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Alrstraet. The growth of a species feeding on a limiting nutrient supplied 
at a constant rate is modelled by chemostat-type equations with a general 
nutrient uptake function and delayed nutrient recycling. Conditions for 
boundedness of the solutions and the existence of non-negative equilibria are 
given for the integrodifferential equations with distributed time lags. When 
the time lags are neglected conditions for the global stability of the positive 
equilibrium and for the extinction of the species are provided. The positive 
equilibrium continues to be locally stable when the time lag in recycling is 
considered and this is proved for a wide class of memory functions. Com- 
puter simulations suggest that even in this case the region of stability is very 
large, but the solutions tend to the equilibrium through oscillations. 

Key words: Chemostat equations - -  Recycling - -  Time lags - -  Stability 

1. Introduction 

Models based on chemostat-type equations to simulate the growth of planktonic 
communities of unicellular algae in lakes and oceans have been studied by many 
authors, e.g., Hsu et al. (1977), Waltman et al. (1980). An important difference 
between a "chemostat" situation and a "lake" situation appears to be in the fact 
that lakes generally have residence time of nutrient and sediments measured in 
years (Powell and Richerson 1985). This implies that in models of natural 
systems a smaller wash-out rate constant and the regeneration of nutrient due to 
bacterial decomposition of the dead biomass must be considered (Svirezhev and 
Logofet 1983). The effect of material recycling on ecosystem stability has been 
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mainly studied for dosed systems (Nisbet and Gurney 1976; Nisbet et al. 1983; 
Ulanowicz 1972). 

Powell and Richerson (1985) and Nisbet and Gurney (1976) considered 
nutrient recycling as an instantaneous term thus neglecting the time required to 
regenerate nutrient from dead biomass by bacterial decomposition; such a delay 
is always present in a natural system and increases for decreasing temperature 
(Whittaker 1975). 

In this paper we consider an open system with a single species feeding on a 
limiting nutrient which is partially recycled after the death of the organisms and 
we insert a distributed time lag in the recycling term in order to study its effect 
on the stability of the positive equilibrium. 

The population may be any planktonic community of unicellular algae, and 
the nutrient in question may be phosphorous, nitrogen or even a vitamin such as 
BI2. 

We assume the following general hypotheses on the nutrient-uptake function 
(Hale and Somolinos 1983): 

(i) the function is non-negative, increasing, and vanishes when there is no 
nutrient, 

(ii) there is a saturation effect when the nutrient is very abundant. 

This class of functions includes the Michaelis-Menten function which is usually 
proposed to describe the nutrient uptake of phytoplankton in a chemostat, e.g. 
Caperon (1968). 

In Sect. 2 the integrodifferential model is described and conditions for the 
boundedness of the solutions and the existence of non-negative equilibria are 
given. In Sect. 3 it is proved that when the time delay is neglected the positive 
equilibrium, if it exists, is asymptotically stable with respect to any positive initial 
condition, whereas when it does not exist the species becomes extinct. In Sect. 4 
the stability of the positive equilibrium is studied for the model with distributed 
delay: we give a condition on the coefficients of the model to ensure local stability 
with general non-negative and normalized memory functions. Then the memory 
function is taken to be a gamma distribution of integer order and the stability of 
the positive equilibrium is proved for any value of the coefficients. Furthermore 
numerical solutions suggest that the region of stability is very large. Hence in this 
case the time delays do not destabilize the positive equilibrium. However 
computer simulations show that the trajectories approach the equilibrium 
through oscillations, whereas oscillations do not occur in the instantaneous case. 

2. The model 

We consider the following model: 

= D ( S  ° -- S)  - m U ( S ) N  + bD, F( t  - z)N(z) dz, 
o o  

N =  N [ - - ( D  + D~) + m  IU(S)] 
(2.1) 
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where S is the concentration of a limiting nutrient and N is a measure of the 
population of  some organism. S and )V are the time derivatives of S and N. 

The constant D > 0 is the input and output flow, and is referred to as the 
wash-out rate. S o > 0 is the input concentration of the limiting nutrient, m > 0 is 
the maximum uptake rate of nutrient, ml > 0 is the maximum specific growth 
rate of the organism, D1 > 0 is the death rate and b e (0, 1) is the fraction of 
nutrient recycled after the death of the species. 

The constant lID has the physical dimension of a time and represents the 
average time that nutrient and waste products spend in the system (Smith 1981). 
The function U(S) describes the nutrient uptake rate of the species. 

From the hypotheses i) and ii) of Sect. 1 U(S) is a continuous function 
defined on [0, + ~ )  and 

U(0) = 0; dU > 0 and lim U(S) -- 1. (2.2) 
d S  s---~ ~ 

In particular these hypotheses are satisfied by the Michaelis-Menten function: 

S 
U(S) - (2.3) 

A + S  

where .4 > 0 is the half-saturation constant. 
The delay-kernel F(u) is a non-negative bounded function defined on 

[0, + oo) and describes the contribution of the biomass dead in the past to the 
nutrient recycled at time t. The presence of the time lag must not affect the 
equilibrium values, so 

The average time lag is defined as 

T =  

F(u) du = 1. (2.4) 

Io ~ uF(u) du. (2.5) 

The solutions of system (1), with initial conditions 

S(to)  = So > o, 
(2.6) 

N(z) = ¢(v), 

4) being a bounded continuous positive function defined on ( - ~ ,  to], exist for all 
t/> to and remain non-negative for t >/to (see, e.g., Cushing 1977; Gopalsamy 
1983). Furthermore 

Theorem 2.1. I f  the inequality 

m(D + D I ) 
b < (2.7) 

rni D~ 

holds, then all the solutions are bounded. 
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Proof.  We prove that a Liapunov function exists whose derivative along the 
trajectories of  (2.1) is negative outside a bounded region of  the positive orthant 
of  the plane (S, N) (see, e.g., Yoshizawa 1966). Let be 

fo ( ; )  V(t, S, N )  = S( t )  + m N( t )  + bO I F(s)  N(u)  du ds. 
m l  s 

It is easy to see that V 1> 0 and V --* + oo when I(S, N)I -', + ~o. The derivative of  
V along the trajectories of  (2.1) is 

fo 12 = D ( S  ° - S )  - m U ( S ) N  + bDi F(u )N( t  - u) du 

m 
+ - -  N [ - ( D  + D1) + m I U(S)] 

ml 

f/ ) + bD, F(s)  -~ N(u)  du ds 
- - $  

= D ( S  ° - S )  + bD 1 F (u )N ( t  - u) du - m__ (D + D1)N 
m l  

fo o + bD 1 F(s ) (N( t )  - N ( t  - s)) ds 

= D(S ° - S) ( + D 1) - -  N. -- _ ~  (D bD, ) 

From the hypothesis the coefficient of  N is negative. Thus outside the region of  
the positive orthant bounded by the axes and by the line 

D ( S  ° - S )  
N =  

(D + Dl ) rn /ml  - bD1 

17 is negative. This completes the proof. 

System (2.1) has the non-negative equilibrium Eo = (S °, 0) which exists for all 
parameter values, and the equilibrium E1 = (Se, Ne) with 

D ( S  ° - S , )  
S e = U - ' ( ( D  + D , ) / m l ) ,  Ne  = m U ( S e )  - b D l '  (2.8) 

which is positive provided that (2.7) is true and 

D + D 1  
- - < 1  and S e < S  O • (2.9) 

ml 

3. The instantaneous model 

When the time lag in the recycling term is neglected, i.e. the delay-kernel is a 
delta function F(u) = g(u), the model becomes 

= D ( S  ° - S )  - m U ( S ) N  + bD1N, 
(3.1) 

/V = N[ - ( D  + D,)  + m, U(S)]. 
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This model has the same equilibria as (2.1). We shall prove that when the 
positive equilibrium E1 exists it is globally asymptotically stable, whereas if it 
does not exist the equilibrium Eo becomes globally stable, that is the species 
becomes extinct. We first give the following: 

Lemma 3.1. I f  b < m/ml then for each e > 0  a i exists such that 

S(t) <~ S° + e for t >~ i. 

Proof. Let P(t)'.= S(t) + (m/ml)N(t). Its time derivative is 

m 
P = D(S ° - S) - mU(S)N  + bD~N + - -  N[ - ( D  + Di) + ml U(S)] 

m~ 

) = - D P + D S ° - D I  - b  N. 

From the hypothesis we obtain the differential inequality 

P < - DP + DS  ° 

which implies P(t) < S ° +  A e-o , ,  where A is a constant. Then 

lira S(t) + rn N(t) <~ S O 
t --, +oo m I 

and since N(t) is always positive if it starts positive, the thesis follows. 

By the following theorem we give conditions for extinction of  the species: 

Theorem 3.1. I f  b < m/m~ and 

D +Dl  
U(S °) < - - ,  (3.2) 

ml 

then the equilibrium Eo = (S °, O) is globally asymptotically stable in R2+ ,= 
{(s, N)  R2I s > 0, N > 0}. 

Proof  We prove the theorem by showing that 

lim N(t)=O and lim S ( t ) = S  O . 

From the second of  (3.1) we have 

N ( t ) = N ( O ) e x p [ m ' f o t ( U ( S ( t ' ) )  D+--Dl~dt ' ]  / (3.3) 

Since U(S) is a continuous function it follows from (3.2) that there is a constant 
e > 0 such that U(S ° + e) < (D + DI)/ml.  Then by Lemma 3.1 there exists i such 
that if t/> i then S(t) <<. S O + e. This implies that U(S(t)) <<. U(S ° + e) because 
U(S) is an increasing function. Thus 

N ( t ) = N ( O ) C e x p [ m a ~ ( U ( S ( t ' ) )  D-~lD1.)dt" 1 

< ' N ( O ) C e x p [ m ' ~ ] ( U ( S ° + e )  D+---Dl~dt' ,] (3.4) 
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with 

C = e x p l m l f o r ( U ( S ( t ' ) )  D-bDl~dt'l>O'ml ] 

The exponent in (3.4) is negative, so lim/__,~ N( t )=0 .  Now limt~o S ( t ) = S  O 
follows from the first of (3.1) with N(t) = O. 

Let us note that if m~ < (D + DI), i.e. the mortality plus the wash-out rate is 
greater than the maximum growth, the inequality (3.2) is true for each value of 
the input concentration S °. When ml > (D + D~) and (3.2) holds true then the 
extinction of the species is due to lack of nutrient. The following theorem states 
the evolution of the system when the species does not become extinct: 

Theorem 3.2. I f  the positive equilibrium E1 = (Se, Ne) exists then it is globally 
asymptotically stable in ~2+. 

Proof. We define the Liapunov function 

f s  g ( x )  . f ' x - 
- -  ax V(S, N)  = wl Js e U(x )  + w2 e X Ne dx (3.5) 

where g(x) = ml U(x) - ( D  + Dl)  is an increasing function such that g(Se) = O, 
and Wl, w2 e R+. Then V >/0 and V(S, N) = 0 if and only if S = Se, N = Ne. 
The time derivative of V along the trajectories of (3.1) is 

g(S) o 
12= Wl ~ [D(S - S)  - m U ( S ) N  + bD, N] + w2(N - N~)g(S) 

,,~, [-D(S ° - S)  bD 1N D(S ° -- Se) bD 1Nel 
= wlg[~)L ~ m N  -~ U(S) U(Se) + mN~ U(Se) J 

+ w2(N - Ne)g(S) 

where we have used the equilibrium condition for the first of (3.1). 
We fix the positive constants w~ and w2 

W l  = 1 ;  w 2 = m - -  

where w2 > 0 if (2.7) holds true. Since 

bDl 

U(Se)  

NU(Se) - Ne U(S) = U(S)(N - N~) - N(U(S)  - U(Se)), 

we obtain 

D S  ° + D 1;" = - g ( S )  b D ' N  ( u ( s )  - U(S~)) - g ( S )  (SU(Se) - 
U(S) U(Se) U(S) U(Se) S e U(S)). 

But, from (2.8), g ( S ) = m , ( U ( S ) -  U(Se)). Then, since S U ( S e ) - - S e U ( S ) =  
- S e ( U ( S )  - U(S~)) + U ( S e ) ( S -  S~), we obtain 

= _ . .  m ? . ~  . ( D S  0 + bD ,  N - D & ) ( U ( S )  - U(Se) )  2 

miD 
..-77-~,(S - Se)(U(S) - U(Se)). (3.6) 
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The first term is negative because DS ° > DSe. The second term is negative 
because U(S)  is an increasing function. Then 17 ~< 0, and 1;" = 0 if and only if 
S = Se. But the largest invariant subset of  the set of the points where I2 = 0 is 
(Se, Ne). Then the global stability of  (Se, Ne) follows from the La Salle extension 
of  Liapunov's Theorem (La Salle and Lefschetz 1961). 

Concerning the assumptions on the function U(S),  remark that in the above 
theorem we only use that it is an increasing function. The results stated in 
Theorems 3.1 and 3.2 can also be applied when b = 0, thus extending the results 
given in literature for chemostat equations with a Michaelis-Menten uptake 
function, as in Waltman et al. (1980). 

However from (3.6) we can see that the recycling (i.e. b # 0) has a stabilizing 
role for the positive equilibrium. 

4. The model with delayed recycling: stability and numerical solutions 

We study here the local stability of  the positive fixed point of  model (2.1) in 
order to see if the presence of the time lag in the recycling term can change its 
stability. 

Once linearized around the positive equilibrium El the model (2.1) reads 

f_ Yc = - ( D  + m g ' ( S e ) N e ) x  - mU(Se)y  + bDa F(t  - z)y(~) d~ 
oo 

j: = ml U' (Se)Nex  (4.1) 

where x = S(t) - Se and y = N(t)  - Ne. If we define the positive constant 

k = U ' ( S e ) N  e (4.2) 

and recall that U(Se) = (D + D~)/m~ then the characteristic equation of (4.1) is 

22 + (D + ink)2 + m(D + D l ) k  - bD~mik .~(2)  = 0 (4.3) 

where L#(2) is the Laplace transform of the delay kernel (MacDonald 1978) 

~ ( 2 )  = F(u) e -~"  du. 

The positive fixed point is locally asymptotically stable if and only if all the roots 
of (4.3) have negative real parts. 

Without specifying any particular memory function F(u) we give the follow- 
ing stability result: 

Theorem 4.1. If 
D 2 -}- m2k 2 

Di <~ 2ink ' (4.4) 

then the positive equilibrium of  (2.1) is always locally asymptotically stable. 
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Proof. We follow the argument given in MacDonald (1978), p. 27. Since each 
root  of  (4.3) is a continuous function of  the parameters and when T = 0 all the 
roots of  the characteristic equation lie in the left hand half plane (we have 
stability for zero delay) a necessary condition for a stability change is that the 
characteristic equation has a pure imaginary solution 2 =/co, i.e. a pair of  
conjugate complex roots cross the imaginary axis. It suffices to seek roots 
with co e ~+ since 2 = 0 is not a root, because m(D + D~)k - b D l m l k  > 0 from 
(2.7). 

Thus we substitute 2 =/co, co ~ ~+ in (4.3), and obtain 

where 

H(ico) = .~(ico) (4.5) 

mk(D + D1) - co2 + ito(D + ink) 
H(ico) . -  

bDlmlk  

Since I (ico) l   F(u)I e-'~u[ du -- 1 we have that a necessary condition for the 
existence of  a solution of  (4.5) is 

I/ (ico)l 1. (4.6) 

We study the function 

R(co) .'= I H(ico) [ 2 - [mk(D + D,)  - c02] 2 + ¢02(D + ink) 2 
2 - - 2 1 . 2  r~2 (4.7) b ft, l,~ 1"]1 

m2(D + DI) 2 mkED(D + 2D1) 
R ( 0 )  : h 2 _ 2  r~2 ~- 2 _ _ 2 1 . 2 r ~ 2  > 1 (4.8) 

u t r / 1 / J  I b t n l t L  LI 1 

because of  (2.7). We also have limo,~ +~ R(co) -- + ~ and the derivative 

4CO 3 + 2CO(D 2 + m2k 2 - 2mkD1) (4.9) 
R ' ( ( D )  = /~2..  21_2r~2 

u f¥11/~ 1.] 1 

If  D~ ~< (D 2 + m2k2)/2mk then R(co) is an increasing function of  to and from 
(4.8) it follows that R(co) > 1 for each co/>0. Thus IH(ico)l > 1 for co >/0 and 
this excludes the possibility of  changes of  stability. This completes the proof. 

Let us note that Theorem 4.1 still holds for a discrete delay, i.e. when 
Fr(u) = ~ ( u -  T). In fact the Laplace transform of the delta distribution is 
e - z r  and I. (ico)l = I. 

In order to see what happens when D 1 > ( D 2 +  m2k2)/2mk we restrict our 
analysis to the class of  memory functions: 

a p +  1 

g(u)  = - 7 .  u p e -aU (4.10) 

where p is a non-negative integer and a ~ R+ is linked to the mean time lag by 

T -  p + 1 (4.11) 
d 
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These kernels are often used in literature, e.g., MacDonald (1978), Cushing 
(1977). The Laplace transform is 

__(___a £P(2) \ a  + 2 ]  (4.12) 

and the characteristic equation has the polynomial form: 

22(a + ,~)p+ 1 + (D + mk)2(a + 2) p+ 1 + m(D + Dl)k(a + 2) p+ 

- a p+ IbDlmlk = 0. (4.13) 

For p = 0 the memory function (4.10) is a decreasing function, and Eq. (4.13) 
becomes a third degree algebraic equation. By the Routh-Hurwitz  criterion (see 
Appendix) it is easy to prove that in this case the positive equilibrium is locally 
asymptotically stable for each value of the parameters. 

When p > 0 the kernels (4.10) have a single maximum occurring at u =p/a, 
and the width of the peak decreases with increasing p. Usually the destabilizing 
effect of distributed delays with kernels (4.10) increases with increasing p. For 
our model we can give the following result. 

Theorem 4.2. The positive equilibrium of the Eq. (2.1) with delay-kernels (4.10) is 
locally asymptotically stable for each non-negative order p of the kernels. 

Proof We consider the characteristic equation (4.13) with 2 = i0) 

_0)2(a + i0))p+ 1 + (D + mk)i0)(a + i0)) p+ 1 + m(D + Dl)k(a + i0)) p+ l 

- -  a p + lbD1 ml k = 0. (4 .14)  

We introduce an auxiliary angle variable 0 with 

tan 0 = --'a 0 < 0 < ~ (4.15) 

and (4.14) reads: 

-0)2(cos 0 + i sin O) p÷ 1 + i0)(D + mk)(cos 0 + i sin O) v+ 1 

+ m(D + Dl)k(cos 0 + i sin O) p+ 1 = bDlmlk(cos O) v+ 1, 

i.e. 

el(P+ 1)0[ _0)2 ..[_ m(D + D1)k + i0)(D + ink)] = bDlmlk(cos O) p+ l 

By taking the square modulus of both the sides we obtain 

R(0)) = (cos 0 )2(v+ 1) (4.16) 

where R(0)) is the function defined in (4.7). The Routh-Hurwitz  critical values 
must correspond to solutions of Eq. (4.16). We have already proved (see 
Appendix) that for p = 0 there are no such critical values and R(0))> 1 for 
0) > 0. As p increases the right hand side of (4.16) becomes smaller because 
0 < cos 0 < 1 and this implies that (4.16) has no solutions. 
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Fig. l a - c .  Numerical  solutions o f  the instantaneous model (3.1) and the model (2.1) with time lag 
and delay-kernel (4.10) and with Michae l i s -Menten  uptake function (2.3) are represented on the 
plane (S, N) and versus time. They are obtained with the same fixed set o f  parameters D = 0.1, 
S° = 20, D I = 4 ,  m = 10, rn I = 9 ,  A = 6 ,  b =0 .8 .  a Instantaneous model (3.1); b model (2.1) with 
exponentially decreasing delay-kernel (4.10) with p = 0. The average time lag is T = 5. The trajectory 
is obtained by a numerical solution o f  the expanded system (4.17). The region of  stability of  the 
positive equilibrium appears to be very large; e model (2.1) with delay-kernel (4.10) with a max imum 
in the past, i.e. p = 1, and the same average time lag T = 5 
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We only proved the local stability of the positive equilibrium of the model 
with time lags whereas we proved its global stability for the instantaneous case. 
However numerical solutions of the system (2.1) with an uptake function of 
Michaelis-Menten type (2.3) and kernels (4.10) with p = 0 and p = 1 suggest 
that the positive equilibrium is practically globally stable. 

In Fig. 1 numerical solutions of the instantaneous model (3.1) and of 
system (2.1) with delay-kernels (4.10) with p = 0 and p = 1 respectively are 
plotted on the plane (S, N). These trajectories are the projections on the plane 
(S, N) of the solutions of the expanded system of ordinary differential equa- 
tions obtained by the "linear chain trick technique" (MacDonald 1978). For 
example when p = 0 we define the new variable 

f y = a e- '~( t -  ")N(z) dz 
oO  

and the integrodifferential system (2.1) is transformed into an equivalent system 
of three ordinary differential equations: 

,~ = D ( S  ° - S )  - m U ( S ) N  + bD~y,  

/V = N[ - (D + D,) + m, U(S)], (4.17) 

j~ = a N - a y  

where the variable y(t)  can be interpreted as an intermediate component which 
causes the delay, such as the dead biomass in the sediments. 

From a comparison of these numerical simulations we can see that the 
oscillations are more evident in the model with a delay-kernel with a maxi- 
mum in the past (Fig. lc) whereas they are absent in the instantaneous model 
(Fig. 1 a). 

5. Conclusions 

We have studied the growth of a population depending on a limiting nutrient 
which is partially recycled after the death of organisms. The population in 
question may be a planktonic community of unicellular algae and the nutrient 
may be phosphorous, nitrogen or even a vitamin such as Bi2. 

We have considered generalized chemostat equations with a fairly general 
nutrient uptake function and a nutrient recycling term with distributed delay, 
and we have given conditions for boundedness of the solutions. 

We have also considered the model with instantaneous recycling and we 
have stated conditions for the global stability of the positive equilibrium and 
conditions for the extinction of the species. Then we have studied the effect of 
time delays in nutrient recycling and, with a fairly general class of memory- 
functions we have proved that the positive equilibrium continues to be locally 
stable, independently of the value of the time lag. Numerical solutions have 
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shown tha t  the region  o f  s tabi l i ty  o f  the posi t ive  equ i l ib r ium is large,  bu t  the 
t ra jec tor ies  a p p r o a c h  the equ i l ib r ium th rough  osci l la t ions  when t ime lags are  
cons idered .  

Appendix 

By the R o u t h - H u r w i t z  c r i te r ion  we p rove  tha t  all  the roo t s  o f  the charac ter i s t ic  
equa t ion  (4.13) have negat ive  real  par t s  when p = 0. I f p  = 0 Eq. (4.13) becomes  
2 3 + a~2 2 + a22 + a 3 = 0 with  

al = a + D + mNe Ut(Se) > O, 

a2 = aD + amNeU' (Se )  + m m I N e U ( S e ) U ' ( S e )  > O, 

a3 = amlNeU'(S~)[mU(S~)  -- bOll  > 0 

where  the last  inequal i ty  fol lows f rom (2.7):  

U(S~) = D + DI > bDl . 
m I m 

The  R o u t h - H u r w i t z  c r i te r ion  says tha t  Re(2i )  < 0, i = 1 . . . . .  3 i f  and  only  i f  

a~ a2 - a3 > 0. 

In  ou r  case 

(a + O + mATe U'(Se))(aD + amNe U'(Se) + mml Ne U(Se)U'(Se))  

> am1N~ U'(S~)[mU(Se) - bD1] 

because  

amnl Ne U(Se)U'(Se)  + (pos i t ive  terms)  > amnl Ne U(Se)U'(Se)  

- bDa am 1 Ne U'(Se).  
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