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Abstract. We study a system of two integrodifferential equations which models 
the evolution of a biotic species feeding on an abiotic resource. We also 
consider nutrient recycling with time delay. By H o p f  bifurcation theory we 
prove the existence of stable oscillations for a range of values of  the input of  
nutrients. 
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1. Introduction 

Oscillatory behaviour of  some planktonic algal communities is observed both in 
natural and laboratory systems (see e.g. Caperon 1969, and references therein). 
Caperon examined data obtained from a chemostat  experiment with algae, and 
concluded that distributed delays must be considered in order to fit the experi- 
mental data. Also Waltman et al. (1980) suggest that the oscillations observed in 
a continuous culture of  microorganisms may be due to the presence of time 
delays. In this paper  we study a simple mathematical  model with time lags 
describing the oscillatory behaviour of  a biotic species feeding on an abiotic 
resource. We assume that the nutrient uptake rate is proportional  to the nutrient 
concentration, according to the hypothesis that the nutrient considered is not 
abundant.  The resource is a limiting nutrient, supplied at a constant rate. This 
situation can be easily reached into a laboratory system, and may approximate 
real systems during limited time intervals. Hsu et al. (1977) propose a model with 
a constant nutrient supply which describes the growth of phytoplanktonic com- 
munities in lakes during the summer months, when there is no nutrient circulation 
between the surface and the bot tom of the water column. But during spring and 
fall the nutrient generated by the decomposit ion processes at the bot tom can 
circulate and reach the algal communities living in the upper  layers (Whittaker 
1975). 

Thus we insert into the model a term which takes into account the fact that 
a part  of  the dead biomass is recycled as a new resource; we refer to Anderson 
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(1973) who proposes a computer siinulation model with constant input of resource 
and recycling to describe the eutrophication of  lakes. An instantaneous mathe- 
matical model of a closed system with material cycling was studied by Nisbet 
and Gurney (1976); they stress that time delays involved in the decomposition 
process cannot be neglected in boreal systems. Therefore we consider a time lag 
in the recycling term. We also consider a distributed time lag in the growth 
response to nutrition (D'Ancona 1954). We prove that such a model can have 
an unusual property in that its equilibrium is stable for low rates of  nutrient 
supply, bifurcates towards stable oscillations when the supply is increased, then 
regains stability for larger values. It must be observed that the corresponding 
instantaneous model (Roy and Solimano 1986) has a globally stable equilibrium 
for each value of the parameters. 

If  we denote by N1 the concentration of an abiotic resource and by N2 the 
biomass of  a biotic species, the evolution of our system is described by the 
following integrodifferential equations: 

= R - a 1 2 N i N 2 + b 2 e 2  f t  ol e -~ ( ' -~ )N2(r  ) & dr  
oO  

(1.1) 

N2= N2(-e2+3"2 f~ ~e-~('-')N,(r) dr). 
where: 

R c R+ :-- (0, +oc) is the constant rate of nutrient supply, 
a12 ~ R+ is the coefficient of uptake of inorganic material, 
e2 ~ R+ is the death rate coefficient for N2,  

3'2 c R+ is the coefficient of utilization of  the nutrient, 
b2~ (0, 1) is the fraction of dead biomass which is recycled as a new nutrient. 

We introduced distributed time lags because they are more realistic than 
discrete delays (see, e.g., Caswell 1972), However we agree with Hastings [8] 
who says that such terms should be viewed not as exact descriptions, but merely 
as a way of investigating the effects of including past history. 

The integral term ~_~ fl e - m ~ - ~ ) N l ( r )  dr  says that the growth of the species 
depends on the past concentration of the nutrient and has a diminishing effect 
the further it goes back in the past. The term ~k~o a e - " ( ' - ~ ) N 2 ( r )  dr  takes account 
of the time lag due to the decomposition process by which a part of  the dead 
biomass is introduced as a new resource. Exponential kernels are also used by 
Cunningham and Nisbet (1980), whereas Caperon [2] proposes non-increasing 
kernels in order to fit his experimental data. We observe that both the exponential 
delay kernels are normalized to one. According to MacDonald (1978) we define 
the average time lags as: 

f o  L ~ 1 (1.2) 7"~ = U e - ~  du =--'1 ~ = u e -t3" du =- - .  

In Sect. 2 we study the local stability of the positive equilibrium and state 
conditions for Hopf  bifurcation, assuming R as a bifurcation parameter. 
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In Sect. 3 we study the attractivity of the bifurcating periodic orbits near the 
bifurcation values by applying the method published by Hassard et al. (1981) 
for unbounded-delay functional diffe.rential equations. 

We prove that in the nonnegative orthant of the (a,/3) plane a region exists 
such that two Hopf  bifurcations occur as R varies: for a fixed set of  parameters 
we find that increasing value of  R give rise to a first bifurcation from a locally 
stable positive equilibrium toward stable periodic oscillations, and a second one 
from stable orbits toward a higher locally stable equilibrium. 

In the nonnegative orthant of the (a,/3) plane other two regions exist; one 
in which a single Hopf  bifurcation occurs, for decreasing values of  R, toward 
stable periodic oscillations, and a second region where the positive equilibrium 
is locally stable for each positive value of R. Finally, in Sect. 4 we discuss our 
results and emphasize the role of the recycling term with time lag in the first 
equation. 

2. Local stability and Hopf bifurcation of the positive equilibrium 

The autonomous integrodifferential system (1.1), subject to initial conditions 

Ni(t)=---fbi(t), -oo<t<~to, t0 c (-cx), + ~ )  (2.1) 

where &i are (at least piece-wise) continuous positive and bounded initial func- 
tions, possesses a unique positive solution Ni = N~(t), i =  1, 2, extendible on 
[to, 4-oo), continuously dependent on parameters and initial data [e.g., Cushing 
1977]. For the sake of simplicity from now on we choose to = 0. By an equilibrium 
of (1.1) we mean a solution Ni(t) =-- N*, i = 1, 2, t c  (-oo, +m) for constants N*, 
i = 1, 2. System (1.1) admits the unique equilibrium 

N . = ( N . , N , 2 ) = ( e 2 ,  R )) (2.2) 
\3/2 e2( a12/ T2-- b 2 

which is positive provided that 

al2> b272, (2.3) 

which we assume is true. 
In this section we study the-qualitative dynamic behaviour around the positive 

equilibrium of  system (1.1) as the constant rate of nutrient supply R ranges in •+. 
We follow the usual linearization procedure defining xi--= N / -  N*,  i = 1, 2, 

and substituting it into (1.1). By the further transformation ~-= t+s, we get the 
following form of (1.1): 

:fc = Lx + [" K(s )x ( t+  s) ds +f(x)  (2.4) 
3-oo 

where x ~ R 2 

o 

0 ] '  N* y2/3 e r 0 ' 

/' 
f =  \72x2 I~ fl er t + s) 

(2.5) 
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Note that L is a constant real matrix and that delayed terms occur both in the 
linear and nonlinear parts of (2.4) and f ( x )  is of a higher order in x. Clearly the 
instability or the asymptotic stability of the zero solution x -= 0 of (2.4) is equivalent 
to that of N* as solution of (1.1). 

The question whether the asymptotic stability of  the zero solution of (2.4) is 
ensured by that of the zero solution of the linearized system 

2 = L x + f ~ o o K ( s ) x ( t + s ) d s  (2.6) 

has an affirmative answer since f ( x )  is of higher order in x and in some open 
region around x -  0 where Ix1[ < 3, 6 > 0 we have 

I]~/3et3Sxl(t+s) dsl < 6  for all t~ [0,+oo). 

The linearized system (2.6) is asymptotically stable if and only if (e.g. Cushing 
1977) 

D ( A ) : = d e t [ A I - L - f O o o K ( s ) e a S d s ] # O w h e n R e A ~ O  (2.7) 

and this implies the local asymptotic stability of the zero solution of (2.4). D(A ) = 0 
is called "characteristic equation" of (2.6) and in our case has the form: 

" I . , . ,  { A q- a12N*2 a12N*1 - b2e2I~ a e (~+x)s ds) 
D(A) detk-N~'y2J~ e (~+x)s ds A 0 

/ 

(2.8) 

Because of the particular delay-kernels we used, the characteristic equation (2.8) 
assumes the form of the fourth degree polynomial: 

A 4 + a l A 3 + a 2 A 2 + a 3  A + a 4 = 0 ,  (2.9) 

with the real coefficients a;, i = 1, . . . ,  4 given by: 

al = a + fl + a12N*E ( R ) 

a2 = a/3 + ( a +/3)a,2N*2(R) 
(2.10) 

a3 = fla12( ct + eE) S*E ( R ) 

a 4 = ozflyER 

We observe that all coefficients al in (2.10) are positive functions ai = ai(R), 
R c (0, +oo). 

We further observe that the same characteristic equation can be obtained by 
the linear chain trick (MacDonald 1978) which gives an expanded system of four 
ordinary differential equations. 

Because of  the polynomial structure (2.9) with all the coefficients (2.10) real 
and positive, we use the Routh-Hurwitz criterion so that the asymptotic stability 
condition (2.7) holds true. Let ~b:(0,+oo)~R be the following continuously 
differentiable function of  R: 

~b(R) := al(g)a2(g)aa(g)  - a3(R) 2 -  a4(g)al(g)  2. (2.11) 
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Then an immediate consequence of the Routh-Hurwitz criteria is the following: 

Theorem 2.1. The equilibrium N*  of  (1.1) is locally asymptotically stable if and 
only if o ( g )  > 0. 

We also give a simple criterion, based on the function tp, to study the occurrence 
of Hopf bifurcations of the positive equilibrium N* as R varies in R+. 

The assumptions for Hopf  bifurcations occurring [7] are the usual ones, and 
require that the spectrum o-(R)= {AID(A)= 0} of the characteristic equation is 
such that: 

(2.i) there exists Ro E (0, +m) at which a pair of complex, simple eigenvalues 
A(Ro), X(Ro)E o-(R) are such that 

Re A(Ro) =0,  Im A(Ro):= too> 0 

and 

d R_e _~ (R) 
dR Ro # 0 (transversality condition); 

(2.ii) all other elements of o-(R) have negative real parts. The criterion is given 
in the following theorem: 

Theorem 2.2. A Hopf  bifurcation of  the equilibrium N* of  (1.1) occurs at R = Ro E 
(0, +oo) if and only if 

~b(go) = 0, d-s~ ~ 0. (2.12) 
Ro 

Proof. Since the characteristic equation is the fourth degree polynomial (2,9) 
whose real coefficients are given in (2.10), denoted by Ai i = 1, 2, 3, 4 its roots, 
then the following relations hold true: 

A 1 Jr- A2"~- A3 "~ A4 = - - a  1 

A 1A2-~- A 1A3 -~- A 1A4-~ AEA3 -~ A2A4 -[- A3A4 = a 2 
(2.13) 

A1A2A 3 Jr A IAaA4-~- A2A3A4-~- A1A2A 4 = - a  3 

AIA2A3A 4 = a 4 

Let us prove the necessity part of the theorem. 
If  for some RoE (0, +oe) a pair of complex simple eigenvalues exist, say 

AI(Ro) = A2(Ro), such that Re AI(Ro) --- 0, then by substitution in (2.13) we obtain: 

A3 -{'- A4 = - - a  1 

(-,0 2 -[- A3A4 = a2 
(2.14) 

0)02(A3 "q-/~4) = --a3 

too2A3A4 = a4 

where tOo = Im AI(Ro). Then combining together the first and third of (2.14) we 
obtain: 

2 a3 tOo = - -  (2.15) 
a~ 
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and by substitution in the last of (2.14) we finally get /~3/~4 = a4af fa  3. Then, the 
second equation of (2.14) offers 

qJ(Ro) = al(Ro)az(Ro)a3(Ro) - a3(Ro) 2 - a2(Ro)a4(Ro) = 0 (2.16) 

thus proving the first part of the necessity implication. If we write the characteristic 
equation (2.9) as D(R, A) = 0, from the hypothesis it follows that D(Ro, iwo) = O. 
From (2.9) and the positivity of ai, i = 1 , . . . ,  4, it is easy to see that OD/a,XlRo,io~o 
0. Then by the implicit function theorem: 

dA, =_O~R / O D  
dR Ro, i,Oo Ro, itOo - ~  Ro, itOo 

whose real part is obtained after some simple calculations: 

d Re h______~l[ = a~ d_~ (2.17) 
dR Ro 2(a4a2+(ala2-2a3) 2) Ro 

where ai := ai(Ro), i = 1 , . . . ,  4, and 

d._~_O= ~ &P da, (2.18) 
dR i=10ai dR" 

By (2.17) the assumption d Re AffdRlRor 0 implies that dO/dRIRo~ O, and the 
necessity part of the proof  is completed. 

Let us prove the sufficiency part by assuming that (2.12) holds true. 
Since ~0(Ro)= 0, from the Routh-Hurwitz criterion at least one root, say hi ,  

of  (2.9) has real part equal to zero. From the fourth of (2.13) it follows that 
Im(hl) = too # 0, and, since (2.9) has real coefficients, admits a root/~2 = ~1" Since 
0 is a continuous function of all its roots, /~1 and A2 are complex conjugate for 
R in an open interval including Ro. If  we denote by A3 and /~4 the remaining 
roots, then (2.14) hold true. If /~3 and "~4 a r e  complex conjugate, from the first 
of (2.14) it follows that 2 Re/~3 ~--- - a l  <~0;  if h3 and /~4 a r e  real, from the first and 
the fourth of  (2.14), it follows that A3<0 and ha<0.  From (2.17) and from the 
assumption dq,/dRle.o ~ O, the transversality condition d Re AI(R)/dRIRo ~ 0 fol- 
lows. Then all the hypotheses of the Hopf  bifurcation theorem are satisfied, and 
the proof is completed. [] 

In order to apply Theorem 2.1 and Theorem 2.2 it is suitable to give a more 
tractable structure of the function @ = @(R) in (2.11). 

We define 

D2 = e2(~2-b2)  (2.19a) 

ae2( al2 - b2Y2) 
K - (2.19b) 

al2(Ot + e2) 

and introduce the variable ~ defined as 

,~ = ale R, i~ ~ R+. (2.20) 
D2 
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Then, the function q~(R) can now be seen as a function of the variable 4:: 

~(~) = f l (a  + e2)~:~b (s c) (2.21) 

where 

49(~) = a~ 2 + b~ + c (2.22) 

and whose coefficients are given by: 

a = a + f l - K  

b = (a +/3) 2 - 2K(c~ +/3)- /3e2 (2.23) 

c = (a  +/3)[a/3 - K ( a  +/3)] 

Because of tire assumption (2.3), from (2.19) we can see that D2, K are always 
positive and K < a. So a > 0 whereas the sign of  the cofficients b and c appears 
to be strongly dependent upon the parameters ( a , / 3 ) c ~ 2 ,  R+2.=" 
{(a,/3) c fl~2la > 0,/3 > 0}. By this reason, in the following of this section, we will 
restrict ourselves to study the sign of the function 6 = ~(~:) as the parameters 
a,/3 vary in R~o and the bifurcation parameter ranges in R+. Since ~:cR§ and 
(a,/3) r R~, from (2.21) it follows that 6(~:)=0 if and only if 4~(s c) =0  and 

sign 6 ( R ) = s i g n  ~O(~) =sign 4~(s for all ~:ER§ (2.24) 

Furthermore, if ~b = ~b(s vanishes at some ~:= sCo c R§ we have 

6'(seo) = /3(a  + e2)q~ (~:o)+/3(a + e2) ~:o~b'(~o) = /3 (a  + e2)~Zob'(s%). 

Therefore 

sign ~O'(sCo) = sign ~b'(~o), (2.25) 

and from (2.20) 

sign q/(s%) = sign q,'(Ro). (2.26) 

Furthermore, let AI(R)=~2(R)  be the pair of simple complex and conjugate 
roots which bifurcate at Ro. Then because of (2.17) we can conclude that at each 
bifurcation point Ro c •+ the following holds true: 

d Re 
A1(R) I = , s i g n  4"(Ro). (2.27) 

I 

sign dR Ro 

From (2.24)-(2.27) it follows that we can derive the properties of 6 (R)  with 
respect to local asymptotic stability and Hopf  bifurcation of the positive equili- 
brium (2.2) from the sign of ~b(4:) and qS'(~:). 

Since from (2.22) and (2.23) (h = ~b(~:) is a parabola with positive coefficient 
a, we consider the following three cases: 

(i) c < 0; 
(ii) e > 0 ,  b < 0  and b 2 - 4 a c > O ;  

(iii) c > 0 a n d  b > 0 ,  or c > 0 ,  b < 0 a n d  b 2 - 4 a c < 0  
Then the following corollaries of Theorem 2.1 and Theorem 2.2 hold: 

Corollary 2.1. In case (i) a unique Hopf  bifurcation value RoaR+ exists such that 
for all R c ( Ro, + ~ )  the positive equilibrium N*  is locally asymptotically stable. 
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Proof  Since c < 0 ,  a unique ~oeR+ exists such that 4~(~o)=0, ~b'(~o)>0 and 
4~(~) > 0 if and only if ~: e (~o, +oo). Hence,  because o f  (2.20), Ro = (DJa12)~o is 
the unique zero of  ~ ( R )  in R+ with q / ( R 0 ) > 0  and ~0 (R)>0  if and only if 
R ~ (Ro, +oo). 

Corollary 2.2. In case (ii) two values Ro~, ROEER+ exist, say Ro, < ROE, at each 
o f  which a H o p f  bifurcation occurs. The positive equilibrium N *  is locally asymptoti- 
cally stable for  all R ~ R+ - [Rol,  ROE]- 

Proof  I f  the hypothesis  (ii) holds, two distinct values ~Ol and ~o2 exist in R+, say 
~ol < ~:o2, such that ~b(~o~) = ~(~o2) = 0 with (~'(~Ol) < 0, (J~'(~o2) > 0, and ~b(~) > 0 
if and  only if ~c  ~+- [~Ol ,  (o2]- Hence,  because o f  (2.20), Rol = (D2/a12)~o, < 
Ro2 = (DJa,2)~o2 are the unique two zeros o f  ~0(R) in R§ at which, thanks to 
(2.25), (2.26), qt'(Ro,) < 0 and q/(Ro2) > 0. Fur thermore qJ(R) > 0 if and only if 

R ~ R + -  [Rol,  Ro2]. 

Corollary 2.3. In case (iii) the equilibrium N *  is locally asymptotically stable for  
all R ~ ~+. 

Proof  Hypothesis  (iii) ensures that d~(~)> 0 for all ~c  R+ and therefore,  f rom 
(2.20), (2.21) and Theorem 2.1 the thesis trivially follows. []  

The condit ions (i), (ii), (iii) select three complementary  regions in the positive 
orthant  o f  the (~,/3) plane when considering a, b, c as functions o f (a , /3 )  according 
to (2.23). The situation is depicted in Fig. 1. 

The most  interesting region both  f rom a biological and mathematical  point  
o f  view, is region (ii). In  fact in that region the average time lag T~ = 1 / a  of  the 
decomposi t ion  process is greater than T~ = 1//3 which is the average time lag of  
the nutri t ion process. Furthermore,  as the nutrient supply parameter  R varies 
within R+ two H o p f  bifurcat ion values are met. 

ea 

2 4 6 

Fig. 1. Region (i) is bounded by the curve fl=o~e2F[a+e2(1-F)] (i.e. c(c~,fl)=0), where F=  
(al2-b2Y2)/a12 , and by the axis/3 = 0. Region (ii) is bounded by the c u r v e s  b2-4ac, where a, b, c 
are defined in (2.23), and c(c~,/3) = 0 up to the tangency point (a,/3) for which b(a,/3) = 0, and by 
the axis a = 0. The Curve b 2 - 4 a c  = 0 is tangent to the ordinate axis for /3 = e 2. Region (iii) is the 
complement to the positive orthant of the union of region (i) and (ii). The curve b 2 -4ae = 0 results 
in a fourth degree algebraic equation of a and/3. All the curves are plotted by a computer for the 
fixed set of the other parameters: a12 = 6; b 2 = 0.5; 3'2 = 2; e 2 = 7 
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3. Stability of the bifurcating periodic solutions 

In this section we investigate the system (2.4) to study the stability of the 
bifurcating closed orbits at the Hopf bifurcating parametric values provided by 
Corollary 2.1 and Corollary 2.2. 

We follow the algorithm presented by [7] for delay-differential equations; 
another useful reference may be found in St6pfin (1986), where the same kind 
of algorithm is followed by the author. 

Let us transform (2.4) into the operator differential equation 

Jet = Ax, + Fxt (3.1) 

where x = col(x1, x2), x,(O) = x(t+ 0), 0 ~ (-oo, 0]. The linear operator A and the 
nonlinear one F are defined as follows: 

" d4~( O ) 
- o o <  0 < 0  

a&(o) = dO (3.2) 

L&(O) +I~ K(s)q~(s) ds 0 = 0  

where the matrices L and K(s) have already been defined in (2.5), and 

F4)( O) = | {  -a12~bl(0)" &2(0) ds) 0 = 0  (3.3) 
~.\'/2~b2(0) I~ &l(s)fl e ~s 

Note that both L and K(s) depend upon the bifurcation parameter R through 
the equilibrium component N* = N*(R) (see (2.2)). According to the usual 
nomenclature, we introduce as new bifurcation parameter 

~ :=  R - R o ,  R, RoCR+ 

such that the Hopf bifurcation occurs when/z  = 0. Obviously A = A(/z), but in 
most of the following computations, unless explicitly specified, it is implicitly 
assumed that A = A(0). Note that A and its adjoint operator A* can have complex 
eigenvectors. It is therefore suitable to allow for ~b functions &:(-oo, 0]~  C 2 

instead of R 2. 
The adjoint operator A* is defined as follows: 

A . O ( 6 ) = I - d ~ b ( 6 )  0 < ~ < o o  (3.4) 

(L'~(O) +~~ K'(s)~b(-s) ds, /~ =0, 

where L' and K '  are transposted matrices and 0: [0, +ao) ~ C 2. 
In order to determine the Poincar6 normal form of operator A, we need to 

compute the eigenvector q of operator A belonging to the eigenvalue i~oo, and 
the eigenvector q* of the adjoint operator A* belonging to the eigenvalue -i~o0. 
We obtain: 

q(O)=(1B) #%0 - o o <  0<~0 (3.5) 

k t . /  
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where 

N~ y2fl 
.,o(,o~o+ t~:) (,Oo+ i#) 

E. Beretta et al. 

B = (3.7) 

al2 N*2 fl - to 2 - itoo(18 + a12 N*2 ) 
c - ( 3 . 8 )  

fl "y 2 N *2 

and D is a free constant  which must  be de te rmined  by  the condi t ion 

(q*, q) = 1, (3.9) 

where  the scalar  p roduc t  ( . ,  .) is defined as follows: 

I (I ~ ) (~, c~)= t~'(O) . (9(0)+ ~ ' ( u -  s) " K(s)qS(u)  du ds (3.10) 

Here  - denotes  the complex  conjugate,  and ~b : ( -o0,  0] o C 2, ~ : [0, +o0) o C 2 are 
cont inuous  and b o u n d e d  functions.  

I f  ~b(0) = col(~bl(0), tp2(0)), ~b(0) = col(th,(0), ~b2(0)), then by ~ ' (0)  �9 ~b(0) we 
2 mean  Ei=l ~,(0)~b,(0). 

Hence ,  (3.9) with definit ion (3.10) gives: 

CN*2"y213. Bb2e2a 
/5 1 + Bt~-t (3.11) 

(fl + itoo)2 t- ( a  + itoo) 2) = 1 

f rom which the constant  D can be easily obta ined.  
To construct  the coordinates  to describe the centre mani fo ld  ~o near  the 

origin x = 0, let us consider  the t ransformat ion:  

z = (q*, xt), w = xt - zq - ZCl (3.12) 

so that  z and  ~ are local coordinates  for  ~0 in the directions of  q and t]. In the 
variables z and w, (3.1) becomes :  

= itooz+(q*(O), F ( w + 2  Re {zq(O)})) (3.13a) 

= A w  - 2 Re{(q* (0),  F ( w  + 2 Re{zq(0)}))q (0)} + F ( w  + 2 Re{zq (0)}) 
(3.13b) 

On the mani fo ld  ~o, w( t, O) = w(z(  t), ~( t), O) where 

z 2 ~z 
w(z, ~, 0) = W2o(0) -~-+ w11(O)z~+ w02(0) -~-+" " " (3.14) 

By the definit ion of  the scalar  p roduc t  (3.10) and  owing to (3.3) we may  observe 
that  

(q*(O), F ( w + 2  Re{zq(O)})) = q*(0) '  �9 F(w(z ,  ~, 0 ) + 2  Re{zq(0)}) (3.15) 

Then according to Hassa rd  et al. (1981), we define the funct ions 

g(z, ~):= q*(0) '  �9 F ( w + 2  Re{zq(0)}) (3.16) 

H(z ,  ~, O):= F ( w  + 2  R e { z q ( O ) } ) - 2  Re{g(z, e)q(0)}  (3.17) 
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and we can rewrite (3.13a) and (3.13b) as: 

= itooz+g(z,  ~) (3.13a)' 

~i, = A w +  H(z ,  ~, O) (3.13b)' 

Our objective is to expand on ~0 the function g(z, ~) in powers of z and if: 

Z 2 ~2 g 2 ~  

g(Z, 2) = g20 2"~- q- gl, z~" q- go2 7 + g21 - - q - "  ' " (3 .18)  2 

and to determine the coefficients of the expansion (3.18). This can be done by 
comparison of (3.18) with (3.16) when substituting for w its expansion (3.14). 
To compute the coefficients wu(O) of (3.14), on ~o we expand the function 
H(z ,  ~, O) in powers of z, 2: 

Z 2 ~2 

H(z ,  ~, O) = 1-12o(0) --f + H n (  O)zY. + Ho2( O) -y+"  " " (3.19) 

The coefficients of the expansion (3.19) can be computed from (3.17) as 

/-/20 = ~ z  2 H  H l l  = , 
z=~=o' LazO-~J~=~=o 

i.e. (see Appendix 1): 

t( ~ 
1-12o(0) = 2 . 0 F q ( O ) + 2 D F ~ q ( O ) +  [ - a l 2 B  , 

. 2~T2]3B( f l  -- it~ (fl 2+ too))' 

with 

0 = 0  

(3.20) 

_ ~ y2~B(f l  - itoo) C y2flB(~ - itoo) 
F = a , 2 B  132+ to~ , / '1= a12 B -  f12+ to~ 

HI~( O) = 2a~2(Re B) . (Dq(  O)+ DO(O))+ 1 2 ( _ a l  2 Re B~ (3.21) 
( \  o / '  0 = 0  

On the other hand, near the origin, we write w(z, g) as 

~/,(z, s = w j +  w~s (3.22) 

and using (3.14) to replace the derivatives Wz and w~ and (3.13a)' to compute 
and ~, we get another expression for w. Equating the right-hand side of (3.22) 
to that of (3.13b)' with (3.19) we obtain: 

(Z/too/- A) W2o(0) = H2o(0) (3.23) 

-Aw11(O) = H11(0) (3.24) 

and Wo2 = 1'~2o. 
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Fol lowing the p rocedure  exposed  in the Append ix  2 to solve (3.23), (3.24) 
we obtain:  

W2o(O) = col(w~l)(0), w<22o)(0)), - o o <  0 < 0 ,  (3.25a) 

where 

and 

0" 1 - -  

w(210)( O) = o- 1 e"~176 + o-2 e-i,,oO + o.ye2,,,oO 

�9 , ,  ~ 2 i O : ' o 0  w~Zo)( O) =/za e ~'~176 + ~2 e-"~176 + ~ f  
(3.25b) 

2 D F  2 D F  1 . 
- - - -  i; ~r 2 = - - - -  t, /Zl = c r a B ,  /~2 = ~r2/~. (3.25C) 

Wo 3oJo 

The free constants  o7,/,y are de termined by the bounda ry  condit ions in 0 = 0: 

o-:= w ~ ) ( D ) -  (o- ,+ 0-2); / z : :  W~Zo)(0)- (/Zl+/Z2). (3 25d) 

Then we obtain:  

where 

W2o(O) = col (w~l>(o) ,  w~o>(O)) (3.26a) 

and 

where  

w~ll)( O) = Pl e i~176176 + 02 e - i % ~  + P:  

w~21)( O) = X1 e"~176176 + X2 e-"~176176 + Xi 

2a12(Re B)E3 . 
t91 - -  t ;  /92 = / 9 1  

tO o 
(3.27c) 

,](1 : p l B ;  X2 = p2B. 

The  free constants  py, Xs are de te rmined  by [he bounda ry  condi t ions in 0 = 0: 

Ps = w~)( 0 ) - (P~ + P2); Xs = w~])(0) - (X~ + X2) (3.27d) 

Then  we obtain:  

w~,(0) = col(w~])(0), w~])(0)) (3.28a) 

(3.27b) 

�9 ( 1 )  ( a - 2 i w o ]  r>(2) 
2twoC2o - \ aa2N* - b2e2a a2 + 4w-----~o,] ,--2o 

w<2~(o) - zl 
(3.26b) 

(2io%+ ~T,,~{2)_ ~T, , / 3 - 2 i w o  ,~2) 
a 1 2 1 w 2  ) 1.~ 20 1- 1~/2 " y 2 ] j / ~ 2 . . ~  4 0 ) 2  i,.~ 20 

w < 2 ~ ( o )  _ 
A 

,,~1) r~2) and a are explicitly given in the Append ix  2. and the express ions  for  W2o, ~2o 
In the same manne r  we have: 

w11(0) = col(w~l)(0), w~]~(0)), -oo  < 0 < 0 (3.27a) 
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with 
>~ (2) (1) W(l)/t~'~il [ U) = C~ 21) , (2) N 2  (a12C11 + "y2Cll  ) (3.28b) 

,)/2 "~+'J~/~" ' V l l  - -  T2Ro ' 

t~( l)  p (2 )  where the expressions for ,--1l, -111, are explicitly given in the Appendix 2. Now 
in (3.16) let us consider F(w(z, f, 0)+2 Re{zq(0)}). According to the definition 
(3.3) of operator F when 0 = 0, if we substitute for w its expansion (3.14), then 
we obtain the components of F(w(z, Y,, 0)+2 Re{zq(0)}) defined as: 

f~:=-a12[(z+ Y,)+ w(21o)(O) Z---2+ w~)(O)z~ + w(ot2~(o) Z-~2 ] 

x [(zB +)--B) + (2) Z2 (2) - (2) W20 ( 0 ) T +  Wl1 (O)zz+w02(O)~ ] . (3.29) 
I , -  

f g : =  ~2 ( z B + ? - - d ) +  (2) (2) - (2) W20 ( 0 ) T +  14211 (0)ZZ t y 0 2  !0 )  

2 - 2 

x z - - - - -  _ w02 ] (3.30) 

where: 

-(1)._ fo w~l)(s)# e ~" ds; 
W20 '-- co 

02 " -  
co 

Wll ( S ) #  e m d s ;  
co 

(3.31) 

Thanks to (3.25b), (3.27b) the coefficients (3.31) can be explicitly computed (see 
Appendix 3), whereas the other coefficients w~(0) occurring in (3.29), (3.30) are 
already given in (3.26b) and (3.28b). 

Thus, according to the definition (3..16) of function g(z, ~) we finally obtain: 

g(z, ~) = 19f~ + ff)Cfg. (3.32) 

Now, if we equate the right hand side of (3.32) to that of (3.18), we obtain: 

g2o = -2s  (3.33) 

gll = -2/5a12 Re B (3.34) 

{ Y2----L(#+iw~ (3.35) go2 = 2/5/3 - - a 1 2 +  (~#2+ 

{ [Bw2)(O) w~22~ +w~,1)(O)B+w~2)(O)] 
g21 =2/5 --a12 ]- 2 

IBi(21~ w(22)(O)#(#+iw~ wl21)(O)#(#-iw~ (3.36) 
+ C')/2 2(#2+ ~0o 2) #2+ o92 �9 

Finally, thanks to (3.33)-(3.36), we can compute the complex number 

i 
CI(O) = 2to-~ (g2o" g,1 - -  2]g1112 - �89 2) 4 g212, (3.37) 
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at the bifurcation value Ix = 0. Then we have (e.g.: Chap. 2: A Recipe-Summary, 
in Hassard et al. 1981): 

Re C1(0) 
] s  - -  Oft(0) , (3.38) 

Im C,(0) + Ix2tO'(0) 
T 2 ~ 

tOO 

where 

'(o) 

/ 3 2  = 2 Re Cl(0), 

(3.39) 

(3.40) 

d Re AI(R) to'(0) = d Im A,(R) ] 
dR Ro' dR I Ro 

Provided that  ]s ~ 0, the kind of  informations that we obtain from (3.38)-(3.40) 
is: 

Theorem 3.1 (Hassard, Kazarinoff and Wan). Let e be a measure of the amplitude 
of a periodic solution xt = p~ (t) of (3.1) 

e := max ][p~(t)]]. (3.41) 
t 

Then, there is an open interval (0, el) such that the open interval 

J-~ = {]s I 0 <-~-~ < I X ( ' 0 /  (3.42) 
IX2 J~2  

has the following properties: for any Ix in J-~ there is a unique e c (0, e~) for which 
]s e ) = Ix. Hence the family of  periodic solutions p~( t ) (0<  e < el) may be para- 
metrized as p( t; ]s ix ~ ~-~ . For ]s ~ ~ the period T(Ix ) and lhe Floquet characteris- 
tic exponent/3(]s (here and in the following any confusion with the parameter fl 
appearing in the exponential delay of nutrition process is to be avoided) are: 

T(Ix) = 2~" (1 + ~-2e2 + 0(e4)) (3.43) 
tO o 

/3(]s =/32e2+O(e 4) (3.44) 

where 

e 2 =---~ + 0(IX2), ]s := R - Ro. (3.45) 
IX2 

The direction of the bifurcation is given by the sign of ]s in (3.38): 

if  IX2> 0 then the bifurcating periodic solutions 
(3.46a) 

bifurcate from equilibrium for R > Ro; 

if]s < 0 then the bifurcating periodic solutions 
(3.46b) 

bifurcate from equilibrium for R < Ro. 

Furthermore 

sign/3(IX) = sign/32. (3.47) 
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The periodic solutions p( t, Iz ) are orbitally asymptotically stable with asymptotic 
phase if/32 < 0 and are unstable/f/32 > 0. As a comment to this theorem we may 
say that we are in the lucky situation in which we can easily determine the 
direction of the bifurcation. 

In fact, in (2.27) we proved that 

sign a ' ( 0 ) = - s i g n ( ~ R  R) R0 ), (3.48) 
Since ~0 = ~0(R) is essentially a parabola with a positive second order coefficient, 
in the case (i) of Corollary 2.1, the unique zero of q, and bifurcation point Ro is 
crossed with tP'(Ro)> 0 and therefore a ' ( 0 )<  0. 

The case (ii) is more interesting. In fact, by Corollary 2.2, ~0 = qJ(R) has two 
zero points Rol < Ro2 the first which is crossed with ~O'(Rol)< 0 and the second 
with ~b'(Ro2 ) > 0. Therefore a'(0)[Ro, > 0 and a'(0)[Ro2 < 0. 

Hence, we can give the following: 

Lemma 3.2. In case ( i) one bifurcation point Roe ~+ exists at which 

sign(/z2[m) = sign(/32[Ro); (3.49) 

In case (ii) two bifurcation points, say Rol < Ro2, Rm, Ro2c•+, exist such that: 

sign(kt2[Ro,) = --sign(/32[eo,); sign(/z2[eo2) = sign(/32[m2). (3.50) 

Now, with the same set of parameters a12 = 6,  b 2 = 0 .5 ,  ~/2 -- 2,  e 2 = 7 already used 
in Fig. 1, we set up one pair of parameter values (a,/3) in region (i), i.e. 

(3.i) a =2,/3 =3, 

where, according to Corollary 2.1, one Hopf bifurcation value Roe ~+ exists. 
Then we set up another pair of parameter values (a,/3) in region (ii), i.e. 

(3.ii) a = � 8 9  

where, according to Corollary 2.2, two Hopf bifurcation values R01, Ro2 ~ R+ exist. 
For both the sets of parameters (3.i) and (3.ii) we compute the complex 

number (3.37) and then we apply Theorem 3.1 and Lemma 3.2. 
We obtain the following results: 
(3.i) we have one Hopf bifurcation value at Ro = 7.77. According to (3.37) 

and (3.40) we compute/32 which results: /32 =-0.2254. By Lemma 3.2 we know 
that sign(/z2[~) = sign(/32[Ro) < 0. Therefore, by Theorem 3.1, the Hopf bifurcation 
occurs at R < Ro toward orbitally asymptotically stable periodic solutions. By 
the (2.20) and (2.21) we can easily compute dtp/dR[Ro and then, from (2.17) we 
obtain 

a'(0) = d ReAl(R) 

dR Ro 

Hence from (3.38) and (3.40) we finally get 

/32 
/x2= 2a'(0) -9.3726 (3.51) 

Because of the large absolute value of/x2 in (3.51), the amplitude extimation 
given in (3.45) doesn't have practical value because it requires l/z I= R o - R  ~< 0.1. 
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The period of the oscillations near the bifurcation value may be computed from 
(2.15) and it gives: 

T =  2rr=2.05 (3.52) 
o.) o 

In Fig. 2 an asymptotically stable periodic solution is shown at the parameter 
value R = 7, both in the phase space and as oscillations of N1 = Nl(t),  N2 = N2(t) 
versus time. 

The computed period (3.52) is in a good agreement with the period of the 
computer simulation shown in Fig. 2. Moreover, computer simulations show that 
all over the R interval (0, Ro) we have closed orbitally asymptotically stable orbits 
around the equilibrium N* and with a period which is increasing as I/'1 increases. 
For example at I tz I = 4.77 the asymptotically stable closed orbit has period T(/x) = 
3.3. 

(3.ii) we have two Hopf  bifurcation values at Roa = 0.3032 and Ro2 = 7.6782. 
Following the same procedure as that shown for (3.i), and in accordance with 

Lemma 3.2, at the bifurcation values we obtain: 

/32[m, = -0.044, jt.~2IRo t > 0, To, = 7.64 (3.53) 

/321e, o= = -0.194, /ZZlRo2 < 0, T02 = 1.89. (3.54) 

Theorem 3.1 implies that the locally asymptotically stable equilibrium N* bifur- 
cates again for decreasing R at Ro2 toward orbitally asymptotically stable closed 
orbits. This follows from (3.54) where, according to the second of (3.50), since 
~2[R2o < 0, the stable bifurcation can only occur for decreasing R. 

From (3.53) we can state that the Hopf bifurcation at R = Rox occurs for 
increasing values of R toward stable closed orbits. Computer simulations show 
that within the whole range of R ~ (Roa, Ro2) closed orbits exist and remain 
orbitally asymptotically stable (see fig. 3). 

Already at R =7 (i.e. [/z I =0.6732) the closed orbits have a great amplitude 
(see Fig. 4a); for decreasing values of R they reach a maximum amplitude, then 
it begins to decrease, whereas their period continues to increase. For example, 
at R = 0.4 computer simulations suggest that we continue to have stable oscilla- 
tions with a period near To1---7.64 (see Fig. 4b). 

Figure 5 shows that at Rol the orbitally asymptotically stable closed orbit 
degenerates in an infinity of closed orbits surrounding the equilibrium (centre 
point), all with the same period To1 computed from (2.15) at the bifurcation 
value Rm. These results are in accordance with the fact that the same pair of 
complex and conjugate eigenvalues of the characteristic equation(2.9)-(2.10) 
undergoes the two bifurcations above described, changing twice the sign of their 
real parts as R decreases (negative-positive-negative). The remaining two roots, 
say h3, h4, maintain their negative real parts for all R c R+. In fact, from Corollary 
2.2, when R > Ro2 q~ > 0 and this means that all the four eigenvalues have negative 
real part. 

When R = Ro2 a pair of complex conjugate eigenvalues, say A 1 and A2, cross 
the imaginary axis and their real part remain positiv e for Roa < R < R02, whereas 
the other two eigenvalues continue to have negative real parts: this follows from 
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Fig. 2a, b. With the same set of values for parameters a12 , b2,  72, e2 as in Fig. 1, we fix the parameters 
a = 2, fl = 3 within region (i) of Fig. 1. The unique Hopf bifurcation occurs for decreasing R at 
Ro = 7.77. Since fie = 2 Re C1(0)=-0.2254 the bifurcation is toward orbitally asymptotically stable 
closed orbits. In the phase space N 1/> 0, N 2 t> 0,  for the value of parameter R = 7, the periodic closed 
orbit asymptotically attracting two trajectories is shown by a computer simulation. One trajectory 
has initial conditions outside the limit cycle, and the other has initial conditions inside, near the 
equilibrium N* = (3.5, 0.4). b With the same parametric values, the oscillations of N 1 = Nl(t) and 
N2 = NE(t) are plotted versus time by a computer simulation. The computed period T o = 2.05 at the 
bifurcation value R o is in a good agreement with the period shown in b. In all the figures the initial 
conditions (2.1) are given assuming that in the past the system is at equilibrium, i.e. Ni(t)= N*, 
-oo<  t <0,  i=  1,2, and then perturbing the equilibrium at t=O, i.e. Ni(0) ~ N~*, i=1 ,  2 

t h e  f ac t  t h a t  t h e  f u n c t i o n  ~b h a s  n o  z e r o s  in  t h a t  i n t e r v a l  a n d  f r o m  t h e  p o s i t i v i t y  

o f  t h e  coe f f i c i en t  a I = al(R) ( see  (2 .10) )  f o r  a l l  R c R+.  

W h e n  R = Rol a c o u p l e  o f  e i g e n v a l u e s  c ross  t h e  i m a g i n a r y  ax is ;  b u t  f o r  R < Rol 

al l  t h e  e i g e n v a l u e s  m u s t  h a v e  n e g a t i v e  r ea l  p a r t s  b e c a u s e  0 > 0. 

T h u s  h i  a n d  A2 a re  t h e  e i g e n v a l u e s  w h i c h  c h a n g e  t h e  s ign  o f  t h e  r ea l  p a r t ,  

w h e r e a s  A3 a n d  /~4 m a i n t a i n  t h e  n e g a t i v e  s i gn  o f  t h e i r  r ea l  p a r t .  

4.  D i s c u s s i o n  

W e  s t u d i e d  t h e  q u a l i t a t i v e  b e h a v i o u r  o f  t h e  m o d e l  (1.1) as  t h e  n u t r i e n t  s u p p l y  

R va r i e s .  T h e  m o s t  r e m a r k a b l e  r e s u l t  is t h a t  t h e  p r e s e n c e  o f  t h e  n u t r i e n t - r e c y c l i n g  
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Fig. 3. With the same fixed set of 
values for parameters al2 , b2, 5'2, e2 
as in Fig. 1, we fix the parameters 

= 0.5,/3 = 4  within the region (ii) 
of Fig. 1. The two Hopf bifurcation 
values are Ro~ = 0.3032, Ro2 = 7.6782. 
We fix R = 3. Although we are far 
from both the bifurcation values, the 
computer simulation shows the 
existence, in the positive orthant 
R2={(Nt, N2) E~2NI>O , i =  1,2}, 
of a closed orbit which is 
asymptotically attractive both from 
outside and from inside (excluding 
the positive equilibrium N* = (3.5, 
0.171)) 

6 
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Fig. 4a, b. With the exception of parameter R, all other parametric values are the same as in Fig. 3. 
a shows the stable oscillations of N1 = N~(t) and N 2 = N2(t) versus time when R = 7 < Ro2 = 7.6782. 
The computed period at the bifurcation value Ro2 , To2 ~ 1.89, is in a good agreement with the period 
shown in a. b shows that the stable oscillations of N 1 and N 2 persist up to R values far from Ro2, 
but near to Rol, i.e. R =0 .4>  Rol =0.3032. Furthermore, decreasing R from Ro2 to Rol we have an 
impressive decreasing in the width of oscillations for the biotic species N 2 probably because of the 
decreasing of the equilibrium component Nz* proportionally to R 
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Fig. 5. We fix R = Rol = 0.3032. All other 
parametric values are the same as in Fig. 3. This 
figure shows that the asymptotically attractive 
closed orbit occurring within (Rol , R02), at Rol 
degenerates to an infinity of closed orbits, all with 
the same period Tin, and one for each fixed initial 
condition 

0.1 �84 
LI~I2 

3 4 N7 

term with time lag in the first equation gives rise to the possibility of  having 
two H o p f  bifurcations when R varies. In fact it is easy to prove that if we set 
b2=0  in model (1.1) (no recycling) we can have at most one H o p f  bifurcation 
at R=e2(e2-fl)/y2 i f / 3 < e 2 ,  i.e. if the average time lag T~=1/13 is greater 
than the characteristic time of decay of  the species 1/e2; in this case the 
positive equilibrium is locally asymptotically stable for R>Ro,  whereas 
periodic orbits exist for R < Ro. 

The presence of the recycling term with time lag allows the stability of  the 
equilibrium at low values of  R even if/3 < e2; in fact in Sect. 2 we have shown 
that we can have two bifurcation values, Rol  ~ Ro2 , such that the equilibrium 
is locally asymptotically stable for R ~ R + - [ R o l ,  Ro2]. The higher bifurcation 
value, R02, is almost the same as the existing one without recycling, whereas 
the lower bifurcation value, R01 , is a consequence of the presence of the 
recycling term with time lag. 

From Fig. 1 in Sect. 2 we can see that when ~ goes to infinity, i.e. the 
average time lag T ~ 0 ,  the model (1.1) can have at most one bifurcation 
value of  R. Thus we can conclude that if /3<e2 model (1.1) has one 
bifurcation value either with b 2 --- 0 or with b2 # 0; the presence of the recycling 
term with time lag can introduce another H o p f  bifurcation at a lower value of 
R provided that the time lag T~ is great enough. 

Furthermore the value of  the parameter  b2e(0,  1), which represents the 
extent of  nutrient recycling, influences the period of oscillations. From (2.15) 
we have: 

2 a3 /3a12(a + e2)y2Ro 
090 ~ - - ~  

al e2(a +~3)(ale- b2Y2) + al2yzRo 

arid it is easy to see that if b2 is increased, also Wo 2 increases, therefore we conclude 
that the period To = 2zr/wo decreases as  b2 goes from 0 to 1. 

By the H o p f  bifurcation theory we proved, for a fixed set of  parameters,  the 
asymptotic stability of  the bifurcating closed orbits near the bifurcation points. 
Computer  simulations (see fig. 3) suggest that the orbits continue to exist and 
are stable on the whole interval R e (Rol, Ro2): as R varies from Ro, to Ro2 we 
have a family of  periodic orbits whose amplitude increases, reaches a maximum, 
then decreases again. By choosing a and/3 within the double bifurcation region 
we made a computer  simulation in which the parameter  R is increased in a 
discrete way (see fig. 6). The simulation shows that as R increases the biotic 
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Fig. 6. Result of a compt~ter simulation with a set of values of the parameters in the region of double 
bifurcation ( a l E  : 6; b E = 0 . 5 ;  T2  : 2; e 2 = 7 ;  ot = 0 . 5 ; / ~  = 4). N 2 is represented vs time and the parameter 
R changes during the simulation: we divide the time of simulation into 3 equal intervals. 

During the first time interval we maintain R = 0.2 < Rol; then, for the following time-interval, we 
maintain R at the higher value R = 5.2, i.e. Rol < R < Ro2. Finally, in the third interval, we set R at 
the highest constant value R = 10.2> Ro2. In the first interval the scale of N 2 was expanded by a 
factor 10 because of the smallness of N2* for that value of R 

species  unde rgoes  a t r ans i t ion  f rom a low stable equ i l ib r ium to a h igher  s table 
equ i l ib r ium th rough  s table  osci l la t ions.  We note  a s u d d e n  large increase  o f  N2 
in co r r e spondence  with the two changes  o f  the  nutr ient  supply .  

In  m o d e l  (1.1) R is a s sumed  constant .  There fore  the analysis  o f  the  dynamica l  
b e h a v i o u r  o f  the  mode l  impl ic i t ly  assumes  that  the  system evolves on a t ime scale 
sufficiently fast  to jus t i fy  the  a s sumpt ion  o f  a cons tan t  nut r ient  supply .  This does  
not  necessar i ly  imply  tha t  the  rate o f  nut r ien t  supp ly  R has a lways  the same 
value.  In  a lake ecosys tem it cou ld  be r easonab le  to assume that  R m a y  sudden ly  
change  on a seasona l  t ime scale accord ing  to the s tep funct ion  shown in Fig. 6 
and  that  in each  pe r iod  we have  a different  dynamica l  response  of  the model ,  as 
it is shown in Fig. 6 and  accord ing  to the ma thema t i ca l  analysis  p re sen ted  in the 
paper .  

Appendix 1 

C o m p u t a t i o n  o f  the  coefficients H2o(0) and  H1~(0) in (3.19). F r o m  its def ini t ion 
(3.17) the func t ion  H(z, ~, 0) is given by  

H(z, ~, 0 ) :=  F ( w + 2  Re{zq(O)})-2 Re{g(z,  s  (A.1) 

with 

g(~, ~) = q*(0) '  �9 F(w + 2 Re{zq(0)}). 

Let  us compu te  first the  a rgument  o f  F :  

f w(1)(O)+ze"%~ -'%~ '~ 
w + zq(O) + eta(0) = \ w(2) (0)  + zB e "%~ + eB e -''~176 (A.2) 
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where (3.5) has been used. According with definition (3.3) of operator F 

F ( w + 2  Re{zq(O)}):= { ~ l i '  

- ~ < 0 < 0  

0 = 0  
(A.3) 

where 

" (1)(0 f ~ :=-a l2 (W , )+z+Y.) (w(2) (O)+zB+~B)  

~,/~) ( ~(1)..~/3 (/3 -- iwo) 
f~ ~/2(W(2)(O)+zB+ k ~'~---~ Z~- 

/3(/3 + itOo) "~ 
2 2 7" ) /3 +tOo 

(A.3)' 

with ~(~):= ~~ w(1)(g)/3 e ~s ds. Let us observe that because of (3.14) and (A.3)', 
w cannot contribute to H2o, H n  because it introduces only terms of higher order 
than z 2, ~2, z~. Furthermore, from (3.6) and (A.3)' 

g(z, e) = ~Of~+.Oef,~ (A.4) 

and finally: 

i(00!  <0<o 
0 = 0  [W~(z, ' 

(A.5) 

Now, let us observe that 

0 2 O,]z o (A.6) 

Let us first consider H2o. Then, by inspection of (A.3)' we have: 

2 2 ] 2y2B/3(/3-itOo) 
-~zZf~)(z' z) ==e=o= /32+tO ~ (A.7) 

Therefore, if we define 

F := al2B - C y2/3B(fl - itoo) 2 2 , (A.8) 
13 +tOo 

then from (A.5), (A.7) we finally obtain (3.20). By the same procedure, we have 
that 

[o=s>,, l =[o~z>,, l J~=~=o L ~ Jz=,=o=-2a'2Re B 

1 
(A.9) 
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From the definition (3.7) of B it is easy to recognize that: 

02 _ 

Hence, from (A.5), (A.9) and (A.10) we finally obtain (3.21). 

E. Beret ta  et al. 

(A.10) 

Appendix 2 

Solutions of (3.23) and (3.24). 

Let us consider first the operator equation (3.23) where operator A is defined 
by (3.2) and/-/2o(0) is given in (3.20). Explicitly writing (3.23) we obtain: 

2iwo-d/dOl\w(22)(O) ] =\2BOFei,OoO+2•DF 1 e-i~'~176 , Oc(-oo, O), 

(A.11) 

whereas, when 0 = 0 we have: 

0 / \  ~o(s)/ =\H~)(0)/" 
(A.12) 

Before solving together (A.11) and (A.12) let us observe that, from the second 
of (3.12), x,(O)=w(O)+z(t)q(O)+~.(t)gl(O) for all - o o < 0 ~ 0  and te[0 ,+oe) .  

By their definition q(O) and 0(0) are continuous functions of 0 ~ (-oe, 0] and 
we must then require that also w(O) be a continuous function of 0 e (-oo, 0] to 
avoid a jump discontinuity for the solution x , (0)= x(t + 0) at the actual time t 
obtained by putting 0 = 0. 

Accordingly, we supplement the nonhomogeneous linear differential 
equations (A.11) by the boundary condition 

lim W2o(O) = W2o(0). (A.13) 
0~0-  

The same kind of boundary condition we require for the operator equation (3.24). 
The general solution of (A.11) is given by: 

w(21o)(0) = trl e'~176176 e --i~~176176 "t- frye 2'~176 
(A.14) 

w~o)(o) = ~ e ~~176 + ~2  e-"~176 . m  e _  2,o~o 

w h e r e  orfe 2i'%~ Id, f e  2ir176176176 are solutions of the homogeneous part of (A.11). By 
direct substitution into (A.11) of the particular solutions of (A.14) we easily 
obtain o'~,/z~, i = 1, 2 given in (3.25c). (3.25d) trivially follows from the boundary 
condition (A.13) as applied to (A.14). 

Now, by substitution of (A.14) into the integral part of (A.12) the following 
system of algebraic equations is obtained: 

2io%+alzN~ ax2N*l-b2e2a[(a-2itoo)/(a2+'to~)]](w(21o)(O)~ (C(zXo)~ 

- N2* ~/2fl [ (#  - -  2 io%)/(13 2 + 4to o2)] 2 iw o ] \ w(220)(0)1 = \ C(22o )] 

(A.15) 
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with 

i2b2e2a F BDr(a - kOo) /TDFI(a + iwo) 

~ + 4 ~ J  

c ( ~  _ H ~ ( o  ) ~ 2N~* ~ /3  [ Dr( /3  - l i fo )  
~ o -  ~-~o L /3~+o~o ~ 

Dr,(~3 + iwo) 

3(f+,Oo ~) 

(A.16) 

/32+4o, g1" 

Denoted by 

�9 / 3 -2 iwo  ( ~ a - 2 i w o \  
A = 2iwo(Ziwo+ a12N2* ) + N~T2/3 ~ a 1 2 N *  1 - b2eza  ~2--+-4-~) '  (A.17) 

the solutions of (A.15) are: 

w(~,)(o) = 

w(~,)(o) _ 

a-2kOo]  [--,(2) 
2ioJoC~o ) -  a i 2 N * -  b2e2o~ -2_-7--7 ,-.2o 

a +&Oo] 
a 

/3 - 2iwo it+(1) 
(2 iwo + a.,~-N-*~ ,'~ 2o "~ "~ (2) -* N* Y2/3/3--2+ 4w---~o ~ 20 

a 

(A.18) 

Let us consider now the operator equation (3.24). We obtain: 

( - d i d O  0 ~{W]ll)(O)~ ( SF)e"~176 SDe -"~176 
0 -d/dO]\w~2)(O)] =\SDBef%~176 k 

0 ~ ( - ~ ,  0) 

(A.19) 

where, for the sake of simplicity, we have set S = 2a12 Re B; and 

{2N ( o 
0=0 

(A.20) 

We supplement (A.19) with the boundary condition lim0_,o Wll(0 ) = WII(0 ). The 
general solution of (A.19) is 

w~ll)( O) = Pl ei'~176 + P2 e-i%~ + ps 
(A.21) 

w~])(0) = X1 e i~176176 +X2 e-i%~ +Xf 
where Ps, Xi is the constant solution of the homogeneous part of (A.19), and the 
remaining part of (A.21) is a particular solution which directly substituted in 
(A.19), for pi, Xi, i = 1, 2, gives (3.27c). Furthermore, from the boundary condition 
(3.27d) follows. 
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Now, by substitution of (A.21) into the integral part of (A.20), we obtain the 
linear algebraic system: 

( al2N* 2 a12N*l_b2e2~(w~tl)(O)~ (r,O)\l.,ll 
(2) = /"~ (2)) (A.22) 

~-')12N~2 0 ]~Wll (0)1 l-.ll ,, 

where 

C ( 1 )  - -  - - ( 1 )  . . . .  Sb2e2a { ,~,~ o~ - iwo - a + ito o 1 ) 
I I -  H I I  ( ,0)-{- /  tO o ~k/~L/~---T~ ~ ~ B D a 2 + t O 2 - ~ ( B D - B D )  

/ 
(A.23) 

C(2)= H~])(0) - 2  [ XmtL, tlJ SN*2 TEfl iwo) ) Im(D)'~ 
11 - - -  

to0 \ 
whose solution is: 

~(2) 
�9 ; L '~l l  

w~ll)(O) ---- ~/2N2 ~ , 

NT:~I'~ g~(2) (1) 
W ~ 2 ) ( 0 )  - - l ' v 2  \ "12~"~ 11 "-[- ' y 2 C l l  ) (A.24) 

T2Ro 

Appendix 3 
- ( i )  - ( i )  Computa t ion  o f  W2o, Wll 

To compute gEl (see 3.36) we need of ,~(1) ~ ( 1 )  ,v2o, Wu as defined in (3.31). 
By substitution of (A.14) and (A.21) in definitions (3.31) we easily obtain: 

1 "  0" 2 -- O" 1 ds w20"(') -- /3 e~S(oh e"~176 e-i'%S+(w(21)( 0 ) -g2)  e 2i%s) 
J-oo 

/3 - itoo ~ + itoo /3 - 2iwo /3 - 2iwo] 
=/3 o'1 ~2+w--- ~ ~- o'2/32---~ w-~ ~- w(2~(0)/32--'--+4w-----~ (o"1 + o'2)/32+4wo2 ] 

W11~(1)__ et3~(p 1 ei%S +P2 e-i'%~+(W~ll)(O)--Pl--P2)) 

fl - iwo /3 + itoo\ 
r--_/3 Pl /32 I_ O)g "~ P2 ~ )  "~- W~11)(0) -- (Pl -{- P2) �9 

(A.25) 

(A.26) 
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