
p

4�

 !
: (19)

Remark 1.

At � � 1/2 we have E1 � E2 � �0; 0; 0�;
At � � 1=2� ���

2
p

we have E3 � E4 � �3�
���
2
p �=7; �3� ���

2
p �=7; �2� ���

2
p �=7

ÿ �
, E5 � E6 � �2�����

2
p �=7; �3� ���

2
p �=7; �3� ���

2
p �=7�, E7 � E8 � �3� ���

2
p �=7; �2� ���

2
p �=7; �3� ���

2
p �=7

ÿ �
;

At � � 2 we have E2 � E3 � E5 � E7� 3=4; 3=4; 3=4� �.

4. Homogeneous behavior and symmetries of the dynamical system

In the following we consider the case of homogeneous behavior:

�1 � �2 � �3 � �; (20)

which has been the main subject of analysis in the literature, see [2,5,16] for further references.
Under the assumptions Eqs. (10) and (20) the six-parameter map Eq. (5) reduces to the simpler two-

parameter map:

TH :
q01 � �1ÿ ��q1 � �� q2 1ÿ q2� � � q3 1ÿ q3� �� �
q02 � �1ÿ ��q2 � �� q3 1ÿ q3� � � q1 1ÿ q1� �� �
q03 � �1ÿ ��q3 � �� q1 1ÿ q1� � � q2 1ÿ q2� �� �

8<: (21)
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with ��; �� 2 
, where:


 � f��; ��j� > 0; 0 � � � 1g (22)

Although the dynamical system obtained by the iteration of the map Eq. (21) gives the time evolution
of a special case of an oligopoly, one which is characterized by three identical competitors, it
constitutes a benchmark case which is a useful starting point for the understanding of the dynamical
properties of the more complex model represented by Eq. (5).

The map Eq. (21) has a number of symmetry properties, related to the fact that, the three players
being identical, the game remains exactly the same if the players are exchanged. We now try to
formalize this idea.

In general, a linear transformation M : R3 ! R3 is called a symmetry of the map TH if M and TH

commute, that is:

M � TH � TH �M

Due to the identity of the players, an evident group of symmetries of the map Eq. (21) is represented
by the group of permutation matrices:

D3 � M123;M132;M321;M213;M312;M231f g
where Mijk are 3 � 3 matrices such that:

Mijk

q1

q2

q3

24 35 � qi

qj

qk

24 35:
Apart from the trivial symmetry M123 � I, which is the identity transformation, there are five

interesting symmetries. The first three correspond to permutations of two of the three coordinates,
respectively, given by:

P1 q1; q2; q3� � � q1; q3; q2� �; P2 q1; q2; q3� � � q3; q2; q1� �; P3 q1; q2; q3� � � q2; q1; q3� �
which represent reflections through the planes:

�1 � q1; q2; q3� �jq2 � q3f g; �2 � q1; q2; q3� �jq1 � q3f g; �3 � q1; q2; q3� �jq1 � q2f g;
respectively.

The fact that the map Eq. (21) commutes with Pi, i.e. Pi TH q1; q2; q3� �� � � TH Pi q1; q2; q3� �� �, implies
that any orbit G � q1n; q2n; q3n� �f g of TH is either symmetric with respect to the plane �i, i.e. for each
point q1n; q2n; q3n� � 2 G also Pi q1n; q2n; q3n� � 2 G, or the set Pi�G� � Pi q1n; q2n; q3n� �f g, symmetric of
G with respect to the plane �i, is an orbit of T as well.

Furthermore, a dynamical system with a symmetry M has a linear invariant subspace, given by the set
of fixed points of M (see e.g. [8]). In our case, as TH commutes with Pi; i � 1; 2; 3, each plane �i is an
invariant submanifold for the map TH, i.e. TH �i� � � �i. The trajectories embedded inside �i are
governed by the restriction of T to �i, given by a two-dimensional map. For example, let us consider the
invariant plane �1. Any trajectory starting with an initial condition belonging to �1, i.e. q20

� q30
, is

characterized by q2�t� � q3�t� for each t � 0, and is governed by the restriction of TH to �1, which can
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be identified with the two-dimensional map T1 : �q1; q� ! �q01; q0� given by:

T1 :
q01 � �1ÿ ��q1 � 2��q�1ÿ q�
q0 � �1ÿ ��q� �� q1 1ÿ q1� � � q�1ÿ q�� �

�
(23)

obtained by setting q2 � q3 � q and q02 � q03 � q0 in Eq. (21). Analogous arguments apply to the other
invariant planes and the respective restrictions.

The trajectories embedded into an invariant plane �i will be called partially synchronized, since the
time evolutions described by such trajectories are characterized by identical choices of two competitors
at each time period, that is, two of the three players move in a synchronized way. Of course, the
intersection of the three invariant planes �i, i � 1, 2, 3, given by the diagonal:

� � �q; q; q� 2 R3
� 	

; (24)

or line of equal outputs, is an invariant one-dimensional submanifold for TH, i.e. TH��� � �. This
property expresses the trivial statement that if the three identical producers start with equal productions
q1�0� � q2�0� � q3�0� then they will behave identically for each future time, i.e.q1�t� � q2�t� � q3�t�
for each t � 0. The trajectories embedded inside � will be called fully synchronized trajectories
because they are characterized by identical production choices of all the competitors at each time
period. The synchronized trajectories are governed by the restriction of TH to �, TH j� : �! �, which
can be identified with the one-dimensional map:

q0 � g�q� � 1ÿ �� 2��� �qÿ 2��q2 (25)

obtained by setting q1 � q2 � q3 � q and q01 � q02 � q03 � q0 in Eq. (5). The map Eq. (25), whose
dynamics summarize the common behavior of the three identical firms, is conjugated to the standard
logistic map:

z0 � az�1ÿ z� (26)

through the linear transformation:

z � 2��

1ÿ �� 2��
q (27)

and the parameters of the map Eq. (25) are related to the parameter a of the standard logistic by the
relation:

a � 1ÿ �� 2��: (28)

The knowledge of the dynamical properties of the restrictions to the invariant lower-dimensional
submanifolds gives important suggestions about the dynamic behavior of the three-dimensional map
Eq. (21). In fact, the properties of the one-dimensional restriction to the invariant line � are well-
known, being conjugated to the standard logistic map, and the properties of the two-dimensional
restrictions to the invariant planes �i can be obtained on the basis of the local and global methods for
the study of non-invertible maps of the plane, which are now sufficiently known (see e.g. [1,17] for
many examples, see also [5,11] for maps which are very similar to Eq. (23)).
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The last two permutation matrices of D3 correspond to cyclic permutations of the three coordinates:

R1
3 : q1; q2; q3� � ! q3; q1; q2� � and R2

3 : q1; q2; q3� � ! q2; q3; q1� �
and represent rotations of (2/3)� around �. The fact that the map TH also commutes with Ri

3; i � 1; 2,
implies that for any orbit of Eq. (21) which is not embedded into � two other orbits must exist, which
are rotated by �2=3�� with respect to �.

Remark 2. From the arguments given above it trivially follows that in the case of homogeneous

behavior Eq. (20) all the fixed points of the symmetric map Eq. (21), i.e. Nash equilibria of the Cournot
game, belong to invariant submanifolds. In fact, E1 and E2 belong to �, E3 and E4 belong to �3, E5 and

E6 belong to �1, E7 and E8 belong to �2.

5. Local stability and local bifurcations of the Nash equilibria

In this section we consider the repeated Cournot game with three identical oligopolists, whose time
evolution is obtained by the iteration of the map Eq. (21). We study the local stability of the Nash
equilibria Ei, i � 1, . . ., 8, which are the fixed points of the map Eq. (21), as the two parameters � and �
vary in the parameters space 
 defined in Eq. (22). The study of the local stability of a fixed point Ei is
based on the localization, on the complex plane, of the eigenvalues of the Jacobian matrix:

DTH q1; q2; q2� � �
1ÿ � ���1ÿ 2q2� ���1ÿ 2q3�
���1ÿ 2q1� 1ÿ � ���1ÿ 2q3�
���1ÿ 2q1� ���1ÿ 2q2� 1ÿ �

24 35 (29)

computed at Ei. If the three eigenvalues zk; k � 1; 2; 3, of DTH�Ei;�; �� are all inside the unit circle of
the complex plane, i.e. jzkj < 1, k � 1, 2, 3, then Ei is locally asymptotically stable.

The Jacobian matrix Eq. (29) becomes a symmetric matrix when computed at the fixed points E1 and
E2 belonging to the line � of equal quantities. This implies that at E1 and E2 the eigenvalues are always
real. At E1 the characteristic equation becomes:

z3 ÿ 3�1ÿ ��z2 � 3�1ÿ �ÿ ����1ÿ �� ���zÿ �1ÿ �ÿ ���2�1ÿ �� 2��� � 0

and the eigenvalues are:

z1�E1� � 1ÿ �� 2��; z2�E1� � z3�E1� � 1ÿ �ÿ ��
We have:

� z1�E1� � 08��; �� 2 
 and z1�E1� < 1 iff � < 1=2;
� z2�E1� < 18��; �� 2 
 and z2�E1� > ÿ1 iff ���� 1� < 2.

Hence, the stability domain of E1 in parameter space is given by:


s�E1� � ��; �� 2 
j� < 1
2

� 	
: (30)

Notice that the eigenvalue z1�E1� coincides with the multiplier at q � 0 of the restriction Eq. (25) of
TH to the invariant line �.
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At E2 the characteristic equation becomes:

z3 ÿ 3�1ÿ ��z2 � 3�1ÿ 2�� ����1ÿ ���zÿ 1� �ÿ 2��� ��1ÿ 2�� ���2 � 0

and the eigenvalues are:

z1�E2� � 1� �ÿ 2��; z2�E2� � z3�E2� � 1ÿ 2�� ��:

Again, the eigenvalue z1(E2) coincides with the multiplier at q � �1ÿ 1=�2��� of the restriction Eq.
(25) of TH to the invariant line �. We have:

� z1�E2� < 1 iff � > 1=2;
� z1�E2� > ÿ1 iff ��2�ÿ 1� < 2; z2�E1� > ÿ1 8��; �� 2 
 and z2�E1� < 1 iff � < 2.

Hence, the stability domain of E2 in parameter space is given by:


s�E2� � ��; �� 2 
j1
2
< � < 2 and ��2�ÿ 1� < 2

� 	
: (31)

At � � 1/2 we have E1 � E2, and a transcritical bifurcation occurs: as � increases through the
bifurcation value 1/2, E1 is changed from a stable node into a saddle point, and E2 becomes a stable
node.

Also the bifurcation occurring at � � 2 is a transcritical bifurcation, whose nature will be
investigated below. Along the curve �(2�ÿ1) � 2 we have z1(E2) � ÿ1. If the parameters vary so that
this curve is crossed with increasing values of � or � then E2 loses stability through a flip (or period
doubling) bifurcation.

In order to study the stability properties of the fixed points Ei, i � 3, . . ., 8, we subdivide them into
two groups: U � E3;E5;E7f g and S � E4;E6;E8f g. Each group is characterized by the same stability
properties. In fact, the Jacobian matrix computed at each of the fixed points Ei 2 U is the same, given
by:

DTH Ei;�; �� � �
1ÿ � ÿ��=2� 1� ����

	
pÿ � ��=2� ����

	
p ÿ 3
ÿ �

ÿ��=2� 1� ����
	
pÿ �

1ÿ � ��=2� ����
	
p ÿ 3
ÿ �

ÿ��=2� 1� ����
	
pÿ � ÿ��=2� 1� ����

	
pÿ �

1ÿ �

264
375; i � 3; 5; 7

(32)

where 	 � 	 (�) is the function defined in Eq. (13), and also the Jacobian matrix computed at each of
the fixed points Ei 2 S is the same, given by:

DTH�Ei;�; �� �
1ÿ � ��=2� ����

	
p ÿ 1
ÿ � ÿ��=2� ����

	
p � 3
ÿ �

��=2� ����
	
p ÿ 1
ÿ �

1ÿ � ÿ��=2� ����
	
p � 3
ÿ �

��=2� ����
	
p ÿ 1
ÿ � ��=2� ����

	
p ÿ 1
ÿ �

1ÿ �

264
375 i � 4; 6; 8: (33)

We now study the conditions for the local stability and local bifurcations of E3, which, according to
the arguments given above, also hold for the fixed points E5 and E7. The eigenvalues of DTH�E3;�; �)
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are:

z1�E3� � 1
2
�2ÿ �� �

�����������
	���

p
�;

z2�E3� � 1
4

4ÿ �
�����������
	���

p
ÿ 5�ÿ �

�����������������������������������������������������������
25ÿ 7

�����������
	���

p
�1�

�����������
	���

p� �r� �
;

z3�E3� � 1
4

4ÿ �
�����������
	���

p
ÿ 5�� �

�����������������������������������������������������������
25ÿ 7

�����������
	���

p
�1�

�����������
	���

p� �r� �
and it is easy to realize that the fixed points Ei2 U are always unstable.

In fact, at least one eigenvalue with modulus greater than one exists for each � > 1� ���
2
p

, being
z3�E3� > 1 for �1 < � < 2, where �1 � 1=2� ���

2
p

, and z1�E3� > 1 for � > 2.
Notice that at � � 1� ���

2
p

we have z3�E3� � 1 and z1�E3� � z2�E3� � 1ÿ 5=2�.
At � � 2 we have z1 � z3 � 1 and z2 � 1ÿ3�. As remarked at the end of Section 3, at � � 2 we have

E3 � E5 � E7 � E2, so the bifurcation occurring at � � 2 is a transcritical bifurcation at which E2 is
transformed, for increasing values of �, from a stable node into a saddle point, due to the exit of z2(E2)
from the unit circle through the value z2(E2) � 1 and the simultaneous entrance, through the same
value, of z3(E3).

We also notice that z2(E3) and z3(E3) are real for
�����������
	���p � 25=7, i.e. for �1 � �� 1/2 � 3

��������
113
p

=14

and they are complex conjugated for � > 1/2 � 3
��������
113
p

=14.

We now study the conditions for the local stability and local bifurcations of E4, which, according to
the arguments given above, also hold for the fixed points E6 and E8. The eigenvalues of DTH�E4;�; ��
are:

z1�E4� � 1
2
�2ÿ �ÿ �

�����������
	���

p
�;

z2�E4� � 1
4

4ÿ �
�����������
	���

p
ÿ 5�ÿ �

�����������������������������������������������������������
25� 7

�����������
	���

p
�1ÿ

�����������
	���

p� �r� �
;

z3�E4� � 1
4

4� �
�����������
	���

p
ÿ 5�� �

�����������������������������������������������������������
25� 7

�����������
	���

p
�1ÿ

�����������
	���

p� �r� �
The conditions jzi�E4�j < 1, i � 1, 2, 3, define the region of stability 
s�E4� � 
s

1�E4� [ 
s
2�E4�,

where:


s
1�E4� � ��; �� 2 
j1

2
�

���
2
p

< � < 2 and 0 < � < �f ���
n o

with:

�f ��� � 8

5ÿ �����������
	���p �

�����������������������������������������������������������
�25� 7

�����������
	���p ��1ÿ �����������

	���p �
q (35)

and


s
2�E4� � ��; �� 2 
j� > 2 and 0 < � < �h���f g (36)
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with

�h��� � 5ÿ �����������
	���p�����������

	���p � �����������
	���p � 1� (37)

At � � �1 � 1/2� ���
2
p

the fixed point E4 (as well as E6 and E8) is created with z3(E4) � 1 and it is
stable after a slight increase of �. As remarked above, at the same � value also E3 (as well as E5 and E7)
is created with z3(E3) � 1, and E3 � E4 (as well as E5 � E6 and E7 � E8). However, E3, E5 and E7 are
unstable (saddle point) after a slight increase of �, being z3(E3) > 1 for �1 < � < 2. Hence at � � �1

three simultaneous fold (or saddle-node) bifurcations occur at which three pairs of fixed points are
created, each pair being constituted by a node and a saddle point.

Along the curve � � �f (�) we have z3(E4) � ÿ1, whereas along the curve � � �h��� the eigenvalues
z2�E4� and z3(E4) are complex conjugated with jz2�E4�j � jz3�E4�j � 1. These curves correspond to flip
(or period doubling) and Neimark±Hopf bifurcations of E4, respectively. Notice that �f ��1� � 4=5 < 1,
and �f �2� � 2 > 1, hence a value �� 2 ��1; 2� of the parameter � exists such that E4 is a stable node for
each �2[0,1] provided that �2(��, 2) (see Fig. 1).

We also notice that z2 (E4) and z3(E4) are real for
�����������
	���p � 1, i.e. for �1 � � � 2, and they are

complex conjugated for � > 2. Moreover, we have �h�2� � 2 > 1, and �f (3) � (5ÿ �����
17
p

)/
(17 � �����

17
p

) < 1. Hence, a value ~�2(2,3) of the parameter � exists such that E4 is a stable focus for
each � 2 [0, 1] provided that � 2 (2,��) (see Fig. 1).

The results on local stability and local bifurcations given above, are summarized by the following
statements (see also Fig. 1).

Fig. 1. Space of the parameters {FUNC {
}} � {�, �)|� > 0,0 � ��1} for the map Eq. (21). 
s�E1� represent the region

where the fixed point E1 is asymptotically stable, 
s�E2� represent the region where the fixed point E2 is asymptotically stable,


s�E4� represents the common stability region of E4, E6 and E8.
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Proposition 1 (local stability). Let Eqs. (10) and (20) hold. Then

1. the fixed point E1 exists for each ��; �� 2 
 and it is a stable node for ��; �� 2 
s(E1), with 
s(E1)�
f��; �� 2 
j��1=2�g;

2. the fixed point E2 exists for each ��; �� 2 
 and it is a stable node for ��; �� 2 
s(E2), with


s�E2� � f��; �� 2 
j�1=2� < � < 2 and ��2�ÿ 1� < 2g;
3. the fixed points E3;E5 and E7 exist for � � �1, with �1 � 1=2� ���

2
p

, and are always unstable;
4. the fixed points E4;E6 and E8 exist for � � �1 and are stable for ��; �� 2 
s�E4� � 
s

1�E4�[

s

2�E4�, with:


s
1�E4� � ��; �� 2 
j�1 < � < 2 and 0 < � < �f ���

� 	
and


s
2�E4� � ��; �� 2 
j� > 2 and 0 < � < �h���f g

where �f ��� and �h��� are given by Eqs. (35) and (37), respectively. In the region 
s
1 (E4), E4, E6 and

E8 are stable nodes, in the region 
s
2�E4� they are stable foci.

Proposition 2 (local bifurcations). Let Eqs. (10) and (20) hold. Then

1. at � � 1=2;E1 � E2 and a transcritical bifurcation occurs at which, for increasing values of �, E1 is

transformed from a stable node into a saddle point, and E2 is transformed from a saddle point into a
stable node;

2. at � � 1=2� ���
2
p

, three simultaneous fold bifurcations occur at which, for increasing values of �,
the three pairs of fixed points �E3;E4�, �E5;E6� and �E7;E6� are created, which are coincident at the

bifurcation value and, for increasing values of �, they separate with Ei; i � 3; 5; 7 unstable and
Ei; i � 4; 6; 8 stable;

3. along the curve ��2�ÿ 1� � 2 the fixed point E2 undergoes a supercritical flip bifurcation at which,
for increasing values of � or � it loses stability and a stable cycle of period 2 is created;

4. along the curve � � �f ���, where �f ��� is given by Eq. (35) with 1=2� ���
2
p

< � < 2, the fixed

points Ei; i � 4; 6; 8 undergo a supercritical flip bifurcation at which, for increasing values of � or
�, they lose stability and three stable cycles of period 2 are created;

5. along the curve � � �h���, where �f ��� is given by Eq. (37) with � > 2, the fixed points Ei;
i � 4; 6; 8 undergo a supercritical Neimark±Hopf bifurcation at which, for increasing values of � or

�, they lose stability and three stable invariant closed curves are created along which the dynamics
are periodic or quasi-periodic.

The proofs of these two propositions immediately follow from the arguments given above, except for
the supercritical nature of the flip and the Neimark±Hopf bifurcations. We recall that a flip bifurcation
is supercritical if a stable 2-cycle is created around the unstable fixed point, subcritical if an unstable 2-
cycle exists around the stable fixed point and merges with the fixed point at the bifurcation value (see
e.g. [12]).

Analogously, a Neimark±Hopf bifurcation is supercritical if an attracting closed invariant curve is
created around the unstable fixed point, subcritical if a repelling closed invariant curve exists around
the stable fixed point and merges with it at the bifurcation value (see e.g. [12]). The rigorous proof that
the flip bifurcation is supercritical requires a center manifold reduction and the evaluation of higher
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order derivatives (up to the third order). Since this is a rather tedious task, we claim numerical evidence
for the existence of the stable cycle. Analogously, the rigorous proof of the occurrence of a subcritical
Hopf bifurcation requires the evaluation of some long expressions involving derivatives of the map up
to order three. Also in this case we claim numerical evidence for the existence of an attracting invariant
closed curve just after the Neimark±Hopf bifurcation.

From Proposition 1 it follows that a wide range of parameters exists which gives coexistence of stable

Nash equilibria. Since the stability regions 
s�E2� and 
s�E4� overlap for �1 < � < 2 and
��2�ÿ 1� < 2 (the darker region of Fig. 1) in such a region we have four coexisting Nash equilibria,
E2, E4, E6 and E8, which are stable nodes. In the portion 
s

2�E4� of the region 
s�E4� we have the three
coexisting stable Nash equilibria E4, E6 and E8, which are stable foci. In the portion 
s

1�E4� of 
s�E4�
with �1 <� < 2 and ��2�ÿ 1� > 2 the three stable Nash equilibria E4, E6 and E8 exist, which are stable
nodes. Accordingly, the questions raised in the introduction arise, namely, to which Nash equilibrium
does the evolutionary process described by the market dynamics lead and which role do the initially
chosen quantities of the competitors play in this process? As remarked at the end of Section 4, all the
fixed points belong to the invariant subsets �i. In particular, E2 2 �, E4 2 �3, E6 2 �1, E8 2 �2. It is
also important to remark that at E4 we have q3 > q1 � q2, at E6 we have q1 > q2 � q3, at E8 we have
q2 > q1 � q3. Hence, convergence to E4 means convergence to an equilibrium outcome at which firm 3
dominates the other two firms. This can be interpreted as a situation where firm 3 becomes the market
leader. In the same vein, convergence to E6 means convergence to an equilibrium at which the firm 1
dominates the other two competitors, which then take the role of followers. Similar arguments apply to
the Nash equilibrium E8.

From Proposition 2 we can deduce that just after the flip bifurcation of point (4), as well as after the
Neimark-Hopf bifurcation of point (5), we may also have coexistence of attracting sets which are more
complex than Nash equilibria, such as periodic or quasi-periodic attractors. Furthermore, numerical
simulations show that after these bifurcations, if the parameter values are changed so that they move
away from the local bifurcation curves then more and more complex coexisting attractors appear. Of
course, such attractors must be such that the symmetry properties described in Section 4 are satisfied,
i.e. any attractor must be either symmetric with respect to the planes �i (in particular they may belong
to �i) or other attractors must exist, located in symmetric positions with respect to them. For example,
since the three attracting invariant closed curves which are created via the Neimark±Hopf bifurcation
belong to the invariant planes �i at their creation, they will remain embedded into the respective
invariant planes, to which the three bifurcating fixed points Ei, i � 4, 6, 8 belong, as far as they exist.
The same holds for the more complex attractors which replace the invariant closed curves after their
destruction.

6. Numerical explorations of the basins of the Nash equilibria

The stability analysis given in Section 5 concerns the attractors of bounded trajectories. However, an
attracting set at infinite distance always exists, i.e. diverging trajectories can always be obtained starting
from sufficiently high values of jj�q1; q2; q3�jj.

The coexistence of attracting sets, both at finite and infinite distance, stresses the importance of
results on the problem concerning the relationship of the initial conditions Eq. (6) and the long run
evolution of the oligopoly game. An answer to this question requires the knowledge of the basins of
attraction of the coexisting attractors.
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Let A be an attractor of a map T : �q1; q2; q3� ! �q01; q02; q03�, such as a stable fixed point or a stable
cycle or a more complex attracting set. The basin of attraction of A is the open set of points which
generate trajectories converging to A:

B�A� � f�q1; q2; q3�jTt�q1; q2; q3� ! A as t ! �1g: (38)

We call basin of infinity B�1� the open set of points that generate diverging trajectories:

B�1� � �q1; q2; q3�j jjTt�q1; q2; q3�jj ! 1 as t ! �1f g: (39)

The delimitation of the basins of attraction requires a study of the global dynamical properties of the
dynamical system, i.e. a study which is not based on the linear approximation of the map. In particular,
if the map is non-invertible, the existence of several distinct rank-1 preimages of a given point implies
that the basins may be sets with complicated topological structures, like non-connected or multiply-
connected sets (see [1,17,18]). This can be intuitively understood on the basis of the following
arguments. Let A be an attractor for an iterated map T. This means that a neighborhood U(A) exists
whose points converge to A. Of course U�A� � B�A�, but also the points of the phase space which are
mapped inside U after a finite number n of iterations of T belong, for any n, to B�A�. So, the total basin
of A (or more briefly the basin of A) is given by:

B�A� �
[1
n�0

Tÿn�U�A��

where Tÿ1�x� represent the set of the rank-1 preimages of x (i.e. the points mapped to x by T), and
Tÿn�x� represent the set of the rank-n preimages of x (i.e. the points mapped to x after n repeated
applications of T). If T is a non-invertible map, the total basin may be non-connected because U(A), or
its preimages, may have several rank-1 preimages, obtained by the action of distinct inverses, some of
which may be disjoint from U(A). The greatest connected portion of B�A� which includes A is called
the immediate basin of A.

The presence of non-connected basins is an important property in applications because it reveals a
rather counterintuitive situation, due to the presence of sets of points which generate trajectories
converging to a given attractor, surrounded by points belonging to the basin of another attractor. For
example, in our triopoly model it may happen that firms eventually use equilibrium strategies (�q1, �q2,
�q3), although the initially chosen actions were `far away' from this Nash equilibrium. On the other
hand, if the initially chosen quantities are `close' to this Nash equilibrium, then firms eventually choose
some different equilibrium strategies (~q1, ~q2, ~q3). Hence, it is important to detect, by analytical and/or
numerical methods, the occurrence of global bifurcations at which a basin is transformed from a simply
connected into a non-connected set. For two-dimensional maps, some general results for the study of
such bifurcations, based on the method of critical curves, a powerful tool for the study of the global
properties of non-invertible maps of the plane, are given in [1,17,18]. Some applications of these results
to a Cournot duopoly game with logistic reaction functions are given in [5], where it is shown that two
coexisting stable Nash equilibria are present. Their basins are multiply connected and non-connected
sets, and the global (or contact) bifurcations which characterize their qualitative changes are generally
revealed through computer assisted proofs, based on the detection of tangential contacts between
different kinds of singularities, such as critical curves and repelling invariant curves. This is much more
difficult for three-dimensional maps, since critical curves are replaced by critical surfaces, and the
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detection of the tangential contacts requires sophisticated usage of three-dimensional graphics. As a
first modest step towards such results, in this paper we just give some numerical computations of the
basins of coexisting attractors, and we show the occurrence of some qualitative changes in their
structure.

Let us first consider a set of parameters in the darker region of Fig. 1, namely � � 1.95 and � � 0.5,
for which we have four coexisting stable Nash equilibria, the stable nodes E2, E4, E6, E8. We try to
understand the shape and the extension of the basins by taking planar sections of the three-dimensional
basins. In Fig. 2 four different sections with planes q3 � k, i.e. parallel to the (q1, q2) coordinate plane,
are shown. The section shown in Fig. 2(a) is obtained by considering the plane with q3 � 1ÿ1/2�, i.e.,
the plane through the fixed point E2 and parallel to the (q1, q2) coordinate plane. The different basins
are represented by different colors: the black region represents the basin of infinity B�1�, the white

Fig. 2. Four different plane sections of the basins of the different attractors existing for � � 1.95 and � � 0.5. The basins are

represented by four different colors: the black region represents B�1�, the white region represents B�E2�, the dark-grey

region represents B�E4�, the intermediate-grey region represents B�E6�, the light-grey region represents B�E8�. (a) Plane

section with the plane q3 � 1ÿ1/2�. (b) Plane section with the plane q3 � 0. (c) Plane section with the plane q3 � 1.2. (d)

Plane section with the plane q3 � 1.4.
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region represents the basin of E2, B�E2�, the dark-grey region represents the basin of E4, B�E4�, the
intermediate-grey region represents the basin of E6, B�E6�, the light-grey region represents the basin of
E8, B�E8�. The black dots are the projections of the stable fixed points on the plane q3 � k.

In order to estimate the global three-dimensional shape of the basins, other sections with parallel
planes q3 � k are shown in Fig. 2. Fig. 2b is obtained with the plane q3 � 0. This figure shows that the
basin B�E4� has empty intersection with the plane q3 � 0, i.e. the games starting with q3 � 0 cannot
converge to the Nash equilibrium E4 (the equilibrium at which firm 3 dominates the market). Due to the
symmetry, we can also deduce that the games starting with q1 � 0 cannot converge to E6 (the
equilibrium at which firm 1 dominates the market) and those starting with q2 � 0 cannot converge to E8

(the equilibrium at which firm 2 dominates the market). Fig. 2c and d represent sections with the planes
q3 � 1.2 and q3 � 1.4, respectively.

Fig. 3 was obtained with � � 1.95 and � � 0.75. With these values of the parameters we have
��2�ÿ 1� � 2:175, and besides the three stable Nash equilibria E4, E6 and E8, a stable cycle of period

Fig. 3. Four different plane sections of the basins of the different attractors existing for � � 1.95 and � � 0.75. The meaning

of the different colors is the same as in Fig. 2. (a) Plane section with the plane q3 � 1ÿ1/2�. (b) Plane section with the plane

q3 � 0. (c) Plane section with the plane q3 � 1. (d) Plane section with the plane q3 � 1.1.
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2 exists, say C2 � { (0.86, 0.86, 0.86), (0.568, 0.568, 0.568)} 2 �, created by the flip bifurcation of E2

occurring at ��2�ÿ 1� � 2. Now the white region represents the basin B�C2� of the 2-cycle, and the
other colors have the same meaning as in Fig. 2. Fig. 3a represents the section with the plane
q3 � 1ÿ1/2�, and Fig. 3b with the plane q3 � 0, whereas Fig. 3c represents the section with the plane
q3 � 1 and Fig. 3d with the plane q3 � 1.1. From these figures it seems that the smoothness of the
basins boundaries has been lost. Additionally, they show that there is a large set of initial conditions for
which the adjustment process fails to converge to a Nash equilibrium.

Fig. 4 was obtained for parameter values � � 2.2 and � � 0.3, which belong to the region 
s
2�E4� of

the stability domain 
s�E4�. In this case the fixed points E4, E6 and E8 are the only attractors, and E2 is
a saddle point. Besides the basin of infinity (black region) the set of points which generate bounded
trajectories is shared by the three basins B�E4�, B�E6� and B�E8�, represented by the same colors as in
the previous two figures. Also in this case, four different plane sections of the basins, with planes

Fig. 4. Four different plane sections of the basins of the different attractors existing for � � 2.2 and � � 0.3. The basins are

represented by four different colors: the black region represents B�1�, the dark-grey region represents B(E4, the

intermediate-grey region represents B�E6�, the light-grey region represents B�E8�. (a) Plane section with the plane q3 � 1ÿ1/

2�. (b) Plane section with the plane q3 � 0. (c) Plane section with the plane q3 � 1.2. (d) Plane section with the plane q3 � 1.5.
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q3 � k, are shown: Fig. 4a was obtained with k � 1ÿ1/2�, Fig. 4b with k � 0, Fig. 4c with k � 1.2, and
Fig. 4d with k � 1.5. From these plane sections, all the basins appear to be connected subsets of R3.

However, the situation drastically changes if higher values of the parameter � are considered. In fact,
if � is increased, a global bifurcation occurs at which the basins of the three stable fixed points are
transformed from simply connected sets into non-connected sets, each formed by many (really
infinitely many) disjoint portions. For example, in Fig. 5, obtained for � � 2.2 and � � 0.5, the plane
section with the plane q3 � 0.7 shows such a complex topological structure of the basins. We stress
again that such a structure of the basins is peculiar of non-invertible maps, i.e. it cannot occur when the
map is invertible.

In the case depicted in Fig. 5, smaller and smaller disjoint portions of all the three basins accumulate
along the boundary @B�1�. This is due to the fact that the boundary @B, being a repelling set for the
forward iteration of T, behaves as an attracting set for the iteration of the inverses of T.

The occurrence of global bifurcations which cause the transition from simple to complex basins
structures, like the one described above, leads to a loss of predictability of the effect of small changes in
the initial conditions. In fact, in the regions of phase space where many intermingled portions of
different basins exist, a small displacement of the initial conditions, due, for example, to some
exogenous perturbations which are always present in real systems, has a high probability of causing a
crossing of some basin boundary and thus giving a different asymptotic evolution of the dynamical
system.

7. Complex attractors around the Nash equilibria

When the Nash equilibria E4, E6 and E8 lose stability through the supercritical Neimark±Hopf
bifurcation, more complex attractors are created around them. This means that the long-run evolution of

Fig. 5. Plane section, with the plane q3 � 0.7, of the basins of the different attractors existing for � � 2.2 and � � 055.
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the oligopoly system is characterized by periodic or quasi-periodic fluctuations of production choices
qi, i � 1, 2, 3, around the (locally) optimal values represented by the Nash equilibria. In other words,
even if the adjustment process starts very close to a Nash equilibrium, the mechanism by which the
competitors determine their production choices causes an asymptotic time evolution characterized by
more or less regular oscillations, without converging to any optimal equilibrium point.

For example, let us consider values of the parameters � and � taken just above the Neimark±Hopf
bifurcation curve (see Fig. 1), such as � � 2.5 and � � 0.25 > �h(2.5) � 0.2. With this set of para-
meters the three Nash equilibria E4, E6 and E8 are unstable foci, with eigenvalues z1 � 0.52 and
z2,3 � 0.86 � 0.57i, with jz2;3j � 1:03. Since the three Neimark±Hopf bifurcations just occurred, we
expect that three attracting closed invariant curves exist, on which the time evolution of the dynamical
system is periodic or quasi periodic. The numerical iteration of the map Eq. (21) with � � 2.5 and
� � 0.25 confirms this, as shown in Fig. 6, where three numerically computed trajectories, obtained
with initial conditions close to the fixed points E4, E6 and E8, indicate the existence of three coexisting
attractors. These are represented in three-dimensional phase space in Fig. 6a, and their projection on

Fig. 6. For � � 2.5 and � � 0.25, just after the Neimark±Hopf bifurcation, three trajectories are numerically computed

starting from initial conditions close to the bifurcations fixed points E4, E6 and E8, respectively. (a) Three-dimensional

representation of the three trajectories (the early 300 points, representing the transient, are not plotted) (b) Projection of the

trajectories on the plane (q1, q2) (c) versus time representation of q1(t), t � 800, . . ., 1000, for the trajectory starting close

to E4.
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the (q1, q2) coordinate plane is shown in Fig. 6b. Of course, the projections on the other two coordinate
planes are identical, due to the symmetry properties of the iterated map. In Fig. 6c the values of q1(t),
t � 800, . . ., 1000, obtained for the trajectory starting from an initial condition close to E4, are plotted
versus time. These numerical results suggests that a quasi-periodic motion occurs along each of the
three closed invariant curves. Moreover, as stated at the end of Section 5, each attractor is embedded
into the corresponding invariant plane, as it clearly appears from the projection shown in Fig. 6b. More
precisely, the attractor around E4 belongs to the invariant plane �3 of equation q1 � q2, the one around
E6 belongs to the invariant plane �1 of equation q2 � q3 and that around E8 belongs to the invariant
plane �2 of equation q1 � q3. This means that the trajectories converging to such attractors are
characterized by partial synchronization. Numerical explorations show that the basins of the three
coexisting attractors are practically the same as those of the respective fixed points just before the
occurrence of the bifurcation, i.e., they are similar to those shown in Fig. 4.

As the parameters move away from the Hopf bifurcation curve, in the region where no stable Nash
equilibria exist, the amplitude of the three stable closed orbits increases, then they are transformed into
more and more complex attractors. For example, with � � 2.5 and � � 0.48 the trajectories starting
close to the fixed points Ei, i � 4, 6, 8, are attracted to three distinct chaotic attractors, as shown in

Fig. 7. For � � 2.5 and � � 0.48, three trajectories are numerically computed starting from initial conditions close to the fixed

points E4, E6 and E8, respectively. (a) Three-dimensional representation of the three trajectories (the early 300 points,

representing the transient, are not plotted). (b) Projection of the trajectories on the plane (q1, q2). (c) Versus time representation

of q1(t), t � 800, . . ., 1000, for the trajectory starting close to E4.
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Fig. 7. Also in this case, the projections of the chaotic attractors on the coordinate planes clearly show
that each attractor is embedded into the corresponding invariant plane, i.e. the trajectories converging to
them evolve toward situations of partial synchronization, even if they are chaotic trajectories. The time
evolution of q1(t) along the trajectory embedded into �3 is represented in Fig. 7c.

As the parameters � and � are further moved away from the Neimark±Hopf bifurcation curve the
three chaotic attractors disappear due to a contact with the boundary of their immediate basins. Such a
contact causes the destruction of the chaotic attractors, i.e., they become chaotic repellors after the
contact (see [13,14]), a situation called final bifurcation in [1,17] or boundary crisis in [15].

8. Numerical simulations in the case of heterogeneous players

We assume now that Eq. (10) still holds, but relax Eq. (20). That is, the competitors exhibit
heterogeneous behavior, due to different speeds of adjustment. In this case the symmetry properties
described in Section 4, and the consequent existence of invariant submanifolds of partial
synchronization �i, i � 1,2,3 and of total synchronization �, no longer hold.

The fixed points are the same as those computed in Section 2, because they do not depend on the
parameters �i. However, in the case of heterogeneous behavior it is not so easy to obtain analytical
expressions of the local bifurcations conditions, and the consequent delimitation of the stability regions,
in the four-dimensional space of parameters:


4 � f��; �1; �2; �3�j� > 0; 0 � �i � 1; i � 1; 2; 3g: (40)

Of course, the stability regions in 
4 must be such that their intersections with the two-dimensional
submanifold of 
4 defined by the two equations �1 � �2 and �2 � �3 give the corresponding stability
regions for the homogeneous case as described in Proposition 1. So, the case of heterogeneous
competitors can be studied starting from the benchmark case of the homogeneous case by introducing
small differences between the speeds of adjustment. For example, starting from the situation shown in
Fig. 2, obtained with � � 1.95 and �1 � �2 � �3 � 0.5, and characterized by the presence of the four
coexisting stable fixed points Ei, i � 2, 4, 6, 8, we introduce different speeds of adjustment by
decreasing �1 and increasing �3, namely �1 � 0.3, �2 � 0.5, �3 � 0.7. The numerical computation of
the eigenvalues shows that the four fixed points remain stable nodes, being:

�1�E2� � 0:982 . . . ; �2�E2� � ÿ0:453 . . . ; �3�E2� � 0:974 . . . ;

�1�E4� � 0:867 . . . ; �2�E4� � ÿ0:040 . . . ; �3�E4� � 0:673 . . . ;

�1�E6� � 0:896 . . . ; �2�E6� � 0:075 . . . ; �3�E6� � 0:528 . . . ;

�1�E8� � 0:878 . . . ; �2�E8� � ÿ0:01 . . . ; �3�E8� � 0:632 . . . ;

We observe that the introduced heterogeneity in the speeds of adjustment does not seem to have a
large influence on the eigenvalues of the fixed points (it is easy to compare the eigenvalues given above
with those obtained with the set of parameters used in Fig. 2, which can be computed by their analytical
expression given in Section 5). However, a remarkable change occurs in the basins, as can be
immediately deduced from Fig. 8a, where the section of the basins with the plane of equation
q3 � 1ÿ1/2� is shown (the meaning of the colors is the same as in Fig. 2). From a comparison between
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Fig. 8a and Fig. 2a it is obvious that the introduction of a difference in the speeds of adjustment causes
a noticeable enlargement of B�E4�. We recall that, among the stable fixed points, E4 is the one with a
larger value of q3, i.e. it is characterized by a dominance of firm 3. So, we may conjecture that an
increase in �3, the speed of adjustment of firm 3, causes an enlargement of the basin of the stable
equilibrium where firm 3 dominates the market. Indeed, this conjecture seems to be confirmed by other
numerical simulations, in the sense that if �3 is decreased and �1 is increased then the basin of E6 (the
stable equilibrium where firm 1 dominates) becomes larger, an so on. Of course, a greater extension of
the basin means a higher probability of convergence to the corresponding equilibrium, or a greater
robustness of the stable equilibrium with respect to exogenous shocks.

The effect of heterogeneity with regard to the speeds of adjustment on the structure of the basins is
even more evident in the situation shown in Fig. 8b, where the same plane section as in Fig. 8a is
shown, obtained with �1 � 0.3, �2 � 0.7, �3 � 0.7, i.e. after an increase of �2 with respect to the value
used in Fig. 8a. In this case the topological structure of the basins B(E4) and B�E8� is much more
complex, because now these two basins are non-connected sets, formed by infinitely many disjoint
portions which accumulate along the boundary @B�1�. In contrast, B�E6� remains simply connected.
We remark that E6 is the stable steady state characterized by the highest value of q1, the output of the
firm with smallest speed of adjustment. As already stressed in Section 6, increasing values of the
speeds of adjustment may cause the occurrence of a global bifurcation at which the basins are
transformed from simply connected to non-connected sets. In the case of heterogenous behavior this
may happen when at least one speed of adjustment is increased, and the change of the topological
structure does not necessarily involve all the basins.

To sum up, we can say that the heterogeneity in the firms' adjustment speeds does not have a great
influence on the local stability properties, related to the modulus of the eigenvalues, but may have a

Fig. 8. Plane section with the plane q3 � 0.7 of the basins of the attractors existing in the case of heterogeneous firms with

� � 1.95 and with (a) �1 � 0.3, �2 � 0.5, �3 � 0.7. (b) �1 � 0.3, �2 � 0.7, �3 � 0.7.
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remarkable effect on structure of the basins. In particular, a sort of heterogeneity in the basins structure
is induced by introducing differences in the behavior of firms.

The coexistence of several attractors is numerically observed also in the presence of attractors which
are more complex than steady states. In order to show this, we again start from the benchmark case of
homogeneous competitors, studied in Section 7, and we introduce small changes in the speeds of
adjustment. For example, starting from the set of parameters used in Fig. 7, i.e. � � 2.5, �1 � �2 �
�3 � 0.48, we consider the situation obtained with the same value of � and with �1 � 0.4, �2 � 0.48,
�3 � 0.5. With this set of parameters we generate three trajectories, starting from initial conditions
close to the unstable foci E4, E6 and E8, respectively. The result of this numerical simulation is shown in
Fig. 9, where three coexisting attractors are seen, each located around one of the fixed points, but now
the invariant planes no longer exist: the trajectory starting from the initial condition close to E4

converges to a chaotic attractor, the trajectory starting from the initial condition close to E6 converges to
another chaotic attractor and the trajectory starting from the initial condition close to E8 converges to a
cycle of period 43. The projections of these three attractors on the plane (q1, q2) are shown in Fig. 9b
and the corresponding representations of q1(t) versus time along these trajectories are shown in Fig. 9c
for t 2 [800,1000]. In Fig. 9b we can see that, differently from the homogenous case, the three
attractors are not embedded into the partial synchronization planes, i.e. they are truly three-dimensional
attractors.

Another consequence of the symmetry breaking due to the introduction of heterogeneities is that the
disappearance of the attractors, caused by contacts with the boundary of their immediate basins, is not
simultaneous, due to the asymmetry of the basins induced by the asymmetry of the map Eq. (5). For
example, if we introduce a small increase of �3 with respect to the value used to obtain Fig. 9, the
attractor around E6 no longer exists. This is shown in Fig. 10, where three trajectories are numerically
generated as in Fig. 9, but those starting close to E4 and E6 converge to the same attractor, located
around E4.

9. Conclusions

In this paper we introduced an oligopoly model with three competitors, and we assumed that firms
determine their current quantities by a partial adjustment to the Best Response. The particular form of
the reaction functions of the firms can be derived by assuming that some kind of interfirm externality
exists among the firms, i.e. the corresponding (marginal) payoffs of the firms are (positively) influenced
by the actions of other firms. We analyzed the resulting time-discrete model and we derived stability
conditions for the Nash equilibria (fixed points of the map) in the case of homogeneous firms. We
showed that for various parameter constellations several coexisting Nash equilibria or more complex
attractors emerge. In particular, we tried to emphasize the importance of a global analysis, which
stresses the role of initial conditions on the long run outcome of the market. In other words, our focus
has been on the set of initially chosen quantities which converge to one of several coexisting attractors
and the changes these sets undergo as parameters are varied.

The conclusions which can be derived from our analysis relate to the insights gained for economists
and for mathematicians. For researchers in the field of economics, the coexistence of several Nash
equilibria poses a problem, since in this case the considered game does not have a unique prediction
how it will be played. Even the stability properties of the Nash equilibria can not be used as a proper
refinement of the definition of an equilibrium. If the basins are simply connected, the extent of the
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Fig. 9. For � � 2.5, �1 � 0.4, �2 � 0.48 and �3 � 0.5 three trajectories are numerically computed starting from initial

conditions close to the fixed points E4, E6 and E8, respectively. (a) Three-dimensional representation of the three trajectories

(the early 300 points, representing the transient, are not plotted). (b) Projection of the trajectories on the plane (q1, q2). (c)

Versus time representations of q1(t), t � 800, . . .,1000, for the trajectories starting close to E4, E6 and E8, respectively.

88 H. Nabih Agiza et al. / Mathematics and Computers in Simulation 51 (1999) 63±90



basins of these Nash equilibria might at least serve as a measure of the probability or plausibility of a
particular prediction. Furthermore, it might serve as a measure of the robustness of the model under
investigation with regard to exogenous perturbations. However, the result that despite the local stability
of an equilibrium NE1, the adjustment process might lead to a different equilibrium NE2, even if the
initially chosen quantities are (relatively) close to NE1 (in the case of intermingled basins) is surprising
and puzzling for applied economists. It demonstrates that the predictions of the model are not robust
with respect to perturbations in the initial quantities, and makes us aware that in non-linear models
global properties of the equilibria have to be studied and these particular parameter regions have to be
identified.

From a mathematical point of view our analysis provided a (partial) characterization of the properties
of a three-dimensional discrete-time dynamical system which exhibits rather complex behavior. We
have demonstrated that this complexity stems from both the creation of complex attractors in the three
dimensional phase space and the coexistence of attracting sets with rather complicated basin
boundaries. As pointed out before, the mathematical treatment of three-dimensional non-invertible
maps is an almost unexplored field, and our investigation may be seen as a step in this direction.
Finally, as we assumed strong symmetry properties of the map, our analytical results are specific to this
situation, but may nevertheless constitute a good starting point for a more complete study of the global
properties and bifurcations of the complex attractors and their basins in higher-dimensional non-
invertible maps.
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