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7. Compartmental analysis of economic
systems with heterogeneous agents: an
introduction

Gian Italo Bischi

1 INTRODUCTION

Economic and social systems are usually made up of a great number of units
- economic agents, such as consumers or producers, goods, countries ... - and
aggregated (or lumped) variables representing homogeneous groups of such
units must often be introduced in order to model the time evolution of these
systems. An extreme assumption is that all the units constituting the system
are identical, that is, the whole system is perfectly homogeneous. In this case
the behaviour of the system can be summarised by that of a representative
unit, whose time evolution represents that of the whole system. At the
opposite extreme is the ‘microscopic’ modelling of all the distinct
interacting units. Compartmental modelling is placed at an intermediate
level, between complete aggregation and complete disaggregation, being
based on the subdivision of the system into a finite number of component
parts, each formed by a sufficiently great number of homogeneous units,
called compartments. Each compartment is characterised by the value of a
measurable quantity, and different compartments interact by exchanging
units.

Compartmental models have been traditionally used in physiology and
pharmacokinetics to describe the distribution of a substance among different
tissues of an organism. In this case a compartment represents the amount of
the substance inside a certain tissue and the flows are due to diffusion
processes. In physics the compartments may represent the energy content of
the different parts of a system and the flows are due to heat or work
exchange between compartments. In population dynamics the compartments
may represent the number of individuals living in different regions and the
flows are due to migration currents; a country can be divided into rural and
urban compartments, a city into residential, industrial and services
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compartments. In these examples the compartments are used to describe the
distribution of a measurable quantity among distinct regions in space and
the flows are represented by transfer rates between the regions. In other
cases the compartments represent qualitatively different quantities in the
same space, and the inter-compartment flows represent transformation rates
instead of transfer rates. This is the case of many models in chemistry where
the compartments are quantities of different chemical substances contained
in the same vessel, and the flows are due to the transformation rates of
reactants into products.

Compartmental models, whose development began in the 1940s in
physiology, have been extensively used in chemistry (see e.g. Nicolis and
Prigogine, 1977, Ladde, 1976a, 1976b), medicine (Anderson, 1983, Jacquez,
1972), epidemiology (Murray, 1989), ecology (Matis et al., 1979),
pharmacokinetics (Anderson, 1983, Rescigno and Segre, 1966, Solimano et
al., 1990). Many of the models and methods developed in these fields can be
usefully applied, by analogy, in the description of economical and social
systems. In many social and economical models the population is divided
into compartments (or classes) in relation to social or economical behaviour,
or geographical location. For example a population of consumers can be
subdivided into age classes (young and old, in the simplest case) or classes
differing by different income; a population of producers can be
‘compartmentalised’ by defining size classes (small and large firms, for
example). By decreasing the number of compartments a more aggregated
model is obtained, whereas an increase in the number of compartments leads
to a higher disaggregation into heterogeneous subsystems, However each
compartment should contain a sufficiently great number of individual units,
so that the exchanges between the compartments can be modelled as
continuous flows that can be represented by the use of differential calculus.
In marketing models the diffusion of goods among different regions or
different social classes can be described by compartmental models similar to
those used in ecology. The description of the propagation of an information,
an innovation or a new product among a certain population can be
developed on the basis of a subdivision into compartments related to
economical criteria (income for example), or geographical criteria, or by
personal activity (see e.g. Bass, 1969, Rogers and Shoemaker, 1971) in
analogy with the models used to simulate the spread of a disease. Other
compartmental models, used in enterprises for manpower planning, have
compartments which correspond to different grades, and the flows represent
promotions, arrivals and departures (Vajda, 1978). In models for decision
making in collective systems the compartments are interpreted as different
options available for individuals, and flow rates represent probabilities of
individual choice (De Palma and Lefèvre, 1987, Leonardi, 1987).
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In this chapter a general overview of the method of construction of the
compartmental models and of their main properties is given. The most
important results are described and many references are suggested where
their rigorous proofs can be found. The main purpose of this overview is to
guide the reader interested in the application of compartmental analysis to
economic and social modelling among the references, many of which are out
of the economic and social literature.

2 DEFINITIONS AND NOTATION

In order to obtain a deterministic mathematical description of a
compartmental system the compartments are usually denoted by a set of
indices:

I = {1, 2,...,n} (7.1)

and are graphically represented by boxes linked by arrows indicating flows
between compartments, as in figure 7.l.

Figure 7.1

It can be noticed that in figure 7.1, as usual in compartmental analysis, fij

denotes the flow rate from compartment i to compartment j (unfortunately
some authors, especially in connection with stochastic modelling, use the
opposite subscript convention). The index 0 denotes the outer environment,
or external world, that is, everything which is not included in the
compartments. If x(t), i=l,2,...,n, denotes the quantity which characterises
the ith compartment, the vector x(t) = (xl(t),...,xn(t)) represents the state of
the dynamical system at time t. The time evolution of the compartmental
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system is described by a set of n ordinary first-order differential equations
obtained through the application, to each compartment, of the simple
balance equation:

=
dt

dxi (rate of inflow - rate of outflow)

With the symbols adopted in figure 7.1 the most general form of
compartmental equation is:
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where a dot over a character represents the time derivative, ui = ui(t)
represents the input into the ith compartment from the outer environment
and the flow rates fij = fij(t, x) are in general functions of time and state
variables. If we define the fractional transfer coefficients as the ratios of the
flow from jth to ith compartment to the state variable in the donor
compartment j:

j
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a = (7.3)

the equations (7.2) can be written in matrix form:

bxxAx += )(& (7.4)

where A={aij} is an n• n matrix whose off-diagonal entries are the fractional
transfer coefficients (7.3) and the diagonal entries are defined as the
negative sum of all the fractional transfer coefficients of the outflows:
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(7.5)

In many cases the parameters describing the flow rates, contained in the
matrix A, are not a priori known. The estimation of such parameters
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through a planned input-output experiment is one of the main purposes of
compartmental analysis. The procedure followed in the estimation of such
parameters is typical of inverse problems: a compartmental model, in the
form (7.4), is obtained on the basis of system knowledge and practical
considerations; then an experiment is performed with inputs in some
accessible compartments and data collected from observable compartments;
finally the collection of gathered data is compared, by fitting techniques,
with the solutions of the model. By this procedure a system of equations is
obtained to estimate the unknown parameters. Since it is seldom possible to
sample all compartments it may not be possible to obtain a unique
determination of the unknown parameters. The possibility of uniquely
computing the parameters by a given input-output experiment is known as
the identification problem. To this problem is devoted a great part of the
literature on compartmental analysis (see e.g. Anderson, 1983, Bellman,
1960, Seber and Wild., 1988, ch.8).

The biggest body of theory and applications of compartmental analysis
has been concerned with linear models, where the matrix A and the vector b
in (7.4) are constant. Such models are obtained if the flow rates fij are
directly proportional to the quantity in the donor compartment (first order
processes) or independent of the state variables (zero order processes). A
typical case of first order flows is that of transfer between compartments due
to passive diffusion, where the flow rate is proportional to concentration
gradients. To give an example, suppose that the compartments of figure 7.2
represent two regions and let ci=xi/Si, cj=xj/Sj  denote the population
densities in the regions of surfaces Si and Sj respectively. If migration
currents are only due to passive diffusion the balance equations become

)(),( ijjiji cckxcckx −−=−= &&

or, with the state variables,
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and the submatrix relative to these compartments is given in figure 7.2.
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Figure 7.2

First order transfer processes are frequently met in compartmental
models: the traffic flowing out of a city is proportional to the concentration
of cars inside the city, the know-how transfer is proportional to the amount
of information contained in the donor compartment and so on. A nonlinear
diffusion model can be obtained from the linear model (7.6) if we suppose
that the transport of people between the two regions is made by transport
units, so that a saturation effect must be considered: the migration rate
becomes a zero order process if the saturation level of carriers is exceeded,
whereas the flow continues to be a first order process if the carriers have not
reached the saturation point. Such a diffusion process, called active diffusion
in biological literature, is characterised by state dependent transfer rates.

In the remaining part of this section we are concerned with linear time-
invariant (that is, autonomous) compartmental models of the form:

bAxx +=&   (7.7)

where A is a constant n•n matrix and b is a constant vector. From the
definitions (7.3) and (7.5) the matrix A has nonnegative off-diagonal
elements:

jiaij ≠≥ ,0     (7.8)

non positive diagonal elements:

niaii ,...,1,0 =≤         (7.9)

and nonpositive column sum:

nja
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   (7.10)

Every matrix whose elements satisfy (7.8), (7.9) and (7.10) is called a
compartmental matrix. Many properties of a linear compartmental model
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depend on the disposition of zero and nonzero elements in the
compartmental matrix. A useful representation of the structure of a
compartmental system is the connectivity diagram which is a directed graph
where the nodes represent compartments and the directed edges connecting
certain nodes represent the flows. For example, the connectivity diagram
and the corresponding matrix structure relative to the compartmental system
of figure 7.l are given in figure 7.3.
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Figure 7.3

We describe now some typical connectivity diagrams that are frequently
met in compartmental models. In figure 7.4 the connectivity diagram of a
catenary system is represented, where only adjacent compartments
communicate. The corresponding compartmental matrix has a tridiagonal
structure.
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Figure 7.4

In figure 7.5 there is a mamillary system, where flows only take place
between a central (or ‘mother’) compartment and each individual ‘daughter’
compartment. If the central compartment is denoted by the index 1 the
corresponding compartmental matrix has nonzero entries only on the first
row and first column and, of course, the main diagonal.
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Figure 7.5
Now let us suppose that for a system of n compartments an ordering of

the compartments exists such that there is a subset { }nppT ,...,1, += ,

np ≤<1 , of the indices set I such that there are no flows from the

compartments in T to those in I-T, nor to the environment, that is, aij = 0 for
each j∈T and i = 0, ... , p-1. Such a set I is called a trap and the
corresponding compartmental matrix has the form:

 







=

CD

0B
A (7.l1)

where B and C are square submatrices and 0 is a (p-1)•(n- p+1) matrix of
zeros. For example, the compartmental system of figure 7.3 has a trap
formed by the nodes 2 and 4. If the order of the compartments is changed
through permutation of nodes 2,3 the trap T={3,4} is obtained and the
compartmental matrix assumes the structure (7.11). A system that has no
exit flows to the outer environment (that is, a0j=0 for each j) is itself a trap.
Compartmental matrices which can be brought into the partitioned form
(7.ll) through a renumbering of nodes are called reducible matrices;
otherwise the matrix is said to be irreducible. Following a common
terminology in graph theory (see e.g. Bertocchi et al., 1992), if starting from
any node any other node in the connectivity diagram can be reached by some
path, the system is said to be strongly connected. Of course a strongly
connected compartmental system has an irreducible matrix. As stressed
above, linear compartmental systems are frequently met when the modelled
systems are characterised by flows due to passive diffusion or other first
order processes. However the great importance of linear compartmental
equations is due to the mathematical description of tracer experiments.
These experiments are performed on systems which are in a steady-state. In
such a situation measurements of xi(t) give no information about the
dynamical behaviour of the system and nothing can be said about the flow
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rates. In a tracer experiment a small amount of labelled ‘units’ is added to
one or more compartments. A tracer is a ‘material’ which behaves like the
original material flowing between compartments, but it can always be
distinguished and easily detected by an observer. In a compartmental system
in which a substance flows, a tracer may be a fluorescent dye or a radioactive
isotope with flow rates equal to those of the original substance. In a model of
population migrations a tracer may be a group of labelled individuals, in a
marketing model a stock of labelled goods which can be detected in different
compartments at regular time intervals. In order to obtain information about
the dynamics of the system the time evolution of the tracer distribution is
followed through successive measurements of concentrations of the labelled
material inside the observable compartments. A perfect tracer has the
following properties: (a) the system should be unable to distinguish between
the original material and its tracer; (b) the tracer should be added in small
amounts so that it does not disturb the steady-state; (c) the tracer should not
be added at its equilibrium values, so that its concentrations inside the
compartments are nonconstant functions of time; (d) the tracer should not
interfere with the dynamical behaviour of the original material. Under these
hypotheses the dynamics of the tracer's concentrations in the compartments
is approximately described by linear compartmental equations, even if the
original equations are nonlinear (see e.g. Seber and Wild, 1988, Anderson,
1983, Jacquez, 1972). Let ei represent the amount of labelled material in the
ith compartment at time t, measured in the same units as xi. If aij(x) denotes
the fractional transfer coefficient from compartment j to i, the total flow in a
time interval dt is ( )( )jjij exa ++ ex  of which the fraction jj xe /  is

labelled. If, on the basis of assumption (b), we consider xex ≅+ ,  the

tracer equations become (see Godfrey, 1983, Jacquez, 1972)

ee A=&    
(7.12)

In other words, in considering the ideal tracer dynamics we can ignore
the original material, provided that it is in a steady-state, and the linear
equations (7.12) give a basis for estimating the steady-state fractional
transfer coefficients. A more complete derivation of the linear
approximation of the tracer equations, based on a Taylor expansion around
the steady-state, can be found in Anderson (1983) or Seber and Wild (1988).
A typical tracer experiment consists in selecting an input and deciding what
compartments should be sampled. Let u = (ul,..., uq) be an input vector and
B an (n•q) matrix whose entry bik is positive if a fraction of the input uk

enters compartment i. Let y=(yl,...,yp) be the output vector of the p measures,
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linked to the state vector by the output connection matrix C whose entry cij

is positive if xj influences the component yi of the output vector. The tracer
experiment can be described by the following system:

)()()()( tttt CxyBuAxx =+=&  (7.13)

For example, if in a three-compartment model an amount u1 of tracer is
injected into the compartments 1 and 2 at t=0 and then its concentrations in
compartments 1 and 3 are measured at successive discrete times to obtain
the output functions yl(t) and y2(t) we have:
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where δ is the Dirac delta. The structural identification problem is solved if
a choice of B and C exists such that the parameters in the compartmental
matrix A can be uniquely determined from experimental data. If the answer
is affirmative then the parameter estimation problem can be carried out by
regression methods. Necessary and sufficient conditions for structural
identifiability can be given in terms of connectivity of the compartmental
system (see e.g. Anderson, 1983, Cobelli and Thomaseth, 1985, Godfrey,
1983).

In the remainder of this section we give examples which will also be used
to illustrate the topics of the following sections.

Example 7.1. Compartmental models have been used to simulate the
evolution of a population with age structure, that is, a population formed by
groups of different ages. The population is split into n age groups
(compartments) and the flows represent growth rates. This may be useful in
social and economic modelling when the individuals of different ages have
different social or economical behaviour. Suppose we want to study the
problem of management of a living resource, for example the trees of a
plantation. These are planted when they are very small (age class 1) and
then they grow. If the population of trees is divided into n age classes, let
xi(t) be the number of individuals in the ith class at time t, fi the fraction of
them which survives and moves into the next age class at a rate ri, di the
fraction of them which dies. The nonzero elements of the compartmental
matrix A={aij} are along the main diagonal, aii =(di+firi) and under this
diagonal ai+l,i = firi. An input/output vector b = (bl,...,bn) can be used to
simulate plantation (bi>0) or uptaking (bi< 0) of trees in each age class.
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Models with age classes are discussed in Svirezhev and Logofet (1983) and
Getz and Haight (1989).

Example 7.2. Consider an economy consisting of m regions and a central
stock of capital. Let xl(t) be the capital in the central agency at time t and let
xi(t), i = 2, ... , n, with n = m+l, be the capital of the ith region at the same
time. Suppose that the central compartment can get profits from the outer
world at a rate ul(t), receives the savings sixi from each region (si is the
propensity to save for the ith region), distributes capital among the regions
at rates ki, i = 2,..., n, where the vector k = (k2,...,kn) represents a distribution
criterion which may depend on state variables or other decision policies, and
distributes capital at a rate k0 towards the outer world, that is, everything
that is not included in the model. The system is modelled as a mamillary
compartmental system (figure 7.6).
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Figure 7.6

Example 7.3. Consider an industrial system which produces goods
starting from a raw material (say iron). Let xl(t) be the amount of raw
material stored at time t, suppose that it is supplied at a rate u and is used by
a ‘primary industry’ to produce simple objects and components for other
factories (like screws, bolts). Let x2(t) be the amount of iron contained in the
objects of this primary production, and suppose that a fraction of it will be
used for a ‘secondary production’ of more sophisticated objects, another
fraction is directly bought by consumers and then recycled as new raw
material after its usage while the remaining fraction is lost after usage, so
that it leaves the production system (for example buried in dumps). A third
level x3(t) can be considered, and so on. At the ith stage let cixi be the
fraction of iron which is lost, pixi be the fraction used for a higher level
production (if any), rixi the fraction which will be recycled after usage. The
connectivity diagram, the compartmental matrix and the input vector for a
system with three compartments are shown in figure 7.7.
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Figure 7.7

Example 7.4. Consider an information which can diffuse among a
population by being talked about. In order to model the spread of such an
information the population is divided into two compartments: x1 is the
number of susceptibles, that is, those who have not received the information
but are able to take it, x2 is the number of informed people, that is, those who
are currently informed and capable of transmitting the information by direct
communication. It is reasonable to assume that f12, the rate at which
susceptible individuals become informed, is proportional to the product of
the two population densities (which represents the probability of encounters
between individuals of the two compartments). The balance equations are:
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where r1 and r2 represent the rates at which individuals are removed from
the population, M1 and M2 are input rates, from the outer world, of
susceptible and informed people respectively (figure 7.8).
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Since the fractional transfer coefficient a21 is a function of a state variable
(of the acceptor compartment in this case) this is a nonlinear model. Models
like this have been extensively used in epidemiology (see e.g. Olinick,
1978).

Example 7.5. In this example a model is proposed to simulate the
evolution of an economic system with scarcity of raw materials and, as a
consequence, shortage of commodities in the market. Consider a resource
(for example a raw material) which is an essential input for the production
of m different goods. Let xl(t) be the amount of available resource at time t
and xi(t), i = 2, ..., n, with n = m+1, the amount of the ith good whose
production requires the given resource as input. The resource is essential in
the sense that when it is available in small amounts the production of goods
is limited, that is, proportional to xl (like in a first order transfer), whereas
when the resource is very abundant the production rate is independent of xl

(zero order transfer). The connectivity diagram is given in figure 7.9 and the
corresponding balance equations can be written as:
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where u is the input rate of resource, pi is the maximum production rate of
the ith good, Ai is the production half-saturation constant for the ith good,
that is, the amount of resource necessary to obtain half of the maximum
production, di is the maximum demand for the ith good and Bi is the half-
saturation constant for the ith demand, that is, the amount of available good
necessary to satisfy half of the ith good demand in the simulated market. In
this model the compartment 0, that is, the outer world, represents the
consumers, so the vector (d2,..,dn) gives the demand of the consumers for the
commodity bundle (x2, ..., xn). This is a nonlinear compartmental model
since the fractional transfer coefficients are functions of the state variables.



   Beyond the representative agent194

Figure 7.9

Example 7.6. In Leonardi (1987), a compartmental model is proposed to
simulate the dynamics of collective choices in an urban system, where a
population is made up of individuals having the possibility of choosing the
district in which they prefer to live. Let Pj(t) be the population living at time
t in the district labelled j (j = l,..., n) and let rj be the fractional coefficient of
flow from zone j to zone i (that is, the number of individuals moving from j
to i in a small time interval dt is rijPjdt). The balance equations have the
usual form:
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If the system is closed, the total number of individuals in the system, say

T, is fixed, and 0=∑ iP . In Leonardi (1987), each compartment is

supposed to have a finite capacity Qj , j = l, ..., n so that not more than Cj

individuals can be in compartment j at the same time. The model features
are described in the particular functional form adopted for the coefficients rij

. In Leonardi (1987), the following parameters are defined in order to model
the dynamics of population migration in an urban system: λ = intensity
parameter scaling the speed of the moving process; f = origin-destination-
specific factor summarising exogenous bilateral effects (distance,
information, moving cost and so on) which might reduce or increase the
likelihood of moving between compartments j and i; Vj(t) = attractiveness
factor, measuring the benefits (or disbenefits) of living in the compartment j
(it is a utility function depending on dwelling prices, accessibility to shops or
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other facilities and certain microeconomic assumptions). Combining these
factors in a multiplicative way one gets: rij(t) = λfij(Vi(t)-Vj(t))(Qj-Pj(t)),
where the last term is the limited capacity factor and can be looked at as a
logistic term inhibiting the mobility because of scarce capacity. The presence
of this last term makes the model nonlinear and the dependence on time of
the utility functions V makes the model nonautonomous.

3 SUMMARY OF THE MOST RELEVANT PROPERTIES
OF LINEAR COMPARTMENTAL MODELS

Consider the linear model (7.7) where A is a compartmental matrix. From
(7.8) every compartmental matrix is a Metzler matrix, whose properties are
well known in mathematical economics literature (Takayama, 1985,
Newman, 1959). The following theorem, which can be found in standard
textbooks on linear dynamical systems (see e.g. Bellman, 1960), is very
important for systems whose state variables are required to be nonnegative:

Theorem 7.1. In a linear system of the form (7.7) the solutions x(t)
starting with x(t0) ≥  0 are nonnegative for t ≥ t0 if and only if b ≥ 0 and
A is a Metzler matrix.

Many of the spectral properties of a compartmental matrix are based on
(7.10) which implies:

∑
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≥
n

ij
j

ijii aa
1

(7.14)

From the Gerschgorin Circle Theorem (see e.g. Bertocchi et al., 1992,
p.213) with (7.14) the following theorem can be easily proved (see e.g.
Anderson, 1983):

Theorem 7.2. The real part of any eigenvalue of a compartmental matrix
is nonpositive. Moreover the matrix has no purely imaginary
eigenvalues.

This implies that oscillations (if any) in the solutions of a compartmental
model are necessarily damped. From the definition (7.5) of the diagonal
elements of the matrix A it follows that:
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that is, the jth column sum is equal to the negative of the fractional outflow
rate from compartment j toward the outer world. In particular if a0j=0 for
each j, that is, in closed systems, then the compartmental matrix A is
singular since all its columns have zero sum, and this implies that there is at
least a zero eigenvalue. On the other hand if a0j ≠ 0 for each j, that is, every
compartment of the system has an exit toward the outer world, then zero is
not an eigenvalue A, hence A is nonsingular and stable, that is, all its
eigenvalues have negative real parts. This can be seen as a corollary of
theorem 7.2, or it can be deduced from the fact that if a0j ≠ 0 for each j then
the (7.1) are satisfied with strict inequalities, that is, A is a column
diagonally dominant matrix in the sense of the classical definition of
Hadamard ((Takayama, 1985, p.381). This is a well known result in the
theory of Metzler matrices, as stated in the following theorem (see
Takayama, 1985, for a proof):

Theorem 7.3. Let A be an n•n Metzler matrix. Then the following
conditions are mutually equivalent:
a) A has diagonal dominance, that is, positive numbers dl,d2,...,dn exist

such that

∑
=

=>
n

i
ijijjj njadad

1

,...,1 ,

b) The real parts of all the eigenvalues of A are negative.
c) There exists an 0x ≥  such that 0xA < .
d) For any 0c ≤  there exists an 0x ≥ such that cxA = .

e) A is nonsingular and 01 ≤−A , that is, its entries are nonpositive for
each i,j and strictly negative for some i,j.

f) The matrix A is Hicksian, that is, its successive principal minors
alternate in sign.

A steady state (or equilibrium point) of the dynamical system (7.7) is a
state vector x* which satisfies the linear algebraic system:

Ax*+b =0. (7.16)
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Hence if A is nonsingular there is a unique equilibrium x*=-A-lb.
Moreover, from the propositions (c) and (e) of Theorem 7.3, in a
compartmental system with nonnegative input vector b a unique
nonnegative equilibrium always exists. The invertibility condition for a
compartmental matrix can also be given in terms of the connectivity
diagram. In fact the strong connectivity, equivalent to the irreducibility of
the compartmental matrix, is linked to invertibility by the following theorem
(see Anderson, 1983, Takayama, 1985):

Theorem 7.4. If the matrix A is irreducible then the following condition is
equivalent to any of the six conditions of theorem 7.3:

g) A is nonsingular and 01 <−A , that is, all its elements are negative
(negative matrix).

Moreover for a compartmental matrix the following theorem can be
proved (see Anderson, 1983):

Theorem 7.5. A compartmental matrix is invertible if and only if the
corresponding compartmental system contains no traps, that is, every
compartment has a path towards the outer environment.

The stability of an equilibrium point x* of (7.7) is equivalent to the
stability of the solution x=0 of the homogeneous system Axx =& . This is
asymptotically stable if and only if all the eigenvalues of A lie in the left half
of the complex plane. Thus theorems 7.3, 7.4 and 7.5 state that there is a
direct correspondence between existence and stability of a positive
equilibrium point of a linear compartmental system, and these properties can
easily be proved by an inspection of the connectivity diagram. In order to
examine the transient behaviour of a stable compartmental system when its
state is displaced from the equilibrium point, let us define the dominant
eigenvalue λ of A as the eigenvalue with greatest real part, that is, the one
which is closest to the imaginary axis. This eigenvalue represents the
slowest transient since the solution term exp( λ t) affects the trajectory for
the longest time. The relaxation time (or characteristic return time) is
defined as the time required to reduce the distance of the phase point x(t)
from the steady state x* by the factor 1/e:

)Re(

1

λ
−=rT       (7.17)
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Some interesting results about the dominant eigenvalue can be obtained
by the application of the Perron-Frobenius theorem to the positive matrix M
:= A+cI, where A is the compartmental matrix, I the identity matrix and

iiac max ≥  (see e.g. Luenberger, 1979, p.205, Hearon, 1963, p.44):

Theorem 7.6. For any compartmental matrix A the dominant eigenvalue
is real and the corresponding eigenvector is nonnegative.

Moreover, for strongly connected compartmental systems the following
theorem holds (see Anderson, 1983).

Theorem 7.7. If the compartmental matrix is irreducible then:
(i)  the dominant eigenvalue λ  is simple;
(ii)  the corresponding eigenvector is positive, that is all its components

are positive;
(iii)  if iλ  is any other eigenvalue of A then Re( iλ )< λ ;

(iv)  λ  increases when any outflow fractional transfer rate a0j decreases.

The last thesis of this theorem states that if in a strongly connected
system a flow rate toward the outer environment is weakened, then the
relaxation time increases, that is, the return to the stable equilibrium is
slower. Bounds on λ  can be obtained, without its effective calculation, in
terms of row or column sums of the compartmental matrix. Let R and r be
the largest and smallest row sum respectively:

∑∑
==

==
n

j
ij

i

n

j
ij

i
araR

11

minmax (7.18)

Theorem 7.8. If in a compartmental matrix A the numbers R and r are
defined as in (7.5) then

(i)  ),0min( Rr ≤≤ λ

(ii)  ii
i

amin≤λ

(iii)  )(max)(min 00 j
j

j
j

aa ≤≤ λ
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Let A = {aij} be a compartmental matrix with connectivity diagram Z. A
circuit in G is an ordered set of k distinct nodes {jl,j2, ... , jk} such that the

digraph of Z contains the directed edges 
→→→

13221 ,...,, jjjjjj k . The equivalent

condition in terms of matrix elements is that the product 0
211

≠⋅⋅⋅ jjjj aa
k

. The

number k of distinct nodes forming the circuit is said to be the length of the
circuit. The following theorem is proved in Kellog and Stephens (1978).

Theorem 7.9. If the longest circuit in the connectivity diagram of a
compartmental model is of length 2, then each eigenvalue of the
corresponding compartmental matrix A is real.

The hypotheses of this theorem are satisfied by catenary and mamillary
systems.

Example 7.7. Consider the model of example 7.2 with both saving rates
and capital distribution rates independent of the state variables. Under these
assumptions the model is linear with a mamillary compartmental matrix and
input vector b = (u1,0,…,0). Only the first column has a nonzero sum: a0l =
k0, a0j = 0, j = 2,…, n. From theorem 7.5 the matrix A is nonsingular since
every compartment has a path toward the outer environment through
compartment l. Thus a unique equilibrium exists: x* = - A-1b. The matrix A
is irreducible since the corresponding connectivity diagram is strongly
connected (see figure 7.6). Thus from theorem 7.4  -A-1 is a positive matrix
and since b is a nonnegative vector the equilibrium point x* has positive
components. In this case the steady state solution can be easily computed:

niu
ks

k
x

k

u
x

i

i
i ,...,2;, 1

0

*

0

1*
1 ===

In order to study the transient behaviour of the system when the starting
condition is out of the equilibrium, an analysis of the eigenvalues of the
matrix A is necessary. Since A is a mamillary matrix all its eigenvalues are
real and, since it is nonsingular, from theorem 7.3 all the eigenvalues are
negative. This implies that the equilibrium x* is globally asymptotically
stable and the convergence is nonoscillatory. Moreover from theorem 7.8 we
obtain the following bounds for the dominant eigenvalue:

{ }nn
i

sskkk ,...,,...min  and 200 ++≤≤ λλ
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that is to say: { } 0,...,, max 20 <≤− λnssk  which in turn gives an estimate

of the characteristic return time according to (7.4). It can be noted that
+∞→rT if k0 or any of the si becomes zero. In fact in both these cases the

matrix A becomes singular and the equilibrium x* no longer exists. Finally,
from theorem 7.7, we can deduce that the characteristic return time is a
decreasing function of k0.

4 RELATIONS BETWEEN DETERMINISTIC AND
STOCHASTIC COMPARTMENTAL MODELS

Several authors have noted that a linear time-invariant compartmental
model admits a stochastic interpretation if the compartments are considered
as the states of a Markov process and the flows as probabilistic transitions of
particles from one compartment to another, under the assumption that the
particles of the ‘flowing material’ move independently of each other (see e.g.
Eisenfeld, 1979, and references therein). Such models are particularly
appropriate in situations where the number of particles (or individuals)
becomes small. When such a number grows the stochastic model tends in
the limit towards the deterministic linear model described by equation (7.4)
(Seber and Wild, 1988; De Palma and Lefèvre, 1987). However even in the
case of a large number of individuals (as is often the case in models for
economy or sociology) the stochastic interpretation can provide useful
interpretations of analytic results obtained in compartmental analysis. Let us
first recall the following definitions which can be found in any standard
textbook on probability or stochastic processes.

Definition 7.1. A vector u = (ul,...,un) is called a probability vector if:

1and,...,1 ,0
1

==≥ ∑
=

n

i
ii uniu

(7.19)

Definition 7.2. A square matrix P = {pij} is called a stochastic matrix if
each of its rows is a probability vector.
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Definition 7.3. Given a system which can exist in n different states, a
sequence of states (events) is said to form a Markov chain if the state at any
step depends at most upon the previous state, and for each pair of states
(ai,aj) there is a given probability pij that aj occurs immediately after ai

occurs. The matrix P={pij} is called a transition matrix.

Note that in these definitions the subscript convention is different from
that used in compartmental analysis. In order to have a stochastic
description consistent with the compartmental one we shall interpret the
entry pij(h) of a transition matrix to represent the probability of going from
compartment j to compartment i in time h and we shall define a column
stochastic matrix as a matrix whose columns are probability vectors. Let us

consider first a closed compartmental system. In this case 0=∑ ix&

and )0()( ∑∑ = ii xtx . If ∑= 0
iT xX  is the total amount of material in

the compartmental system at t=0, the initial load distribution can be
normalised as

T

i
i X

x
x

0

)0( ←  (7.20)

so that the state vector x(t) is, at each time, a probability vector. This allows
us to consider the evolution of the state of a closed compartmental system
from a stochastic point of view. The following results are given in three
papers of Eisenfeld (1979, 1981, 1980).

Theorem 7.10. Let A = {aij} be an n• n closed compartmental matrix, that

is, all its column sums are zero. Let 








= ijad max and

./10 dh ≤≤ Then   Q(h)=I+hA (I identity matrix) is a column
stochastic matrix. Conversely if P is a column stochastic matrix, then
for h > 0, A(h)=1/h(P-I) is a closed compartmental matrix.

Suppose now that A is an open compartmental matrix, that is, at least one

j exists for which a0j>0. From A we can construct the matrix A , called the
closure of A, by attaching an (n+1)•l column vector of zeros on the left-hand
side of A and the l•n row vector (a0l,..., a0n) at the top of A:



   Beyond the representative agent202



















=

0

0

0

0 001

A
A

naa L

This is equivalent to saying that a new compartment representing the
outer world has been added with index 0. In this case the column stochastic
matrix

AIQ h+=     (7.21)

defined, as before, for sufficiently small values of h, is the transition matrix
of an (n+1)-state Markov process:

)()()( thht xQx =+ (7.22)

which, for a fixed time increment, gives the sequence x(nh), n=0,1,… which
is a Markov chain. Such a Markov chain is absorbing since the outer
environment is an absorbing state (the (0,0) entry of the corresponding
transition matrix is equal to 1). If the compartmental matrix A is invertible
the corresponding compartmental system has no traps and this implies that
it is possible to pass from any compartment to the outside compartment. In
this case the matrix:

[ ] 11 1
)()( −− −=−= AQIM

h
hh   (7.23)

can be defined. It is known as the fundamental matrix associated with Q(h)
and its generic element mij(h), which is nonnegative (see theorem 7.3), is
interpreted as the expected number of times the Markov process is in
compartment i having started at t = 0 from compartment j, before the
process enters the absorbing state. Since h is the time step between two
transitions we have that hmij is the average time that a unit of flowing
material spends in compartment i having been loaded in compartment j at
the initial time. This is the essence of the following theorem:

Theorem 7.11. Let A be the compartmental matrix associated with an
open system with no traps (so that A-1 exists). Then the entry tij of the
matrix T=-A-1 represents the mean time the process is in compartment
i, having started in compartment j, before exiting the system.
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If A is not invertible the compartmental system has at least one trap and
this is equivalent to saying that the mean residence time for a compartment
in the trap is infinite. The second stochastic matrix defined in the papers of
Eisenfeld is:

  0 ,)exp()( ≥= ttt AP            (7.24)

whose generic element pij is shown to represent the probability that the
process is in compartment ï at time t if it started in compartment j at t = 0. If
A is an open matrix the column sum of P is not necessarily l, but P has the
properties of a partial stochastic matrix, that is

1and0
1

≤≥ ∑
=

n

j
ijij pp                               (7.25)

Even if A is a closed compartmental matrix the two stochastic matrices
P(h)=exp(hA) and Q(h)=I+hA are different. In fact the directed graph of the
matrix P(h) exhibits more connections than the graph of A, whereas Q(h)
has the same connectivity diagram as A. This is due to the fact that if a
compartment i is reachable from compartment j along some path of arbitrary
length (which may be of several steps connecting many compartments) then
pij(h)>0 whereas aij and qij(h) are positive only if the connectivity diagram of
A has a one-step path from j to i. On the other hand from the expansion

...
!2

)exp()(
22

+++==
A

AAP
h

hIhh (7.26)

it follows that, for sufficiently small h, P(h)=I+hA. In other words the
stochastic matrix Q(h) is the transition matrix for small time steps, whereas
the stochastic matrix P(h) gives the long term behaviour of the Markov
process. Another stochastic parameter which can be defined from the
analysis of the compartmental matrix is the mean system residence time,
defined as the sum of the elements of a column of -A-1 ={tij}

∑
=

=
n

i
imm tT

1

(7.27)
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This represents the mean residence time of a particle in the entire system
given that it was in compartment m at the initial time t=0. The parameter

jj

ij
ij

a

a
r = (7.28)

can be interpreted as the probability that a particle in compartment j will

enter compartment i when a transition occurs. In fact )(txa jjj  is the total

outflow from compartment j and aijxj(t) is that portion of the outflow which
enters compartment i.

Example 7.8. Consider the model of example 7.3 with n compartments
(one raw material and (n-1) production levels) and with the following
assumptions: (i) all the coefficients pi, ri, ci, i=l,…, n, are real positive
constants; (ii) no losses of the raw material exist which are not considered in
the parameters ci, that is at each stage pi+ri+ci=1.

The connectivity diagram is strongly connected (see figure 7.7) and, if at
least one of the outflows a0j=cj, j=2,…, n, is positive, the system has no traps
and the compartmental matrix is nonsingular. Under this condition a unique
equilibrium x* exists and is globally asymptotically stable (as usual in linear
compartmental models equilibrium existence implies stability and vice
versa, as stated in theorem 7.3). The equilibrium components are:
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Even if the recycling parameters do not appear in the equilibrium
components they influence the other parameters because of assumption (ii).
If one ri is increased the corresponding pi and ci decrease since pi +ci =1-ri,
so all the equilibrium components increase. From assumption (ii) the
diagonal elements of the compartmental matrix are equal to l. From (7.28)
the off-diagonal entries of the compartmental matrix can be interpreted as
transfer probabilities: ri is the probability that a particle of iron in the ith
compartment will be recycled, ci the probability it will be eliminated out of
the production system. We consider now the case n=3 as in figure 7.7. The
inverse of the compartmental matrix can be easily computed and the matrix
of the mean residence times is obtained according to theorem 7.11:
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If only raw material enters the system, that is, the only input is in
compartment l, then only the first column of T is meaningful. The mean
time a particle of iron spends in the production system after having entered
as a raw material is, according to (7.27)

 0
1

2

223

2 >
−−

+
rpr

p

 since r3p2+r2<p2+r2<1-c2.
The mean time a particle of iron spends in the objects of primary

production (compartment 2) before exiting the system is

223
21 1

1

rpr
t

−−
=

and in the goods of second-level production (compartment 3) 21231 tpt = . The

meaning of the other entries of matrix T is that of mean residence times of
particles of iron which were introduced into the system as goods, that is,
directly in compartments 2 or 3, rather than as raw material. For example a
particle of iron introduced into objects of compartment 3 will spend a mean
time

 
223

3
31 1 rpr

r
t

−−
=

in compartment 1 as a raw material after recycling.

5 NONLINEAR COMPARTMENTAL MODELS

A compartmental model is nonlinear if some fractional transfer coefficients
(7.3) are functions of the state variables. A general autonomous dynamic

system )(xx f=& , with nnf ℜ→ℜ: , can be considered as a compartmental

model if it can be factored in the form:
 

bxxAx += )(& (7.29)

 where A(x)={aij(x)} is an n•n compartmental matrix, that is
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njaajia
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1
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xxx        (7.30)

The properties of this general class of compartmental models are
examined in Anderson and Roller (1991) and its stability properties are also
considered in Ladde (1976b). A less general class of nonlinear
compartmental models is that of donor-controlled equations, where the flow
rates are functions of the state of the donor compartments only:

)()( jjijij xfka =x (7.31)

The properties of such systems have been examined in Maeda and
Kodama (1978). In the following we summarise some of the results given in
the papers quoted above, chiefly in Anderson and Roller (1991), in order to
apply them to the nonlinear models presented in the examples of section 2.
Let { }talcompartmen is )(: xAnx ℜ∈=Ω .

If Ω⊆ℜn  and 0b ≥  then every solution of (7.29) starting with

0)( 0 ≥tx  remains nonnegative for t>t0. In fact if 0=ix  and

ijx j ≠≥ for  0 from (7.29) with (7.30) we have 0≥x& ; hence xi=0 is a

repulsive, or invariant, hyperplane for any trajectory in the nonnegative cone
of ℜn .

Some questions arise concerning existence and uniqueness of steady
states. In fact the components of an equilibrium point must be found by
solving the system of nonlinear algebraic equations:

bxxA −=)( (7.32)

whose solution, in general, may be a difficult task, so conditions on
existence, uniqueness and bounds of equilibrium points are needed. Let

{ }rnonsingula is )(:1 xAx Ω∈=Ω−

that is, the set of x such that every compartment has a path towards the outer

world, and let ng ℜ→Ω−1:  be the function:

bxAx )()( 1−−=g                                    (7.33)
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so that any equilibrium point in Ω −1  is a fixed point of g, that is, x*=g(x*).

The following theorem gives a range for g(x) and hence a bound for the
steady states if they exist:

Theorem 7.12.Suppose U)(  and  )( 1 ≤≤ − xAxA L . Then

bx
b

Ug
L

≤≤ )(            (7.34)
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 and β . Then, by summing equations (7.29),
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0 β                             (7.35)

At a steady state dS/dt = 0, so the following theorem holds:

 
Theorem 7.13. If an equilibrium solution of (7.29) exists then the total

input β must be in the range of the function ∑
=

n

i
ii ax

1
0 )(x .

 
A lower bound for x* can be obtained if the excretion functions are

bounded above, that is, ii ua ≤)(0 x . In this case we have:

2
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)(
u

x
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≥g                                   (7.36)

 where 
2

⋅  denotes the Euclidean norm. Furthermore, if { }i
i

uM max= then:
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 where ∑=
i

ix
1

x .  If the excretion functions are bounded away from zero

an existence theorem can be proved ( see Anderson and Roller, 1991):
 

Theorem 7.14. If 0≥b  and for each i the excretion rate function a0i(x) is
bounded away from zero as +∞→ix , then there exists an equilibrium

point x* ≥ 0  of (7.29).
 

Moreover if 0)(0 >≥ ii da x , then

 
i

i d
x

β
≤*                                                (7.38)

and if { }i
i

dm min=  we have:
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11

β
xx                           (7.39)

 Furthermore, if the excretion functions are strictly positive the following
inequality holds:
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≤≤ −             (7.40)

 where ∑=
i

ij
j

amax
1

A . The last result can be useful for the following

existence theorem:
 

 Theorem 7.15. Let 0≥b , n
+− ℜ=Ω=Ω 1  and suppose that a constant U

exists such that U≤− )(1 xA  for some matrix norm, for each x in

{ }bxx US ≤Ω∈= : . Then a solution x* exists for equations (7.32).

 
The proofs of these results are given in Anderson and Roller (1991). The

proof of theorem 7.14 is based on a fixed point result since under the
hypotheses of the theorem the function g(x) maps S into itself. This result
provides an alternative to the computation of x* from equations (7.32). In
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fact when the function g acts as a contractor on a subset of Ω−1
the recursive

sequence xp+l=g(xp) converges to a fixed point of g, that is, to an equilibrium
point of (7.29). Conditions for the uniqueness of the equilibrium point are
also given in Anderson and Roller (1991).

Stability results for nonlinear compartmental models are much more
complicated than those for linear compartmental models. In the latter case
systems with no traps have a unique equilibrium point which is globally
asymptotically stable. In the case of nonlinear models local stability results
do not necessarily imply global stability. Moreover many equilibrium points
may exist. A first approach to the question of stability is through
linearisation of the system around an equilibrium point. For this the
computation of the Jacobian matrix of the function f(x)=A(x)x+b at the
equilibrium point is needed. If the eigenvalues of the Jacobian have negative
real parts the equilibrium is locally asymptotically stable. If the Jacobian is a
compartmental matrix the spectral results given in section 3 can be used, but
such an assumption is not necessarily true. Some results on these questions
are given in Maeda and Kodama (1978). Global stability results can be
obtained through Lyapunov's second method (see e.g. La Salle and
Lefschetz, 1961; Brock and Malliaris, 1989). Some interesting results about
the use of Lyapunov functions in nonlinear compartmental models are given
in Ladde (1976b).
 

Example 7.9. Consider the model of information diffusion given in
example 7.4. Some entries of the matrix A of figure 7.8 are functions of the
state variables, hence the model is nonlinear. The matrix A is
compartmental for each x2>0, and since the input vector b is nonnegative the
positive cone ℜ+

n  is positively invariant. From the connectivity diagram we

can deduce that A is nonsingular provided that r2>0, because in this case
both compartments have a path towards the outer world, whereas if r2=0

compartment 2 is a trap. Thus if r2>0 n
+− ℜ=Ω=Ω 1 . The inverse of the

compartmental matrix is given by
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Let T(x):=-A-1(x)={ tij }. In linear compartmental models the entries of T
represent mean residence times, but now the tij are not constant. However a
constant upper bound can be obtained for the mean residence times. The
inequality t21<1/r2 states that the average time that an individual, not
informed at the initial time, remains without being informed is less than
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1/r0. Of course rl2=0 since an individual who enters the system in
compartment 2 will never reach compartment 1.

In this model the excretion rates are constant: a0l=rl and a02=r2; hence if
ri>0, i=1,2, the excretion coefficients are bounded away from zero. Thus
theorem 7.3 guarantees the existence of at least one equilibrium point. The
uniqueness of the equilibrium point can be easily proved in this case because
it is the intersection of the two nullclines  01 =x&  and 02 =x&  which have

equations
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The global stability of the equilibrium can be proved by the following
Lyapunov function (see e.g. Goh, 1980):
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 The derivative of V along the trajectories of the dynamical system is:
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 and 0=V&  only if x=x*. Then the global stability of x* follows from the
Lyapunov second method.
 

Example 7.10. Consider the model for goods production with scarcity of a
raw material, described in example 7.5. The system of differential equations
given in example 7.5 can be written in the form (7.29) with:
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The matrix A is a lower triangular compartmental matrix for each

feasible value of x, that is, for each n
+ℜ∈x . The column sums, that is, the

excretion functions, are:

 nj
xB

d
aa

jj

j
j ,...,2 ,0 001 =

+
==

From theorem 7.13 a necessary condition for the existence of an
equilibrium is that the input u must be in the range of the function:
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The excretion functions are bounded above, iii Bda /0 ≤ , hence from

(7.36) a lower bound for the equilibrium components can be obtained:
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In this model a unique positive equilibrium exists whose components *
ix ,

i=1,..., n, can be found from the nonlinear algebric equations (7.32). Let
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This is a continuous and increasing function, hence invertible, and

)(1*
1 uFx −= , provided that the input rate u is in the range of F-1, that is,

210 ppu +≤≤ . Now let
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 Then the other equilibrium components are:
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 The positive equilibrium exists provided that 210 ppu +≤≤  and ii dU <* .
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