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Abstract. We consider a Kaldor-type discrete-time nonlinear business cycle
model in income and capital, where investment is assumed to depend both on
the difference between normal and current levels of capital stock, and on the
difference between the current income and its normal level, through a nonlinear
S-shaped increasing function. As usual in Kaldor business cycle models, one or
three steady states exist, and the standard analysis of the local stability and bifur-
cations suggests that endogenous oscillations occur in the presence of only one
unstable equilibrium, whereas the coexistence of three equilibria is characterized
by bi-stability, the central equilibrium being on the boundary which separates the
basins of the two stable ones. However, a deeper analysis of the global dynamic
properties of the model in the parameter ranges where three steady states exist,
reveals the existence of an attracting limit cycle surrounding the three steady
states, leading to a situation of multistability, with a rich and complex dynamic
structure.

Key words: Business cycle – Dynamical systems – Stability – Bifurcations

JEL Classification: C62, E32

1 Introduction

The model proposed by Kaldor (1940) is one of the earliest and simplest nonlin-
ear models of business cycles. If compared with the modern approaches to the
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business cycle (emphasizing the relevance of both the microfoundations and the
explicit formal dynamic analysis), it appears very simple and rather dated. Thus
this model cannot be considered a satisfying description of actual economies.
Nevertheless, it continues to generate a considerable amount of economic, peda-
gogical and methodological interest, both from the point of view of the economist
and of the applied dynamicist (see e.g. Gabisch and Lorenz, 1989).

After Kaldor (1940), the Kaldor approach to the business cycle is found in a
paper by Chang and Smyth (1971), where a reformulation of the Kaldor model
is offered using the language and the formalism of the theory ofdynamical
systems. In fact, Chang and Smyth proposed a representation of the mechanism
described by Kaldor in the form of acontinuous timedynamical system, expressed
as a system of two nonlinear differential equations in income and capital, that
shows the occurrence of periodic dynamics: the equilibrium level of income
is unstable and the system fluctuates around it along a stable limit cycle (see
also Grasman and Wentzel, 1994). Later, many authors reformulated the Kaldor
approach to business cycle as adiscrete timedynamical system, expressed by a
system of two nonlinear difference equations (see e.g. Dana and Malgrange, 1984;
Hermann, 1985; Lorenz, 1992, 1993). In this framework, more complex dynamics
are evidenced, since endogenous fluctuations around the unstable equilibrium
have been shown, which may be periodic, quasi periodic or even chaotic.

The idea at the basis of Kaldor (and Kaldorian) models is the following. If,
at the steady state of the system, the propensity to invest is greater than the
propensity to save, then the system is unstable. Such instability does not give
rise to explosive dynamics, but rather causes the onset of fluctuations provided
that, when the system is far from the steady state, the propensity to invest de-
creases until it becomes lower than the propensity to save. Kaldor argued that
this happens by assuming a nonlinear sigmoid-shaped investment function. In-
deed, this condition is not sufficient, because the existence of the oscillations
also depends on the reaction of the firms to excess demand. So, two relevant
parameters should be considered: thespeed of reactionto the excess demand,
which has a destabilizing role, and thepropensity to save, which has a stabilizing
effect.

The model we propose is expressed in the form of a discrete dynamical
system, obtained by assuming that the firms’ investment decisions are based
on an expected “normal” value of income, which is exogenously given. Such
an assumption of “exogenously given expectations” is only implicit in Kaldor
(1940), and it is in perfect agreement with the Keynesian spirit of his approach.1

In this paper we analyze the joint dynamic effects of the two parameters
mentioned above, and we show that the exogenously given equilibrium is only
stable for low values of the firms’ speed of reaction and sufficiently high values of
the propensity to save. We also show that, if a relatively high value of the speed
of adjustment is considered (but, in any case, much lower, and more realistic,
than the values considered by many authors), the dynamic scenarios observed

1 On the notion of “ ‘normal’ level of activity”, see Kaldor (1940), pp. 180–181.
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strongly depend on the values of the propensity to save. In fact, low values of
the propensity to save give rise to a situation of bi-stability, i.e. the exogenous
steady state is unstable and two stable equilibria exist, each with its own basin of
attraction. We show that these basins may be rather complex and intermingled.
Moreover, for increasing values of the propensity to save (but, in any case, in
the range of low values), global bifurcations may occur at which a stable limit
cycle appears which encloses all the steady states, both the central one (unstable)
and the two external ones (attracting), thus giving a situation of multi-stability.
This occurs for parameter ranges that are slightly different (and we believe more
realistic, being characterized by lower values of the speed of adjustment and
propensity to save) with respect to the ones usually proposed in the literature on
nonlinear oscillations generated by Kaldor-type models.

From the point of view of the mathematical methods, it is worth noting that
the results outlined above are obtained through an analysis which is not limited
to the usual study of the local stability and local bifurcations, based on the
linearization of the dynamical system through the localization of the eigenvalues
of the Jacobian matrix. Rather, they require a global analysis of the properties of
the dynamical system, obtained through a continuous dialogue between analytic,
geometric and numerical methods. This is typical of the study of the global
properties of nonlinear dynamical systems of dimension greater than one, as
stressed in Mira et al. (1996) and recently emphasized in Brock and Hommes
(1997). In particular, the importance of homoclinic bifurcations in the global
analysis of nonlinear dynamical systems, emphasized by many authors (see e.g.
Guckenheimer and Holmes, 1983; Palis and Takens, 1993) has been recently
stressed also in the context of dynamic economic modeling (see e.g. Gardini,
1993; Brock and Hommes, 1997; Bischi et al., 2000).

The paper is organized as follows. In Section 2, the dynamic Kaldor-like
model analyzed in this paper is described, and in Section 3 the standard analysis
of the steady states and their local stability properties is given, together with the
analytic study of the local bifurcation curves in the space of the parameters. The
main results of the paper are given in Section 4, where some global bifurcations
are studied that are responsible for the creation of limit cycles and give rise to
situations of coexistence of three attractors, a dynamic scenario which, up to
now, has not been evidenced in the literature on dynamic Kaldor models. In
Section 5, we slightly modify the dynamic equations by breaking the symmetry
of the model, and we show that the global bifurcations described in Section 4
substantially persist under such structural modification. This allows us to state
that the dynamic scenarios numerically observed in Section 4 are fairly robust.

2 The model

Let us consider the following discrete-time version of the Kaldor model, which
closely follows Rodano (1997) (for other similar discrete-time versions see Dana
and Malgrange, 1984; Hermann, 1985; Lorenz, 1992):
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Yt+1 = Yt + α(It − St )
Kt+1 = (1− δ)Kt + It

(1)

where the dynamic variablesYt and Kt represent, respectively, the income (or
output) level and the capital stock in periodt . The parameterα (α > 0) repre-
sents aspeed of adjustment, measuring the firms’ reactions to the demand excess
(equivalent, in a macroeconomic environment, to the difference between invest-
ment demand (It ) and saving (St )). A small value ofα means a prudent reaction,
which can be explained by a high degree of risk aversion or a relevant monopoly
degree. Conversely, a high value ofα (greater than one) means rash reactions
due to a risk propensity or to competitive pressures, which can cause a coordi-
nation failure. Finally, the parameterδ (0 < δ < 1) represents thecapital stock’s
depreciation rate.

As usual in a Keynesian framework, savings are assumed to be proportional
to the current level of income,

St = σYt

where the coefficientσ , 0 < σ < 1, represents thepropensity to save. While
in many versions of the Kaldor model the saving function is assumed to be
non-linear, we prefer a linear specification, both for its analytical simplicity and
for its sounder microfoundation. Moreover, in our case this assumption does not
affect the nonlinearity of the model, which is ensured by the nonlinearity of the
investment function, given below.

As usual, the investment demand is assumed to be an increasing and sigmoid-
shaped function of income. Without loss of generality, in the following we shall
consider the form proposed in Rodano (1997)

It = σµ + γ
(σµ

δ
− Kt

)
+ arctan(Yt − µ) (2)

whereσµ/δ is the “normal” level of capital stock. In equation (2), two short
run investment components are considered: the first one is proportional to the
difference between normal capital stock and current stock, according to a co-
efficient γ (γ > 0), usually explained by the presence of adjustment costs; the
second one is an increasing, but not linear, function of the difference between
current income and its “normal” level. This “normal” level of income, again in
the logic of Keynesian setups, is exogenously assumed in firm expectations. We
indicate this normal level of income with the parameterµ (µ > 0). Therefore,
since the expected incomeYe

t = µ, σµ represents the normal level of savings.2

This second component of the short run investment function is a convenient
specification of the sigmoid-shaped relationship between investment and income
proposed by Kaldor. We note that this analytic specification does not compromise
the generality of the results.

By substituting the expressions ofIt andSt into the dynamic model (1), we
get that the time evolution of income and capital is determined by the iteration
of a two-dimensional nonlinear mapT : (Yt , Kt ) → (Yt+1, Kt+1) given by:

2 In other words, firms know the propensity to save,σ, and thus thenormal (or expected) level
of savings, but not theactual level.
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T :

{
Y ′ = Y + α

[
σµ + γ

(
σµ
δ − K

)
+ arctan(Y − µ) − σY

]
(a)

K ′ = (1− δ)K + σµ + γ
(

σµ
δ − K

)
+ arctan(Y − µ) (b)

(3)

where the symbol′ denotes the unit time advancement operator.
In the following, we study the qualitative dynamical properties of the map

(3), and try to explore and to explain the different kinds of transient and long-
run behavior that characterize the model for economically meaningful parameter
constellations. In addition to the usual local stability analysis, based on the linear
approximation of the map at the steady states, we analyze some global dynam-
ical properties and stress the role of some global bifurcations that explain the
occurrence of new dynamic scenarios.

3 Fixed points and local stability analysis

The equilibrium points (or steady states) of the model (1) are the fixed points of
the mapT, solutions of the algebraic system:{

σµ + γ
(

σµ
δ − K

)
+ arctan(Y − µ) − σY = 0

σµ + γ
(

σµ
δ − K

)
+ arctan(Y − µ) − δK = 0

,

obtained by settingY ′ = Y andK ′ = K in (3). This system can be rewritten as:{
K = σ

δ Y

σ
(
1 + γ

δ

)
(Y − µ) = arctan(Y − µ)

. (4)

The first equation says that the fixed points belong to the lineK = σ
δ Y , and from

the second equation we have that the equilibrium values ofY can be obtained
as intersections between the line of equationz = σ

(
1 + γ

δ

)
(Y − µ) and the

sigmoid-shaped graph of the functionz = arctan(Y − µ). Such intersections may
be one or three according to the value of the aggregate parameterσ

(
1 +γ/δ

)
:

if σ
(
1 +γ/δ

) ≥ 1, then the exogenously given equilibriumP = (µ, µσ
δ ) is

the unique steady state, whereas in the complementary caseσ
(
1 +γ/δ

)
< 1,

two further steady states exist, sayR and Q, located in symmetric positions
with respect to the pointP, given byR = (YR, σ

δ YR) and Q = (YQ, σ
δ YQ), with

YQ = 2µ − YR, YR < µ being the smallest real solution of the second equation in
(4), which can be computed by any numerical method for finding the real roots
of an equation. It is trivial to realize that the steady states are independent of the
adjustment parameterα.

It is worth noting that the steady stateP can be interpreted as a full equi-
librium because the agents expectations about the normal levels of income and
capital are realized, whereas the other equilibrium points,Q and R, must be
interpreted as temporary equilibria because, given expectations, investment and
saving are equal, but the expectations are not realized.
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Let us now consider the local stability of the fixed pointP = (µ, µσ
δ ). As

usual, the analysis of the local stability of a fixed point is obtained through
the localization, in the complex plane, of the eigenvalues of the Jacobian matrix
evaluated at the fixed point, and their dependence on the parameters of the model.
In the following, we consider the parametersδ andγ as fixed, and we study the
stability regions, and the local bifurcation curves, in the space of the parameters
α, σ, with α > 0 and 0< σ < 1. In order to simplify the mathematical treatment,
we assume that the parameterγ belongs to the range 0< γ < 2− δ, a condition
satisfied in economically feasible situations, being usuallyγ < 1. The results of
the standard analysis of the eigenvalues, given in the appendix A.1, together with
the above arguments concerning the existence of the fixed points of the mapT,
allow us to state the following proposition (see also Fig. 1).

Proposition 1
(i) If σ ≥ σp, with

σp =
δ

δ + γ
(5)

then the point P= (µ, µσ
δ ) is the unique fixed point of the map T , and ifσ < σp

then two further fixed points exist, symmetric with respect to the point P.
(ii) If γ < 2−δ, the point P is locally asymptotically stable if the parametersα

andσ belong to the region ABCD of the plane(α, σ), with vertices A=
(

0, δ
(δ+γ)

)
,

B = (0, 1), C =
(

δ+γ
γ , 1

)
, D =

(
(δ+γ)2

γ , δ
δ+γ

)
, where the sides AD and CD belong

to the lineσ = σp and the hyperbola of equation3

σ = σhP(α) =
1 − δ

1 − δ − γ
− γ + δ

α (1 − δ − γ)
(6)

respectively.
(iii) If the point (α, σ) exits the stability region ABCD by crossing the side

AD, then a supercritical pitchfork bifurcation occurs at which the fixed point P
becomes a saddle point and two stable nodes are created near it; if the point(α, σ)
exits the stability region ABCD by crossing the side CD, then a Hopf bifurcation
occurs at which the fixed point P is transformed from a stable focus to an unstable
focus4.

This proposition, concerning the usual local analysis, i.e. based on the linear
approximation of dynamical system near a steady state, seems to imply that for
values of the parameters below the lineσ = σp, where three equilibria exist,

3 Figure 1 describes the caseγ + δ < 1. In the caseγ + δ > 1 the abscissa of the vertexC is
lower than the abscissa ofD and the branch of hyperbola throughC and D is negatively sloped
(but the concavity of the Hopf curve does not change). In the particular caseγ + δ = 1, the sideCD
belongs to the vertical lineα = 1/γ.

4 Numerical simulations with parameter values(α, σ) taken just after the crossing of the Hopf
curve CD show the existence of an attracting closed invariant curve around the unstable focus (on
which the dynamics may be periodic or quasi-periodic), thus revealing thesupercriticalnature of the
Hopf bifurcation. See also Appendix A1.
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Fig. 1. The shaded region ABCD represents, according to Proposition 1, the domain of stability of
the steady state P in the plane of the parameters α and σ. This figure is obtained with δ + γ < 1,
namely δ = 0.2 and γ = 0.6. In the case δ + γ > 1 the abscissa of the vertex C is less that the
abscissa of the vertex D , hence the branch of hyperbola through C and D is negatively sloped

situations of bi-stability (without oscillations) are obtained. By contrast, self-
sustained oscillatory behaviors seem to appear only for sufficiently high values of
the propensity to save, i.e. above the line σ = σp , and for increasing values of the
adjustment parameter α, i.e. when the curve CD of Figure 1 is crossed. Indeed,
in the rich literature on dynamical systems that represent Kaldor-like business
cycle models, this is the stream followed by many authors: both in discrete
time and in continuous time, stable oscillations along limit cycles, generated
via Hopf bifurcations, are considered for sufficiently high values of α and σ.
However, small values of the propensity to save, σ, are more realistic, and hence
it makes sense to wonder if oscillatory dynamics can be obtained in the region
of the parameter space where three equilibria exist. This is the reason why, in
the next section, we focus our attention on the region of the parameter space in
which three equilibria exist, and we consider some global dynamic properties,
and global bifurcations, by extending our analysis far from the local bifurcation
curves. The method used to perform this analysis will require an interplay among
analytic, geometric and numerical techniques, a “modus operandi” that is typical
for the study of the global dynamic properties of nonlinear dynamical systems
of dimension greater than one, as stressed in Mira et al. (1996), Abraham et al.
(1997), and Brock and Hommes (1997).
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4 Global dynamics with three coexisting equilibria

In this section, we explore the global dynamic behaviors of the model when the
values of the parameters are out of the region of stability of the exogenously
given equilibrium P , and in the set of parameters such that the three equilibria
R, P , and Q exist. We stress that our numerical explorations will be limited to
the following ranges for the parameters, which we claim to be rather realistic
from the point of view of their economic meaning: 0 < α ≤ 6; 0.1 ≤ δ ≤ 0.2;
0.5 ≤ γ ≤ 0.9; 0.1 ≤ σ ≤ 0.4. The equilibrium level µ is an exogenous constant,
and we have assumed µ = 10 in all our numerical simulations.

In the following, without loss of generality, we consider fixed values of the
parameters δ and γ, given by δ = 0.2 and γ = 0.6, and we note some local
and global bifurcations observed through numerical explorations by following
particular bifurcation-routes in the parameter plane (α, σ). With these values of

the parameters δ and γ we have σp = 0.25, (δ+γ)2

γ = 1.06, δ+γ
γ = 1.3. Since

δ + γ < 1, we refer to the situation shown in Figure 1, where (δ+γ)2

γ < δ+γ
γ . Of

course, similar results can be applied to the case δ + γ > 1, just reversing the
above inequality.

P

Q

R

Y

3

137

7

µ = 10    δ = 0.2   γ = 0.6   α = 0.9    σ = 0.2

Ws

Wu

Fig. 2. For µ = 10, δ = 0.2, γ = 0.6, α = 0.9 and σ = 0.2 < σp three fixed points exist: P is a
saddle point, R and Q are stable nodes. The two different colors represent the basins of attraction
B (R) and B (Q) of the stable steady states R and Q , respectively. The boundary that separates the
two basins is the stable set of the saddle point P

We first consider a value of the adjustment coefficient α taken in the range
0 < α < (δ + γ)2/γ, for example α = 0.9. According to Proposition 1, the point
P is stable for σp < σ < 1, and for σ < σp , just after the supercritical pitchfork
bifurcation, we have a situation of bi-stability: two fixed points R and Q exist and
are stable (stable nodes), and the fixed point P is a saddle point. The stable set of
P , W s (P ), acts as a basin boundary, i.e. it separates the basins of attraction of R
and Q , say B (R) and B (Q) respectively. This can be clearly seen in Figure 2,
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P

Q
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K

Y

13

11.2

8.8

0.6

µ = 10    δ = 0.2   γ = 0.6   α = 1.2    σ = 0.2378   

R

enlargement

Fig. 3. For α = 1.2 and σ = 0.2378, the fixed point P is a saddle point and R and Q are stable
foci. The stable set of the saddle P , which separates the basins B (R) and B (Q), is now more
involved with respect to the situation shown in Figure 2. The meaning of the colors is the same as
in Figure 2. The enlargement shows how a trajectory can reach the fixed point R without crossing
the basin boundary with Q

where the light grey region represents the basin B (R), i.e. the set of points that
generate trajectories converging to R, and the dark grey region represents the
basin B (Q), i.e. the set of points that generate trajectories converging to Q . In
Figure 2 also the portions of the stable and unstable sets issuing from the saddle
P are represented, denoted by W s and W u , respectively. It is important to stress
that the points R and Q represent temporary equilibria, where expectations are
not realized; however, in our model we assume that the level of expectations is
exogenously given, so the model cannot say how such expectations change when
they are wrong.

Now we consider a higher fixed value of α, such that (δ + γ)2/γ < α <
(δ + γ)/γ, for example α = 1.2. In this case P is locally stable for σ > σhP ,
where σhP = 0.6 > σp according to (6). As stressed above, we are mainly
interested in the range 0 < σ < σp , where the unstable equilibrium P coexists
with the other two equilibria R and Q . Indeed, as σ varies in this range, some
interesting bifurcations occur, which are associated with the existence of the two
other fixed points, R and Q . These bifurcations can be observed and described by
following, for example, the bifurcation path obtained by increasing the parameter
σ along the line α = 1.2.

Also in this case, for low values of σ, P is a saddle point, the other two equi-
libria R and Q are locally stable (stable nodes) and their basins are qualitatively
similar to those shown in Figure 2. As σ is increased, the two fixed points R and
Q are transformed from stable nodes into stable foci (i.e. the eigenvalues of their
Jacobian matrix become complex conjugate, see Appendix A1) and the stable
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Fig. 4. a At the global bifurcation value σ = σg , a homoclinic connection is created by the stable
and unstable sets of the saddle fixed point P . The trajectories starting outside of the eight-shaped
curve Γ tend to Γ , while those starting inside converge to R or Q . b Just after the bifurcation three
closed invariant curves exist. Two of them, ΓR and ΓQ , are repelling (the thicker dashed curves) and
bound the basins of the stable equilibria R and Q , respectively. The larger closed invariant curve,
represented by a thick and continuous line, is attracting. W s (P ) and W u (P ) denote the stable and
unstable manifolds of the saddle P , respectively

set W s (P ), as well as the unstable set W u (P ), become more involved, because
they wing around the fixed points R and Q . Consequently, the basin boundaries
appear to be more complicated, as shown in Figure 3, obtained for α = 1.2 and
σ = 0.2378. This situation of bi-stability is characterized by a greater uncertainty
about the long-run behavior of a trajectory starting from a given initial condition.
In fact, a slight perturbation of an initial condition, taken in the region around
P , may cause a crossing of the basin boundary, and consequently it may have
the effect of causing the convergence to a different equilibrium.

The geometric shape of the stable and unstable sets W s (P ) and W u (P ) sug-
gests that a global bifurcation is going to occur. In fact, as σ is slightly in-
creased with respect to the value used in fig. 3, a global bifurcation occurs at
σ = σg � 0.23799, which gives rise to two homoclinic orbits of P , as quali-
tatively shown in Figure 4a. This is a typical homoclinic bifurcation (see e.g.
Abraham et al., 1992, Palis and Takens, 1993): the stable and unstable sets join,
thus giving rise to a pair of closed invariant curves through P , denoted as ΓR and
ΓQ in Figure 4a. At the homoclinic bifurcation, the closed curve Γ = ΓR ∪ ΓQ
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is an attracting set from outside, and repelling from the inside: the area bounded
by ΓR is the basin of attraction of the stable focus R, while the area bounded by
ΓQ is the basin of attraction of Q . As σ is slightly increased above σg , we have
three closed invariant curves (see Fig. 4b): ΓR and ΓQ , which are two closed
repelling invariant curves surrounding R and Q respectively, bounding the basins
of attraction B (R) and B (Q), and Γ , which is a larger attracting limit cycle
that surrounds the three fixed points.

The dynamic scenario observed just after the homoclinic bifurcation is shown
in Figure 5a, where the basins of the three coexisting attractors R, Q , and Γ are
represented by different colors: B (R) and B (Q) are light and dark grey, re-
spectively, as in the previous pictures, while B (Γ ) is white. In Figure 5b three
typical trajectories, starting from initial conditions taken in the three different
basins, are represented versus time: starting from an initial condition in B (R)
or B (Q) the long-run evolution of the system is characterized by damped os-
cillations converging to the respective steady states, whereas starting from an
initial condition in B (Γ ), quasi-periodic self-sustained oscillations are seen in
the long run.

It is worth noting the remarkable change which occurs in the dynamics of T
as σ crosses this bifurcation value σg: for σ < σg any point of the phase plane
generates a trajectory converging to either one of the equilibria Q or R5, and we
have wide basins of the two coexisting stable equilibria (see the situation shown
in Fig. 3), whereas for σ > σg the majority of the trajectories are converging
to an oscillating behavior, and the basins of Q and R reduce to small regions
enclosed by the limit cycle Γ (Fig. 5a).

11

P

R

K

Y

2.7

9
11.1

µ = 10    δ = 0.2   γ = 0.6   α = 1.2    σ = 0.239   

Q
Γ

(a)

Y

time

(b)

50 100 150 200 250 300 3500 400 450
9

11

Fig. 5. a For α = 1.2 and σ = 0.239, i.e. σg < σ < σhQR , the fixed point P is a saddle point and R
and Q are stable foci. The basins B (R) and B (Q), represented by light grey and dark grey regions
respectively, are bounded by two repelling closed invariant curves. All the points in the white region
generate trajectories converging to a limit cycle Γ . b Three sequences Yt , obtained by the iteration
of the map (3), starting from initial conditions belonging to the basins B (Γ ), B (R) and B (Q),
are plotted versus time for 0 ≤ t ≤ 500

5 Apart from the points belonging to the stable set of the saddle P .
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As σ increases, we know that the two fixed points R and Q shall merge
with P (and disappear) at σ = σp . At σp these two fixed points must have real
eigenvalues z1 = 1 and z2 > 1, since they merge with the unstable fixed point
P . This implies that some other bifurcation must occur between σg and σp , at
which the equilibria R and Q lose their stability. In fact, as σ > σg increases,
we observe that the two closed repelling invariant curves ΓR and ΓQ become
smaller and smaller, and consequently also the basins B (R) and B (Q) decrease
in size, until σ reaches a bifurcation value σhRQ � 0.2407 at which a subcritical
Hopf bifurcation of R and Q occurs, i.e. at σ = σhRQ the two closed repelling
curves merge with the fixed points, and for σ > σhRQ the fixed points R and Q
become unstable (repelling foci). The only surviving attractor is now the closed
invariant curve Γ . In this situation, the system converges to the limit cycle Γ
that surrounds the three unstable equilibria. Such an attractor (see Fig. 6) can be
considered a full equilibrium of the system because the expectations are realized
on average, and so the agents have no reason to change them.

P

Q

R

K

Y

3.2

119

11.2

µ = 10    δ = 0.2   γ = 0.6   α = 1.2    σ = 0.245   

Γ

Fig. 6. For α = 1.2 and σ = 0.245, i.e. σhQR < σ < σp , all the three fixed points are unstable, and
the only attractor is the limit cycle Γ that surrounds them

As σ is further increased, the repelling foci R and Q become repelling nodes,
merge with the fixed point P at σ = σp , and then disappear, leaving the only
fixed point P , repelling node, surrounded by a closed attracting curve Γ . Then,
if we further increase σ, the limit cycle Γ becomes smaller and smaller, and
shrinks into P when the stability region in the parameter space is reached, say
at σ = σhP , where a supercritical Hopf bifurcation of P occurs6, according to
Proposition 1 (see also Fig. 1). Then P remains the only attractor for higher
values of σ.

6 In the prototype textbook examples of supercritical Hopf bifurcations, a stable limit cycle bifur-
cates from a fixed point when a parameter is increased. Here this bifurcation is described following
the opposite path, with the disappearance of the cycle for an increased value of σ: in this case the
term inverse supercritical is occasionally used in the literature.
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Q
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Γ

σσhPσpσhRQσg

Fig. 7. Bifurcation diagram that qualitatively represents the dynamic scenarios and the bifurcations
that are met along the path with fixed α = 1.2 and σ varying in the range (0, 1). The parameter σ
varies along the horizontal axis. The solid lines represent attracting sets, the dashed lines repelling
sets

This sequence of numerically observed bifurcations can be summarized by
a bifurcation diagram, as in Figure 7, where the parameter σ varies along the
horizontal axis. In this figure the solid lines represent attracting sets, the broken
lines repelling sets. Clearly, we can describe the bifurcation diagram of Figure 7
as σ decreases from 1 to 0 as well. At first, for σ > σhP , the only attractor is
the stable fixed point P , which becomes unstable at σhP via a supercritical Hopf
bifurcation. As is well known, the results of the Hopf theorem are only local
(i.e. they hold for parameters’ values close to the Hopf bifurcation curve) so the
existence of Γ is proved only for a small neighborhood of σ, and in general
nothing can be said about the fate of the attracting curve Γ as the parameters
move far from the bifurcation value. However, our numerical explorations show
that the invariant curve Γ survives for decreasing σ, even after the fixed points
R and Q are created at σ = σp , and even after their subcritical Hopf bifurcation
occurs, which transforms them into stable fixed points and gives rise to the
repelling closed invariant curves ΓR and ΓQ that constitute the boundaries
of their basins of attraction. However, as ΓR and ΓQ increase in size, they
ultimately merge with Γ , causing their disappearance and that of Γ as well,
leaving the attracting fixed points R and Q . After this, a situation of bi-stability,
without persistent self-sustained oscillations, characterizes the dynamics of the
model.

A similar behavior can be observed for α > (δ + γ) /γ as well, because the
attracting closed invariant curve created at the supercritical Hopf bifurcation still
exists for σ < 1 even if such bifurcation occurs at σ = σhP > 1, i.e. outside the
economically meaningful range of σ. The only difference is that for α > δ+γ

γ the
fixed point P is unstable for any value of σ, 0 < σ < 1.

We also remark that a global bifurcation, similar to the one described above,
also occurs if we fix σ at a value σ < σp and we increase the value of the
adjustment parameter α. At low values of α, the dynamics are those associated
with two attracting fixed points the basins of attraction of which are separated by
the stable set W s (P ) of the saddle point P . Then a homoclinic bifurcation deeply
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Fig. 8. a For α = 1.2 and σ = 0.4, i.e. σp < σ < 1, P is the unique steady state, an unstable focus,
and the unique attractor is the limit cycle Γ . b For the same value of σ as in a and a much greater
value of α, α = 7.5, a chaotic attractor exists around the unstable equilibrium P . The black region
represents the basin of infinity, i.e. the set of points which generate divergent trajectories

modifies the two basins when α is increased. Also in this case, the homoclinic
bifurcation has a striking effect on the dynamics of the model: most of the trajec-
tories that were previously converging to a fixed point, move on self-sustained
oscillations soon after the bifurcation.

As a final remark, we stress that in the several studies of the dynamical sys-
tems which have been proposed in the literature to represent the Kaldor business
cycle model, both in continuous and discrete time, self-sustained oscillations
are observed for increasing values of the reaction parameter α, when only one
steady state exists. Indeed, especially with discrete time dynamic models, when
increasing values of α are considered, more and more complex attractors (often
characterized by chaotic dynamics) appear around the unstable fixed point P .
Of course, similar situations are obtained with our model as well, as shown in
Figure 8.

The two situations shown in Figures 8a and 8b are obtained with the same
value of σ, σ = 0.4 > σp , so that only the equilibrium P exists, and two different
values of the reaction parameter, namely α = 1.2 in Figure 8a and α = 7.5 in
Figure 8b. In Figure 8b, which is typical in the literature on discrete-time Kaldor
models, the initial conditions taken in the white region generate trajectories that
exhibit chaotic oscillations around P in the long-run, whereas the black region
represents the set of points that generate diverging trajectories, i.e. the basin of
infinity. We observe that in the situations obtained with small values of the speed
of adjustment α, as in Figures 6 and 8a, the wide limit cycle appears to be a
global attractor, i.e. all the numerically generated trajectories starting out of it
are seen to converge to it. Instead, as often observed in the literature (see e.g.
Lorenz, 1992), diverging trajectories can be obtained when higher values of the
adaptive parameter α are used. This is the case shown in Figure 8b. Of course,
such trajectories cannot represent economically feasible evolutions of the system,
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and their presence indicates that the model is less reliable for high values of α.
As expected, if α is further increased, the basin of infinity enlarges until it covers
almost the whole phase plane, i.e. any bounded attractor disappears.

5 Breaking the symmetry

It is interesting to investigate whether the creation (through the global homoclinic
bifurcation) and the permanence of the limit cycle Γ around the three steady
states is related to the symmetry property of T (see Appendix B). Indeed, from
the particular geometric shape of the stable and unstable sets of the saddle fixed
point P , which lead to the formation of the homoclinic orbit shown in Figure 4a,
it seems that the symmetry of the map may play some important role. In order
to show the robustness of the dynamic phenomena analyzed in Section 4, we
introduce a structural change in the model that breaks its symmetry. To this end,
without changing the basic assumptions of the model, we slightly modify the
S -shaped investment function in such a way that the resulting map is no longer
symmetric, by defining:

Ĩ (Y , K ) = σµ + γ
(σµ

δ
− K

)
+ a(Y ) , (7)

where:

a(Y ) =

{
arctan(Y − µ) if Y ≥ µ
θ arctan(Y − µ) if Y < µ

. (8)

It is plain that for θ = 1 we have Ĩ (Y , K ) = I (Y , K ), i.e. we get the function
(2) symmetric with respect to Y = µ, whereas θ /= 1 introduces a “symmetry
breaking” which also breaks the symmetry of the map 7. In fact, replacing I (Y , K )
with Ĩ (Y , K ) we obtain a new map, say T̃ : (Y , K ) → (

Y ′, K ′), defined as

(Y ′, K ′) = T̃ (Y , K ) =

{
T (Y , K ) if Y ≥ µ
Tθ(Y , K ) if Y < µ

, (9)

where T is the map already defined in (3) and

Tθ :

{
Y ′ = Y + α

[
σµ + γ

(
σµ
δ − K

)
+ θ arctan(Y − µ) − σY

]
(a)

K ′ = (1 − δ)K + σµ + γ
(

σµ
δ − K

)
+ θ arctan(Y − µ) (b)

. (10)

The map T̃ is continuous in the whole plane but not differentiable on the line
of equation Y = µ. This raises some questions about the dynamic behavior,
in particular related to the fact that the exogenously given fixed equilibrium
P =

(
µ, σ

δ µ
)

belongs to the line of non-differentiability..

7 This asymmetry can be justified on economic grounds as follows. The upper asymptote represents
the ceiling for positive investment, whereas the lower one represents the floor for net disinvestment.
They can be different since the former depends on the full employment productive capacity, while
the latter is limited by the fact that gross investment cannot be negative.
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Following the same method of analysis as in the symmetric case, we first
consider the problems of existence and stability of the fixed points of the map T̃
and then describe the global dynamics obtained by iterating the map T̃ , especially
in the ranges of parameters such that several equilibria coexist. We shall see,
in particular, that the local and global bifurcations that lead to the creation and
permanence of a large amplitude limit cycle surrounding the coexisting equilibria
still occur.

5.1 Fixed points of T̃ and their local stability

The fixed points of T̃ are obtained as solutions of T̃ (Y , K ) = (Y , K ), equivalent
to the equations (Y , K ) = T (Y , K ) with Y ≥ µ and (Y , K ) = Tθ(Y , K ) with
Y < µ, which, after simple algebraic computations, are reduced to the following
system: {

K = σ
δ Y

σ
(
1 + γ

δ

)
(Y − µ) = a(Y )

, (11)

where a(Y ) is the function defined in (8). Differently from the case analyzed
in Section 3, now the intersections of the line z = σ

(
1 + γ

δ

)
(Y − µ) with the

S -shaped function z = a(Y ), which give the Y -coordinates of the fixed points of
T̃ , may be one or two or three, as can be seen from a simple graphical analysis.
For example, in the case θ > 1, if σ

(
1 + γ

δ

) ≥ θ then we have the unique fixed
point, say P =

(
µ, σ

δ µ
)
; if 1 ≤ σ

(
1 + γ

δ

)
< θ we have one further fixed point,

say R = (YR , σ
δ YR), with YR < µ; and for 0 < σ

(
1 + γ

δ

)
< 1 we have three fixed

points: P , R and Q = (YQ , σ
δ YQ ) with YQ > µ. Similar considerations can be

made for the case θ < 1.
It can be observed that, in our modified model, the number of fixed points of

the map changes by one at each bifurcation value σ = σp and σ = θσp , where
σp is given in (5). This does not generally occur for continuously differentiable
maps: for instance, in the standard pitchfork bifurcation, the number of fixed
points changes from one to three. Moreover, in this case the fixed point P belongs
to the line Y = µ, where the map is T̃ is not differentiable, and this implies that
the local stability analysis of the fixed point P is not typical because we have
two different Jacobian matrices of T̃ in any neighborhood of P , according to
Y > µ or Y < µ. In other words, the local dynamics around P depend on both
the Jacobians DT and DT

θ
, defined in eq. (12) and (19) of the Appendix A,

governing the local dynamics on the right and on the left of P , respectively.
On the contrary, when the fixed points R or Q exist, their local stability

analysis is the usual one because R always belongs to the half-plane Y < µ, so
that we only have to consider the eigenvalues of the Jacobian matrix DT

θ
(R).

Q always belongs to the half-plane Y > µ, so we only have to consider the
eigenvalues of the Jacobian matrix DT (Q).

The arguments given above about the existence of fixed points, and the study
of the eigenvalues of the Jacobian matrices of T̃ given in the Appendix A, allow
us to state the following
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Proposition 2. The map T̃ has always the fixed point P = (µ, σ
δ µ). One or two

more fixed points, R = (YR , σ
δ YR), with YR < µ and Q = (YQ , σ

δ YQ ) with YQ > µ,
may exist depending upon the parameter values. Let σp = δ

δ+γ . If θ > 1 then

– for σ > θσp , T̃ has the unique fixed point P;
– for σp < σ < θσp , T̃ has the two fixed points: R and P;
– for 0 < σ < σp , T̃ has the three fixed points R, P and Q.

If θ < 1 then

– for σ > σp , T̃ has the unique fixed point: P;
– for θσp < σ < σp , T̃ has the two fixed points P and Q;
– for 0 < σ < θσp , T̃ has three fixed points: R, P and Q.

If θ > 1 (resp. θ < 1) the stability region of the fixed point P under the map T̃
is decreased (resp. increased) with respect to the stability region of P under the
map T .

The statement on the stability region of P immediately follows from the
comparison of the bifurcation curves defined in the Appendix A.2 with those
defined in A.1. If both the eigenvalues of DT (P ) and DT

θ
(P ) have modulus

less than 1, then P is locally asymptotically stable according to the classical
(or topological) Lyapunov definition, i.e. a neighborhood of P exists the points
of which generate trajectories that converge to P , whereas when at least one
eigenvalue, both of DT (P ) or DT

θ
(P ), is in modulus greater than 1, then P is

unstable.

B C

DA
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’ D’

C’

pσσ =

pθσσ =

)(ασσ θhP=

)(ασσ hP=

Fig. 9. Non-symmetric model. The dark grey region A′BC ′D ′ represents the domain of stability of
the steady state P in the plane of the parameters α and σ. This figure is obtained with θ > 1, namely
θ = 1.2, and δ + γ < 1, namely δ = 0.2 and γ = 0.6. In the light grey region both the eigenvalues
of DT (P ) are in modulus less than one, but DTθ(P ) has at least one eigenvalue greater than one
in modulus: in this region the steady state P is not locally asymptotically stable in the classical
Lyapunov sense
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However, we notice that, for the map T̃ , there are regions in the parameter
space for which both the eigenvalues of one Jacobian matrix are less than one
in modulus, while for the other matrix at least one eigenvalue z is such that
|z | > 1. This occurs when σ belongs to the region between the curves σ = σp

and σ = θσp or when (α, σ) belong to the region between the curves σ = σhP (α)
and σ = σθhP (α), represented in Figure 9.

In fact, the curves denoted by σ = σp , σ = θσp , σ = σhP and σ = σθhP

are no longer curves of pitchfork bifurcation or of Hopf bifurcation because the
changes occur only in one of the Jacobian matrices associated with P , and it is
not clear what is their effect on the dynamical behavior near the fixed point P . As
we shall see in the next section, where some numerical examples are shown, if
the parameters are taken in the region between the curves σ = σp and σ = θσp ,
the fixed point P cannot be considered an attractor in the topological Lyapunov
sense: we remark that such definition ensures that the system remains close to
the equilibrium for arbitrary small perturbations in any direction.

The region between the two curves σ = σhP and σ = σθhP is particular.
In those regimes the Hopf theorem cannot be applied. However, the spiralling
character of the trajectories, due to the complex eigenvalues, can lead to the
conclusion that an attracting set may exist anyway. These particular cases will be
better analyzed through the numerical explorations discussed in the next section

6 Global dynamics of the map T̃

In this section, by the same “modus operandi” as in Section 4, we note some
numerical results obtained by following some particular bifurcation paths in the
space of the parameters. In order to compare the new situations with those ob-
tained for the symmetric model, we consider fixed values of some parameters,
namely θ = 1.2, δ = 0.2, γ = 0.6. For this set of parameters we have σp = 0.25
and θσp = 0.3. We first consider α = 0.9, and we increase the parameter σ from
0 to 1.

For σ < σp the map T̃ has two stable fixed points R and Q , and the fixed
point P is a kind of saddle point, the stable set of which separates the basins
of attraction B (R) and B (Q) (see Fig. 10a, obtained for σ = 0.2). In fact, for
0 < σ < σp , P is a saddle both for the matrix DT (P ) and DTθ(P ).

As σ increases approaching σp , the fixed point Q approaches P , and at
σ = σp the fixed point Q merges with P , so that for σ > σp only the fixed points
R and P exist. For σp < σ < θσp R is a stable node and P is not attracting
from a topological point of view, since it is a stable node for the matrix DT (P ),
whereas it is a saddle point for the matrix DTθ(P ). This situation is represented in
Figure 10b, obtained for σ = 0.26. The light grey region is the basin of the stable
fixed point R, and the white region represents the set of points the trajectories
of which converge to P ; however, the fixed point P belongs to the boundary
of its “basin” and consequently it is not stable with respect to arbitrarily small
perturbations to the left of P .
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Fig. 10 a,b. Non-symmetric model with θ = 1.2. a For µ = 10, δ = 0.2, γ = 0.6 α = 0.9 and σ = 0.2,
i.e. σ < σp , three fixed points of the map T̃ exist: P is a saddle point (for both the jacobian matrices
DT (P ) and DTθ(P )), R and Q are stable foci. The stable set of P constitutes the boundary that
separates the basins B (R) and B (Q), represented by light grey and dark grey regions respectively.
b For σ = 0.26, σp < σ < θσp , only the two fixed points R and P exist. R is stable (stable focus)
and P is not stable in the classical sense, although it attracts the points in the white region. However,
from a practical point of view (and also for numerical experiments, due to the presence of round-off
errors), the points belonging to the white regions eventually reach the equilibrium R, since small
perturbations cause such trajectories to move far from P

As σ approaches θσp the stable fixed point R approaches P and merges into
it at σ = θσp . Then, for σ > θσp , P is a topological attractor with a large basin
(numerically it seems to attract all the points of the phase plane). The sequence of
bifurcations described above is summarized, as a function of σ, in the bifurcation
diagram shown in Figure 11.

Another interesting sequence of local and global bifurcations is observed if
we consider the path with α = 1.15 and σ increasing from 0 to 1. This path
crosses the bifurcation curves σ = σp and σ = θσp in a regime in which the
fixed point P is unstable (with respect to both the Jacobian matrices DT (P ) and
DTθ(P )).

Q

P

R

σσp θσp

P stable nodeP saddle point

Fig. 11. Bifurcation diagram that qualitatively represents the dynamic scenarios and the bifurcations
that are met for the non-symmetric model along the path with fixed α = 0.9 and σ varying in the
range (0, 1)
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Fig. 12. Qualitative sketch of the dynamic scenario at the global bifurcation value σ = σgQ . The
homoclinic loop around Q is repelling both from inside and outside
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Fig. 13. For α = 1.15 and σ = 0.243, i.e. just after the bifurcation at σ = σgQ , two stable equilibria
exist, R and Q , with respective basins B (R) and B (Q), represented by light grey and dark grey
regions respectively

At σ = 0.23 < σp the map T̃ has two stable fixed points, R and Q and
an unstable fixed point P , of saddle type, the stable set of which constitutes the
boundary that separates the two basins B (R) and B (Q) (a situation similar to
the one shown in Fig. 10a). As σ increases, a global bifurcation (at a value σgQ <
σp ) occurs associated with the map T : the stable and unstable “branches” of P
associated with the Jacobian DT (P ) merge, forming a loop in P , i.e. a homoclinic
orbit Γ , as qualitatively shown in Figure 12. We note that the homoclinic orbit
Γ is unstable, both inside and outside. This homoclinic orbit disappears for
σ > σgQ , leaving a repelling closed invariant curve ΓQ in the half-plane Y > µ,
which is the boundary of the basin of attraction B (Q) of the fixed point Q (see
Figure 13, obtained for σ = 0.243). Thus, this global bifurcation has the effect
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of an enlargement of the basin B (R), since it now covers a much larger portion
of the phase space, around the other stable fixed point Q .

As σ increases, another global bifurcation occurs at a value σ = σhQ . In
fact, as σ increases, the invariant curve ΓQ shrinks into Q in a subcritical Hopf
bifurcation, transforming Q into a repelling focus. Then Q approaches P and, at
σ = σp , Q merges with P and disappears.

For σ > σp , in the interval σp < σ < θσp , another global bifurcation will
occur at σ = σgR , which is again a homoclinic bifurcation of P but associated
with the map Tθ, being due to the merging of the stable and unstable “branches”
of P associated with the Jacobian DTθ(P ).

P

R
ΓR

Fig. 14. Qualitative sketch of the homoclinic loop at the bifurcation value σ = σgR . The homoclinic
loop around R is repelling from inside and attracting from outside

This homoclinic connection generates a closed invariant curve ΓR which,
differently from the previous global bifurcation occurring at σgQ , is attracting
from the outside, repelling inside (see the qualitative sketch in Fig. 14). This
means that ΓR is given by the “merging” of two invariant closed curves which
shall split after the bifurcation. In fact, for σ > σgR , we observe a closed invariant
curve Γ , which attracts the widest portion of points in the phase plane, and a
repelling closed invariant curve ΓR focus), as shown in Figure 15, obtained for
σ = 0.2715. As expected, as σ is further increased, the basin B (R) becomes
smaller and smaller and ΓR shrinks into R in a subcritical Hopf bifurcation
leaving a repelling focus R, which will become a repelling node, approaching P
for increasing values of σ and then merging with it at σ = θσp . After this, the
only attractor will be the closed invariant curve Γ (which seems to attract all the
points of the plane). This closed invariant curve Γ persists, decreasing in size and
approaching P : as we have numerically observed, a closed invariant attracting
curve Γ still persists in the interval σhP < σ < σθhP (see the bifurcation



548 G.I. Bischi et al.

P

R

K

Y

14.6

10.88.8

12.1

µ = 10    δ = 0.2   γ = 0.6   α = 1.15    σ = 0.2715 θ = 1.2

Γ

Fig. 15. For α = 1.15 and σ = 0.2715, i.e. just after the bifurcation at σ = σgR , there are two
fixed points, R and P , stable and unstable, respectively. The basin B (R) is represented by the grey
region, whereas the points of the white region generate trajectories converging to the limit cycle Γ
that surrounds both the equilibria
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σσp
σθhPσhP

ΓR

ΓQ

Γ
Γ

Γ
Γ

θσpσhQσgQ
σgR

Fig. 16. Bifurcation diagram that qualitatively represents the dynamic scenarios and the bifurcations
that are met for the non-symmetric model along the path with fixed α = 1.15 and σ varying in the
range (0, 1)

diagram of Fig. 16); it shrinks around P and then merges with it at σ = σθhP ,
after which P becomes an attracting fixed point.

The sequence of dynamic scenarios described above are schematically repre-
sented in the bifurcation diagram of Figure 16.

7 Conclusions

The version of the Kaldor business-cycle model analyzed in this paper allowed
us to obtain some new dynamic scenarios which may be interesting both for the
applied dynamicist and the economist. From the point of view of the mathe-
matical methods, the interest lies in the fact that the main results are obtained
through a study of global bifurcations, in particular homoclinic bifurcations, the
study of which often requires a continuous interplay among analytic, geometric
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and numerical methods (and our analysis confirms this). Our contribution proves,
thanks to a deeper analysis of the global dynamic properties of the Kaldor model,
the existence of stable oscillations in the more realistic parameter constellations
characterized by low values of the propensity to save, where three steady states
exist. Such oscillations occur along an attracting limit cycle, surrounding the
three steady states, which is created through a global (homoclinic) bifurcation.
This leads to a situation of multistability, characterized by the presence of three
coexisting attractors: two stable steady states and a stable limit cycle around
them, each with its own basin of attraction. This occurs for parameter ranges
that are slightly different with respect to the ones usually proposed in the litera-
ture on discrete-time versions of the Kaldor model, where the analysis is usually
concerned with the creation of complex attractors around the unique (unstable)
equilibrium, observed for very high values of the adjustment parameter α and
sufficiently high values of the propensity to save σ. Instead, we focused our at-
tention on the dynamic situations occurring for relatively low (and more realistic)
values of the parameters σ and α, for which three steady state exist.

It is important to notice some analogies and differences between the model
analyzed here and the one proposed by Kaldor (1940). Kaldor refers to the exis-
tence of three steady states, but such equilibria emerge only under the preliminary
assumption that the capital stock is fixed. In other words, Kaldor builds up his
dynamic analysis by assuming that, as in the standard Keynesian model, invest-
ment only constitutes, at a first stage, a component of demand, and only later
contributes to the variation of the capital stock. More precisely, the dynamics
in the Kaldor paper is composed of two steps: in the first (short run), Kaldor
assumes that the capital stock is given and compares the propensity to save and
the propensity to invest; in the second (long run) Kaldor analyzes the shifts of
the saving and investment functions due to the endogenous changes in the capital
stock caused by investment expenditure. In the model studied in this paper, as is
usual in dynamic models, the investment at a given time period simultaneously
influences the aggregate demand and the capital stock. This implies, among other
things, that, while in the Kaldor model the two external steady states are unstable
in the long run, this is not necessarily true in our dynamic model.

A second point is that the Kaldor model contributes to the Keynesian idea
that expectations are to be considered as an exogenous factor. In fact, besides
the difficulty introducing rational expectations into a model with three coexisting
equilibria, we must also consider the uncertainty in the equilibrium selection
induced by the possibility that the basins of attraction of the coexisting stable
equilibria may be very intermingled (see Fig. 3). In such uncertain situations,
the most natural assumption is that agents expect the “normal” output level. We
notice that in the case of convergence to one of the two external equilibria, a
modification of the “normal” (and expected) output level may be introduced,
but this should cause a structural change of the model. In order to maintain
our analysis inside the framework of dynamical systems, this possibility has not
been considered in the present paper. However, we underline that the exogenous
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nature of the “gravity center” of the economic system is a typical Keynesian and
Kaldorian feature.

A third point worth noting concerns the role of propensity to save. Our results
confirm that, at least in the short run, a high propensity to save has a stabilizing
role. This suggests the possibility of inhibiting the onset of cyclic behaviors by
controlling the agents’ propensity to save through, for example, fiscal policies.
We remark that also this result has an evident “Kaldorian flavor” .

A Local stability

In this appendix, we analyze the local stability of the fixed points of the map T ,
given in (3), and T̃ , given in (9), in order to prove the statements concerning the
stability of the fixed points given in the Propositions 1 and 2.

A.1 Map T

The study of the local stability of the fixed point P = (µ, µσ
δ ) is obtained through

the localization, on the complex plane, of the eigenvalues of the Jacobian matrix
of T

DT (Y , K ) =

[
1 + α

1+(Y −µ)2 − ασ −αγ
1

1+(Y −µ)2 1 − δ − γ

]
(12)

computed at the fixed point P :

DT (µ, µ
σ

δ
) =

[
1 + α(1 − σ) −αγ

1 1 − δ − γ

]
(13)

The eigenvalues of (13) are the solutions of the characteristic equation:

P (z ) = z 2 − Tr z + Det = 0 , (14)

where Tr and Det are, respectively, the trace and the determinant of (13):

Tr = 2 + α(1 − σ) − (δ + γ) ;

Det = (1 − γ − δ)(1 − ασ) + α(1 − δ).

A sufficient condition for the stability of a fixed point is expressed by the fol-
lowing system of inequalities

P (1) = 1 − Tr + Det > 0 (a)
P (−1) = 1 + Tr + Det > 0 (b)
P (0) = Det < 1 (c)

. (15)

that give necessary and sufficient conditions for the two roots of (14) to be inside
the unit circle of the complex plane (see, for example, Gumowski and Mira, 1980,
p. 159).
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The inequality (15a) can be reformulated as

σ >
δ

δ + γ

so that, whenever three fixed points exist, the central fixed point P cannot be
stable.

The inequality (15b) becomes

α(1 − σ)(2 − δ) + ασγ + 2(2 − γ − δ) > 0

and, being 0 < δ < 1, 0 < σ < 1 and α > 0, the condition (15b) is always
verified provided that γ < 2 − δ, which is satisfied if γ is assumed to vary in the
range of its economically plausible values, i.e. γ < 1.

Condition (15c) becomes

ασ(1 − γ − δ) > α(1 − δ) − (γ + δ) ,

which, for γ + δ < 1, is equivalent to:

σ >
1 − δ

1 − γ − δ
− γ + δ

α(1 − γ − δ)
,

and for γ + δ > 1 to:

σ < − 1 − δ

δ + γ − 1
+

γ + δ

α(δ + γ − 1)
.

For values of the parameters into their realistic ranges, the three conditions (15)
are satisfied inside the region ABCD represented in Figure 1. For σ = δ

δ+γ , on
the lower boundary of the region ABCD , we have P (1) = 0, i.e. one root of
(14) is on the boundary of the unit circle in the point z = 1, and for decreasing
values of σ this root exits the unit circle, and two fixed points are created. This
is a typical pitchfork bifurcation (see e.g. Guckenheimer and Holmes, 1983; or
Lorenz, 1993)8. For σ = 1−δ

1−γ−δ − γ+δ
α(1−γ−δ) , on the right boundary of the region

ABCD , we have Det = 1, i.e. two complex conjugate roots of (14) with modulus
equal to 1, and if the parameters α and/or σ are varied so that the point (α, σ)
crosses the portion CD of the hyperbola from left to right, the two eigenvalues
exit the unit circle, and a Hopf bifurcation occurs (see e.g. Guckenheimer and
Holmes, 1983; or Lorenz, 1993)9.

8 A pitchfork bifurcation of a fixed point is related to an eigenvalue which exits the unit circle
through the value z = 1 and the simultaneous creation of two new fixed points along the invariant
manifold associated with the bifurcating eigenvalue. It is supercritical if the two fixed points are
stable along the invariant manifold, subcritical if the two fixed points are unstable and merge with
the central stable fixed point at the bifurcation value.

9 We recall that a Hopf bifurcation of a fixed point, related to a pair of complex conjugate
eigenvalues which exit the unit circle, is called supercritical if an attracting closed invariant curve is
created around the unstable fixed point. It is called subcritical, if a repelling closed invariant curve
exists around the stable fixed point, and merges with it at the bifurcation value (see e.g. Guckenheimer
and Holmes, 1983). A rigorous proof of the supercritical or subcritical nature of a Hopf bifurcation
requires a center manifold reduction and the evaluation of higher order derivatives (up to the third
order). In this case, the numerical detection of stable closed invariant curves around the unstable
fixed point reveals the supercritical nature of the bifurcation.
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In order to study the stability and local bifurcations of the fixed points R and
Q , we compute the eigenvalues of the Jacobian matrix

DT (R) = DT (Q) =

[
1 + α

1+(YR−µ)2 − ασ −αγ
1

1+(YR−µ)2 1 − δ − γ

]
(16)

Unfortunately, YR cannot be computed analytically, so only a numerical evalu-
ation of the eigenvalues is possible. However, the conditions (15) can still be
analyzed, since they become, respectively,

P (1) = α
(
σ (γ + δ) − δ

1+(YR−µ)2

)
> 0 (a)

P (−1) = α (2 − δ)
(

1
1+(YR−µ)2 − σ

)
+ ασγ + 2(2 − γ − δ) > 0 (b)

P (0) = (1 − γ − δ) (1 − ασ) + α(1−δ)
1+(YR−µ)2 < 1 (c)

.

(17)

A.2 Map T̃

The Jacobian matrix of the map T̃ is defined as

DT̃ (Y , K ) =

{
DT (Y , K ) if Y > µ
DTθ(Y , K ) if Y < µ

, (18)

where DT is the Jacobian matrix of the map T given in (12), and

DT
θ
(Y , K ) =

[
1 + θα

1+(Y −µ)2 − ασ −αγ
θ

1+(Y −µ)2 −(δ + γ − 1)

]
. (19)

So, the local behavior on the right of P = (µ, µσ
δ ) is governed by the Jacobian

matrix (13), whereas the local behavior on the left of P is governed by the
Jacobian matrix:

DT
θ
(P ) =

[
1 + α(θ − σ) −αγ

θ −(δ + γ − 1)

]
.

The analysis of the eigenvalues of DT (P ) is considered in A.1; by considering,
in a similar way, the general stability conditions (15) for the matrix DTθ(P ), we
can conclude that the eigenvalues of the matrix DTθ(P ) are inside the unit circle
in the complex plane if and only if the following inequalities hold:

σ > θσp = θ
δ

δ + γ
;

and

σ > σθhP (α) =
θ (1 − δ)
1 − γ − δ

− γ + δ

α(1 − γ − δ)
if (γ + δ) < 1

or σ < σθhP (α) = − θ (1 − δ)
δ + γ − 1

+
γ + δ

α(δ + γ − 1)
if (γ + δ) > 1 .
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B Symmetry properties of the map T

The map T is symmetric with respect to the fixed point P = (µ, µσ
δ ). This means

that symmetric points are mapped into symmetric points (with respect to P ).
Denote by F1(Y , K ) and F2(Y , K ) the two components of the map T :

F1(Y , K ) = Y + ασµ + αγ
(

σµ
δ − K

)
+ α arctan(Y − µ) − ασY

F2(Y , K ) = σµ + γ
(

σµ
δ − K

)
+ arctan(Y − µ) + (1 − δ)K

and observe that the symmetric of the point (Y , K ) with respect to P is the point
(2µ − Y , 2σµ

δ − K ). The above property, which can easily be verified, can be
formalized as follows:

F1(2µ − Y , 2σµ
δ − K ) = 2µ − F1(Y , K )

F2(2µ − Y , 2σµ
δ − K ) = 2σµ

δ − F2(Y , K )
.

This implies that a cycle of T is either symmetric with respect to P or admits
a symmetric cycle (in particular, the equilibria Q and R are located in symmetric
position with respect to P ).
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