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INTRODUCTION

Mathematical models are often used to solve decision problems. A typical decision
problem in clinical practice is that of optimal dosage of drugs, i.e. the choice of a dosage
regimen in order to maintain a therapeutic level for a long time without producing serious
side effects (see e.g.!). If a drug is encapsulated within a given volume of erythrocytes for
treatment, the values of two parameters must be determined in order to obtain a desired
result: the volume of erythrocytes prepared and the amount of the drug which is loaded
inside them. In this paper an optimal control problem is formulated on the basis of a
mathematical model which has been recently proposed in®> and® to describe the
administration of a drug after having encapsulated it inside erythrocytes as a non-diffusible
prodrug. This model allows us to obtain an estimate of the maximum concentration of the
drug in the plasma, and from this information we can recognize the set of allowable
decisions (or admissible controls) which is the set of values of the control parameters which
lead to therapeutic and non-toxic drug concentration in plasma. The solution of the optimal
control problem indicates that in the set of admissible control parameters a unique point
exists which gives the maximum time of therapeutic effect without reaching a toxic
concentration. This point represents the optimal dosage strategy.

" THE MATHEMATICAL MODEL

The model proposed in? and3 is based on the compartmental representation shown in
Fig.1 . If the concentrations of material in the compartments are taken as state variables,
i.e. x,(t):=prodrug concentration in the injected erythrocytes at time t, X,(t):=drug
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Figure 1. The three - compartment mode! corresponding to equations (1)

concentration inside the injected erythrocytes at time t, X,(t):=drug concentration in the

plasma at time t, the evolution of the sysiem is described by the following differential
equations:

X = —g(x;)

%o = g(%) —a(x; —%3)

6

=a %(xz —x3) —kxg

where * denotes the time derivative , i.e. the rate of change of the concentrations with
time, «is linear diffusion coefficient through the RBC membrane [1], V is the plasma's
volume [ml], k is the cumulative loss rate of the drug from the plasma [h-'], n is the volume
of RBC loaded with the prodrug [ml] . The function g(x,) represents the reaction rate with
which the prodrug is converted to the diffusible active drug by the erythrocyte resident
enzymes. Usually it is assumed :

A % @)
= R Y
g(x) = —'—Q::xl

where V. is the maximum reaction rate [mM/h] and K, the Michaelis-Menten constant
[mM].
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Figure 2. A typical curve of drug concentration in plasma obtained by solving equations (1).
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If an amount of g, pmoles of prodrug is loaded at t=0 into n ml of erythrocytes the
initial condition for the equations (1) is:

x;(0)=go/n; x,(0)=0; x,(0)=0 3)

The first differential equation in (1) is nonlinear and decoupled from the others. Thus
the second and the third equations can be solved as a system of linear differential equations
with forcing term g(x,), and the explicit expression of X4(t) can be obtained. A typical

curve of the concentration x,(t) of the drug in the plasma is shown in Fig. 2. The solution

represented in this figure is obtained with the conditiona> k. The same condition will be
assumed in the following.

STATEMENT OF THE OPTIMAL CONTROL PROBLEM

The solution x4(t), which gives the drug concentration in the plasma (see Fig. 2),
depends on the two controllable parameters n and q, which represent the volume of
erythrocytes injected and the amount of prodrug loaded inside them respectively.
Accordingly we can write x,=x;(t,n,q,). The control parameters n and g, must satisfy some
constraints:

i) the volume of injected erythrocytes must lie within a finite range, i.e. n,<n<n,

ii)the initial concentration qo/n of prodrug inside the erythrocytes cannot overcome a given
threshold, i.e. 0<q,/n <.

These two conditions define a region Q in the plane (n,q,) shown in Fig.3a. Let m be the

minimum concentration of the drug in the plasma having a therapeutic effect and M be the
toxic concentration (see-Fig. 2). Let ¢, be the instant at which the drug concentration in

plasma begins to be therapeutic and T>t, the instant at which it ceases to be therapeutic
(see Fig.2). These quantities depend on the control parameters n and q,, hence we can
write: t,=t,(n,q,) and T=T(n,q,). Let us now define the time of pharmacologic activity:

J(n,q,)=T(n,q,) - t,(n,qq) 4

The problem of optimal control is that of finding the values (n*, q,*) of the control

parameters such that the time of pharmacologic activity J defined in (4) is maximum
without reaching the toxic threshold. In other words we require :

A) m < x4(t, 0¥, q,*) <M for each on® §.5<t<T 0F,q.%)
B) I(n*,q,*) = T(n*, q,*) - to(n*, g *) is maximum.

An admissible control (n,q,) is one which satisfies the conditions i) and ii), and is such that
the request A is satisfied. If, as in Fig. 2, we call t* the instant at which the drug
concentration in plasma x, attains its maximum value, then (n,q,) is an admissible control if
and only if m<x,(t*,n,g,)<M , i.e. the maximum concentration of the drug in plasma is

therapeutic but non toxic. The set of admissible controls is included in  and depends on
the values of m and M. Two typical examples are shown in Fig. 3b,c. In fig. 3c the value
of M is lower than in Fig. 3b. The set Q is represented by the shaded area whereas the
regions (I) and (II) in Q represent the control parameters for which x,(t*)>M (toxic

concentrations occur) and for which x,(t*)<m (non therapeutic concentration) respectively.
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Figure 3. Examples of regions of admissible controls (n,q,) as explained in "statement of the optimal
control problem".

THE SOLUTION OF THE PROBLEM

The problem of optimal drug administration strategy stated above has a unique
solution. The point (n*, q,*), in the region Q of admissible controls, giving the longest
pharmacologic activity can be found on the basis of the following result given in [4] :

(R1) a_(% >0, Le. the time of pharmacologic activity

increases for increasing initial concentration g /n. This can be achieved by:
(R1.1) keeping q, constant and decreasing n;
(R1.2) keeping n constant and increasing q,;
(R1.3) increasing the initial concentration g /n by varying both n and g

Furthermore if qy/n is constant, on each line q,/n=c we have:

(R2) W@iﬂ_) >0, ie. the time of pharmacologic activity increases for increasing
4o

n. These two results allow us to state the following:

Proposition. The optimal control (n*, q,*) in the set of admissible controls is the one
for which the initial concentration inside the erythrocytes q/n is maximum and on the line
on which g/n is maximum the volume of erythrocytes, n*, must assume its maximum.

Proof. Consider a generic control u=(n,q,) inside . The optimal control (n*,g,*) can
always be reached following one of the two following pathways:

i) starting from u= (n.q,) we keep q, constant and we decrease n up to n;. Therefore J(n,q,)
increases along this path as stated in (R1). Then, with n=n, fixed, we increase g, up to
g,=cn;. As shown by (R1) J(n,q,) is still increasing. Finally on the straight line of constant
concentration g /n=c J(n,q,) increases for increasing n according to (R2) until it reaches its
maximum at (n*, q,*) (Fig. 4a);

(ii) Starting from u=(n,q,) we keep n constant and q, is increased. From (R1) J(n,q,) is
increasing. Then, on the line q/n=C, J(n,q,} increased for increasing n because of (R2)
and again J will reach its maximum at (n*, q,*) (Fig.4b).
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Figure 4. The paths (a) and (b) reaching the optimal control, as described in “The solution of the problem”.

THE CASE OF ddCyd ADMINISTRATION FOR HIV TREATMENT

The results of section 4 have been applied to the case of the administration of 2',3'-
dideoxycytidine (ddCyd) by using 2'3'-dideoxycytidine-5'-phosphate (ddCMP) as non-
diffusible prodrug. The values of the parameters, V,,,, and K, are given in® and®:
a=48h! ; K =6mM; V__ =15mM/h . The value of the elimination rate k, estimated

on the basis of the data given in’, is k = 0.58 h-l. A reasonable estimate of plasma volume
is V= 5000 ml. According to® we take m = 0.5 pM and M = 10 pM. The constraints on the
control parameters are: 5 ml<n<30 ml; qo/m 10 mM. In this case the region Q of
admissible control parameters (n,q,) has been numerically estimated on the basis of "over"

and "under" estimates of the maximum concentration x;(t) and is shown in Fig.5a. The
optimal control (n*, q *) is the vertex of coordinates u*=(n*=30 ml, q,* =300 pmoles)
shown in Fig. 5a. With these optimal values of n and q, the curve x,(t) of the drug
concentration in the plasma is that shown in Fig. 5b and in this case the time of
pharmacologic activity is J = T- t,=24 h.

With the values of the parameters listed above the variations of J(n,q,) have beeen

numerically computed when the control parameters move along the paths described in
section 4. In Fig. 6a the amount g, of loaded prodrug is increased with a fixed value of
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Figure 5, The region of admissible control (a) and the optimal solution (b) for ddCyd,
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Figure 6. The time of pharmacological activity with fixed n, g, and g /n respectively.

n=20 ml (path R1.2). In Fig. 6b q,=45 pmoles is fixed and n is allowed to vary (path R1.1).
Finally in Fig. 6c the initial concentration gq,/n=10 mM is fixed and by increasing the

volume of erythrocytes n we are moving along a line of constant concentration (path R2).
The graphs confirm the conclusions of section 4.

CONCLUSIONS

In the present paper the problem of optimal dosage is considered for the
administration of a drug by using erythrocytes as circulating bioreactors. The study has
been carried out on the basis of a mathematical model which describes the release of the
drug in plasma after having entrapped it inside erythrocytes as a non-diffusible prodrug.
The target of the optimization problem is to prolong the pharmacologic activity without
causing side effects. The control parameters, which have been uniquely determined in
order to reach the target, are the amount of prodrug loaded and the volume of erythrocytes
injected. Their optimal values are such that the initial concentration of prodrug inside the
red blood cells must be maximum and the volume of the erythrocytes prepared must be
maximum observing the given constraints.
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