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In this paper we study a model of a quantity-setting duopoly market where firms lack
knowledge of the market demand. Using a misspecified demand function firms deter-

mine their profit-maximizing choices of their corresponding perceived market game. For
illustrative purposes we assume that the (true) demand function is linear and that the
reaction functions of the players are quadratic. We then investigate the global dynamics
of this game and characterize the number of steady states and their welfare properties.
We study the basins of attraction of these steady states and present situations in which
global bifurcations of their basins occur when model parameters are varied. The eco-
nomic significance of our result is to show that in situations where players choose their
actions based on a misspecified model of the environment, additional self-confirming
steady states may emerge, despite the fact that the Nash-equilibrium of the game under
perfect knowledge is unique. As a consequence the long run outcome of the game and
overall welfare is highly dependent upon initial conditions.

Keywords: Oligopoly games; bounded rationality; bifurcations; misspecified demand
(function); self-confirming steady states.

1. Introduction

In the literature on learning and adaptive behavior in games, various attempts have
been made to capture the incomplete knowledge of economic agents e.g., about the
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market demand or the production capacity of their rivals and to demonstrate the
phenomena that may occur as a result of this lack of information. Scholars have
tried to answer the following questions in this line of research (see Fudenberg and
Levine (1998), Marimon (1997), or Kirman and Salmon (1995)): If we understand
an equilibrium in a game as a steady state of some non-equilibrium process of
adjustment and “learning”, what happens if agents use an incorrect model of their
environment? Does a reasonable adaptive process (e.g., based on the best response)
converge to anything? If so, to what does it converge? Is the limit that can be
observed when agents play their perceived games (close to) an equilibrium of the
underlying true model? Is the observed situation consistent with the (limit) beliefs
of the agents? Using a simple model that is a development of that of Léonard and
Nishimura (1999), we demonstrate in this paper that in situations where players
choose their actions based on a misspecified model of the environment, additional
self-confirming steady states may emerge, despite the fact that the Nash-equilibrium
of the game under perfect knowledge is unique. Furthermore the various steady
states of the game may have quite complicated basins of attraction. As a conse-
quence the long run outcome of the game and overall welfare is highly dependent
upon initial conditions.

In an early study Kirman (1975) considers a simple duopoly model, where he
assumes that the duopolists, through ignorance or inertia, are not aware that their
demand depends on each other’s action. Furthermore, he assumes that the players
choose their action such that the expected profit of the next period is maximized
and the duopolists update their estimates of the parameters of the (misspecified)
perceived model. Within this simple framework, he shows that instead of converging
to the “true” situation, the beliefs of the agents may drive the model towards some
other outcome.a Considering these results Kirman (1983, p. 147) concludes: “Thus,
in a certain sense, rather than the agents learning about the model, the model learns
from the agents, and the outcome is conditioned by their view of the world, mistaken
or otherwise. Thus, we have a situation corresponding to the idea of ‘self-fulfilling
expectations ’ even though individuals are misinformed. It may well be argued that
because agents are frequently less than perfectly informed, such situations may be
commonplace.” In addition to the result that agents are not able to learn the true
equilibrium, it is also shown in Kirman (1975, 1983) that if convergence to the
full information equilibrium fails, the process may become path-dependent, i.e., the
particular equilibrium that can be observed depends on the starting conditions.
Furthermore, Brousseau and Kirman (1993) find regions of stability as well as com-
plicated dynamics in their simulations, whilst Kirman (1995) makes some remarks
on basins of attraction. These observations are important, since they highlight the
need to study the global dynamics of the economic game, in particular the charac-
teristics of its possible long run outcomes and their respective basins of attraction.

aSee also Kirman (1983, 1995) and Brousseau and Kirman (1992, 1993). For an extension to an
N-player market game and convergence results, see Gates et al. (1978, 1982).
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In our view this issue has been neglected in the literatureb and a focus on this topic
is one of the contributions of the present paper.

Léonard and Nishimura (1999) provide further evidence for the convergence of
the economic game to a situation that is unrelated to any “real” equilibrium of
the underlying market game. They consider a simple Cournot-duopoly model with
decreasing reaction functions. Agents are aware of their rival and form expectations
about the quantity choice of the other player. They show that if players (slightly)
over- or underestimate the true demand, then an adaptive process based on the
best replies converges towards a unique steady state that differs from the full-
information (Nash-) equilibrium. They also demonstrate that this steady state may
lose stability as the misspecification error (of one firm) becomes larger, and they
provide an illustrative example where the system may converge to a period-2 cycle,
with periodic points close to the unstable steady state. A similar result is obtained
by Chiarella and Szidarovszky (2001) in an n-player continuous-time analog of
the Léonard-Nishimura framework. They show that (under concavity assumptions)
the resulting dynamic system converges towards a steady state, which in general
differs from the full information equilibrium. They then introduce (continuously
distributed) time lags in firms’ reactions and demonstrate that in the modified
model, limit cycles might be observed. Further results on the continuous-time analog
of the Lèonard-Nishimura model can be found in Chiarella et al. (2002).

In this paper we extend the discrete time framework of Léonard and Nishimura
(1999) in a number of ways. In Sec. 2, we set up a quite general formulation of
a duopoly model where players lack knowledge of the market demand and where
cost externalities between the firms are taken into account. For this model we
derive the best reply dynamics. Our framework is more general in the sense that
we do not restrict ourselves to a specific form of demand misspecification and —
as we demonstrate — the model introduced by Léonard and Nishimura (1999) is
obtained as a special case. In Sec. 3 we recall recent criticism by several authors, who
have stressed that the assumption of decreasing reaction functions is too restric-
tive (see e.g., Witteloostuijn and van Lier (1990), Bulow et al. (1985), Dana and
Montrucchio, (1986)). One way to obtain reaction functions which are not mono-
tonic is to allow for cost externalities between players, i.e., player i’s total costs
(e.g., for market development, product introduction, production and advertising)
are influenced by the decisions of player j. As an illustrative example, we assume
that demand is linear and players’ reaction functions are quadratic (where the
specific functional form of the reaction functions is obtained by suitably specify-
ing the cost functions). We then go on to show that in this example for demand
misspecification à la Léonard and Nishimura it is possible that new steady states

bIn a recent paper Schinkel et al. (2002) consider an oligopolistic price setting model where firms
do not know the market demand but have demand conjectures instead. Beliefs are updated in a
Bayesian way. They analyze the global dynamics and show that the particular equilibrium which
is reached in the long run depends on the intial beliefs.
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are created, when (one or both) players over- or underestimate the demand. Such
new states may even be “far away” from the full information Nash equilibrium in
the strategy space and welfare in these perceived equilibria is lower than in the Nash
equilibrium of the true game. For the case of identical players we provide a rigorous
analysis of the existence and stability of the emerging steady states. For the case of
heterogeneous players we give a numerical characterization of the various long run
outcomes, of their basins of attraction and of the “global bifurcations” that change
their topological structure as the parameters of the model are varied. In Sec. 4, we
allow agents to react with some inertia and discuss how the results of Sec. 3 are
thereby modified. Section 5 concludes.

2. A Duopoly Model with Misspecified Demand

We consider a discrete-time Cournot duopoly game, where firms i = 1, 2 offer
homogeneous products on a common market. The demand function and the inverse
demand are given by

q = D(p), and p = D−1(q) ≡ f(q) (1)

where q = q1 + q2 denotes the industry output. However, firms do not know these
relationships. Instead firm i subjectively believes that the demand relationship is
given by

q = D̃i(p), (i = 1, 2). (2)

Accordingly, firm i believes that the inverse demand function is given by

p = D̃i
−1(q) ≡ f̃i(q), (i = 1, 2).

To keep the model as general as possible, we allow for externalities on the
cost side. The total costs ci of firm i to offer a certain quantity qi on the market
might also depend on the quantity produced and offered by the other player. Such
externalities might, for example, be due to cost reductions for production inputs or
the development of a “buying habit” for the product among consumers (Poston and
Stewart (1979); Shaffer (1984)). We assume that players take this effect on their
own costs into account. More precisely, at the beginning of period t firm 1 chooses
q1(t) such that the expected profit

Π1(q1(t), q
e,prior
2 (t)) = q1(t)f̃1(q1(t) + qe,prior

2 (t)) − c1(q1(t), q
e,prior
2 (t)), (3)

is maximized, where the term qe,prior
2 (t) denotes firm 1’s belief about the quantity

chosen by its rival. Firm 1 uses its subjective demand relationship and considers
the effect of the competitor’s expected quantity qe,prior

2 (t) on its profit in order to
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choose the best response. The first order condition is

f̃1(q1(t) + qe,prior
2 (t)) + q1(t)(f̃1)′(q1(t) + qe,prior

2 (t)) − ∂c1(q1(t), q
e,prior
2 (t))

∂q1
≤ 0,

(4)

where for q1(t) > 0 the equality sign holds. Similarly for firm 2 we get the first
order condition

f̃2(q
e,prior
1 (t) + q2(t)) + q2(t)(f̃2)′(q

e,prior
1 (t) + q2(t)) − ∂c2(q

e,prior
1 (t), q2(t))

∂q2
≤ 0,

(5)

where for q2(t) > 0 the equality sign holds.
When the firms determine their optimal quantities, they have the following

information. At the time firm i forms the expectation qe,prior
j (t), it knows its own

past quantities, however, it has not observed the price p(t) yet (hence the superscript
‘prior’). We also assume that it does not know the quantities offered by its rival
in previous periods. Consequently, firms do not know the industry outputs and so
cannot easily infer the true demand relationship. We are also assuming that the
firms do not seek to learn about the demand function. We make this assumption
not because we believe attempts to learn would not occur, but rather because we
feel that the model studied in this paper can serve as a benchmark against which the
impact of learning schemes can be assessed. For one attempt to introduce learning
in the framework we develop here we refer the reader to Wenzelburger (2003).

We assume that the first order conditions for the two firms define reaction
functions

q1(t) = R̃1(q
e,prior
2 (t)) and q2(t) = R̃2(q

e,prior
1 (t)). (6)

Of course, these “best responses” are, in general, different from the reaction func-
tions if firms would know perfectly the demand (henceforth referred to as reaction
functions in the usual sense).

After shipping their selected quantities to the market, at the end of period t

both firms observe the market price p(t). However, as mentioned above, they do
not observe the industry output or the quantity supplied by its rival. Using the
only publicly available signal p(t) they update their belief on the rival’s choice.
This updated belief will be denoted as qe,post

j (t). For firm 1 this belief qe,post
2 (t) is

implicitly defined by the relationship

p(t) = f̃1(q1(t) + qe,post
2 (t)), (7)

or equivalently by

q1(t) + qe,post
2 (t) = D̃1(p(t)).
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Since no further information becomes available between periods, following
Léonard and Nishimura (1999), we assume that

qe,prior
2 (t + 1) = qe,post

2 (t), (8)

which via (7) yields

p(t) = f̃1(q1(t) + qe,prior
2 (t + 1)), (9)

or equivalently

q1(t) + qe,prior
2 (t + 1) = D̃1(p(t)). (10)

Similarly, for firm 2 we have

p(t) = f̃2(q
e,prior
1 (t + 1) + q2(t)), (11)

or equivalently

qe,prior
1 (t + 1) + q2(t) = D̃2(p(t)). (12)

The dynamics of the duopoly with misspecified demand relationships can now be
summarized as follows. Starting from initial expectations about the rival’s output
and given their subjective demand relationships, the duopolists choose their best
replies according to (6). Subsequently, the price that clears the market is determined
by the true (but unknown) market demand function (1). After observing the current
price (but not the industry output), the firms use the relations (10) and (12) to
update their beliefs on the rival’s quantity. The expectation-feedback cycle then
repeats itself. The dynamics of the system is captured by

q1(t) = R̃1(q
e,prior
2 (t)), (13)

q2(t) = R̃2(q
e,prior
1 (t)), (14)

p(t) = D−1(q1(t) + q2(t)) ≡ f(q(t)), (15)

q1(t) + qe,prior
2 (t + 1) = D̃1(p(t)), (16)

qe,prior
1 (t + 1) + q2(t) = D̃2(p(t)). (17)

Note that Eqs. (13)–(17) can be reduced to the system of difference equations

q1(t + 1) = R̃1[D̃1(f(q1(t) + q2(t))) − q1(t)], (18)

q2(t + 1) = R̃2[D̃2(f(q1(t) + q2(t))) − q2(t)]. (19)

It is easy to see that in the special case analyzed by Léonard and Nishimura (1999),

D̃1(p) = εD(p) and D̃2(p) = D(p) (20)

i.e., where (only) one firm mistakenly over- or underestimates the actual demand
by a factor of ε, the equations given in (18)–(19) can be written in a particular
form. First, since firm 2 is assumed to know the true market demand function,
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f̃2 = f and R̃2 = R2 hold, where the latter denotes the reaction function in the
usual sense. Hence, Eq. (19) becomes

q2(t + 1) = R̃2[D̃2(f(q1(t) + q2(t))) − q2(t)]

= R2[D(f(q1(t) + q2(t))) − q2(t)]

= R2[q1(t)], (21)

which coincides with Eq. (10) in Léonard and Nishimura (1999). Second, using
D̃1(p) = εD(p), Eq. (18) can be written as

q1(t + 1) = R̃1[D̃1(f(q1(t) + q2(t))) − q1(t)]

= R̃1[(ε − 1)q1(t) + εq2(t)]. (22)

Note that this expression still involves the reaction function based on the mis-
specified market demand. However, it is straightforward to show that (22) can be
expressed in terms of the reaction function in the usual sense. To see this, note that
f̃1(q) = f(ε−1q), and hence (f̃1)′(q) = ε−1f ′(ε−1q). Assuming an interior solution,
Eq. (4) yields

f(ε−1q1(t) + ε−1qe,prior
2 (t)) + ε−1q1(t)f ′(ε−1q1(t) + ε−1qe,prior

2 (t)) =
∂c1

∂q1
.

If firm 1 knew the true demand function, it would determine q1(t) according to the
first order condition

f(q1(t) + qe,prior
2 (t)) + q1(t)f ′(q1(t) + qe,prior

2 (t)) =
∂c1

∂q1
,

which implicitly defines the relation q1(t) = R1(q
e,prior
2 (t)). Hence, we can conclude

that the first order condition (4) together with assumption (20) implicitly define
the relation ε−1q1(t) = R1(ε−1qe,prior

2 (t)), where R1 is the reaction function in
the usual sense. Obviously, the relation between the reaction function R̃1 and the
reaction function in the usual sense is given by

R̃1(q
e,prior
2 (t)) = εR1(ε−1qe,prior

2 (t)).

Accordingly, Eq. (22) can be written as

q1(t + 1) = εR1

[
ε − 1

ε
q1(t) + q2(t)

]
, (23)

which coincides with Eq. (9) in Léonard and Nishimura (1999).
Note that, if both firms use misspecified demand functions of the type discussed

above, i.e.,

D̃i(p) = εiD(p) (i = 1, 2) (24)
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then the dynamics of the market game is governed by

q1(t + 1) = ε1R1

[
ε1 − 1

ε1
q1(t) + q2(t)

]
,

q2(t + 1) = ε2R2

[
q1(t) +

ε2 − 1
ε2

q2(t)
]

.

(25)

Obviously, if both players know the true demand (ε1 = ε2 = 1), then (25) reduces
to the well-known Cournot tâtonnement dynamics given (in vector notation) by

(q1(t + 1), q2(t + 1)) = (R1(q2(t)), R2(q1(t))). (26)

However, note that even if players over- or underestimate the demand by a certain
factor (εi �= 1), the dynamics of the repeated duopoly game with subjective beliefs is
still governed by equations only involving the reaction functions in the usual sense.
This property makes the assumption of this particular kind of misspecification quite
appealing for further analysis.

The dynamical system (26) has very particular properties, which mainly arise
from the fact that the second iterate of the two-dimensional map is given by two
decoupled one-dimensional maps, i.e., (q1(t + 2), q2(t + 2)) = (R1 ◦ R2(q1(t), R2 ◦
R1(q2(t)); for an analysis of such systems see Dana and Montrucchio (1986), Bischi
et al. (2000), Canovas (2000) and Canovas and Linero (2001). However, these prop-
erties no longer hold if at least one player’s demand function is misspecified. Hence,
having εi �= 1 causes a strong structural change in the dynamical system. In what
follows we will focus on the difference equation system (25), and investigate the
effects of mistaken beliefs on the long-run properties of the dynamical system, in
particular on the existence and stability of steady states (or more complex attrac-
tors), and on the extent and topological structure of the basins of attractions of
these steady states (or attractors).

3. Multistability and Global Dynamics

Usually, in standard textbook treatments of Cournot duopoly games, only the case
of monotonic decreasing reaction functions is considered. Consequently, the Cournot
tâtonnement process (26) can have at most one steady state, located at the intersec-
tion of the reaction curves. For example, Léonard and Nishimura (1999) study the
system (25) with ε1 = ε > 0 and ε2 = 1 and their conditions on the demand and cost
functions result in decreasing and identical reaction functions, R1(·) = R2(·) = R(·).
There exists then a unique positive steady state of (25) for each ε > 0. Using a
particular kind of decreasing reaction function, they show that this steady state
loses local stability and a stable cycle of period 2 becomes the unique attractor.
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However, as the early paper by Rand (1978) demonstrates, the array of dynamic
phenomena is much broader if the assumption of monotonicity is relaxed and uni-
modal reaction functions are admitted. There are several reasons why reaction func-
tions might be non-monotonic.c As mentioned before, each firm may benefit up to
a certain point from the output of its rival due to a buying habit of the consumers
(Poston and Stewart (1978)). Furthermore, as Bulow et al. (1985a, b) argue, firms’
outputs might be strategic complements for small values of the individual quanti-
ties, an effect which can arise if firm i tries to deter entry into the market by firm j.
If the reaction functions are not strictly decreasing, then, although the Cournot
tâtonnement (26) might have a unique Nash equilibrium, it may be the case that
as the “error” parameters εi are varied, the system (25) might have multiple steady
states. In such a case, the creation of new steady states is entirely caused by the
subjective beliefs of the agents. Then the role of the misspecification parameters εi

in the stability properties of the steady states is worth investigating since εi serves
as a measure of the accuracy of the subjective beliefs. If multistability occurs, i.e., if
several coexisting attracting sets are present, the process becomes path-dependent,
so that the long run outcome crucially depends on the initial condition. Hence, in
such a situation it is important to gain some knowledge about the boundaries that
separate the basins of attraction of the various coexisting attracting sets, and to
ascertain their role in the occurrence of global bifurcations that change the topo-
logical structure of the basins. As a side remark, it can also be pointed out that, by
tuning the “error” parameters εi, due to local bifurcations new kinds of attractors
may appear, characterized by periodic or chaotic time paths in the long run.

In order to investigate these issues, we consider the following illustrative exam-
ple. We let the inverse demand function be linear

p = f(q1, q2) = a − b(q1 + q2),

and the reaction functions in the usual sense be given byd

Ri(qj) = µiqj(1 − qj) i, j = 1, 2 i �= j, (27)

where the quantities (q1, q2) have to be chosen in the strategy space [0, 1]2 and
µi ∈ [0, 4]. If both players’ misspecification of demand is given by D̃i(p) = εiD(p),
then the dynamics of our market game is given by

(q1(t + 1), q2(t + 1)) = T̃ (q1(t), q2(t)), (28)

cFurther arguments can be found in Shaffer (1984), Dana and Montrucchio (1986), Van
Witteloostuijn and Van Lier (1990) and Puu (1991).
dUnimodal reaction functions can be derived e.g., if demand is iso-elastic (see Bulow et al.
(1985a, b) and Puu (1991)). The more specific form of quadratic reaction functions are obtained
by choosing the cost functions with externalities as ci(q1, q2) = aqi−bqiqj(1+2µi)+2bµiqiq2

j , i, j =
1, 2, i �= j (see Kopel (1996)), where the parameters µi measure the intensity of the externality.
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where the map T̃ is defined by

T̃ :




q1(t + 1) = µ1

[
ε1q2(t)(1 − q2(t)) + (ε1 − 1)q1(t)

(
1 − ε1 − 1

ε1
q1(t) − 2q2(t)

)]
,

q2(t + 1) = µ2

[
ε2q1(t)(1 − q1(t)) + (ε2 − 1)q2(t)

(
1 − ε2 − 1

ε2
q2(t) − 2q1(t)

)]
.

(29)

Observe that if both firms know the true demand function so that, ε1 = ε2 = 1,
then (29) reduces to the Cournot best reply dynamics given by

T :

{
q1(t + 1) = µ1q2(t)(1 − q2(t)),

q2(t + 1) = µ2q1(t)(1 − q1(t)).
(30)

This useful benchmark case has already been studied by Kopel (1996) and Bischi
et al. (2000).

3.1. Multiple steady states induced by demand misspecification

The fixed points of the map (29) are the real solutions of the algebraic system
T̃ (q1, q2) = (q1, q2), which reduces to

µ1(ε1 − 1)2q2
1 + 2µ1ε1(ε1 − 1)q1q2 + µ1ε

2
1q

2
2

+ ε1(1 − µ1(ε1 − 1))q1 − µ1ε
2
1q2 = 0,

and

µ2(ε2 − 1)2q2
2 + 2µ2ε2(ε2 − 1)q1q2 + µ2ε

2
2q

2
1

+ ε2(1 − µ2(ε2 − 1))q2 − µ2ε
2
2q1 = 0. (31)

These equations represent two parabolas in the (q1, q2)-plane, denoted by P1

and P2, whose symmetry lines are given by the equations

q2 =
1 − ε1

ε1
q1 − 1

2
(ε1 − 1)(1 − µ1(ε1 − 1)) − µ1ε

2
1

µ1((ε1 − 1)2 + ε2
1)

,

and

q1 =
1 − ε2

ε2
q2 − 1

2
(ε2 − 1)(1 − µ2(ε2 − 1)) − µ2ε

2
2

µ2((ε2 − 1)2 + ε2
2)

,

respectively. Both parabolas pass through the origin (0, 0), the parabola P1 also
intersects the vertical axis in the point (0, 1) and the parabola P2 intersects the
horizontal axis in the point (1, 0). So, besides the trivial fixed point E0 = (0, 0),
we may have one or three positive steady states, located at the intersections of the
two parabolas and obtained as the real solutions of a cubic equation.

If ε1 = 1, then the parabola P1 assumes the simpler expression q1 = µ1q2(1−q2),
has horizontal symmetry axis q2 = 1/2, and coincides with the reaction curve R1.
Analogously, if ε2 = 1, then the parabola P2 assumes the simpler expression
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q2 = µ2q1(1 − q1), has the vertical symmetry axis q1 = 1/2, and coincides with the
reaction curve R2 (Fig. 1(a)). The intersection point (denoted as NE in Fig. 1(a))
represents the Nash equilibrium of the game. As the parameters µ1 and/or µ2 are
increased in the “true” game, two further positive (Nash-)equilibria may appear,
which can be easily obtained as the solutions of a cubic equation. Accordingly, an
equilibrium selection problem arises in the original game and the basins of these
equilibria can be used to study the global properties (see Bischi and Kopel, 2001).
On the other hand, if εi �= 1 then the parabolas P1 and P2 no longer coincide with
the reaction curves R1 and R2 and intersection points no longer correspond to Nash
equilibria of the “true” game, but to equilibria of the “perceived” game. Setting
εi �= 1 has the effect of changing the slope of the symmetry axis of the correspond-
ing parabola Pi, which also become more (less) peaked as εi increases (decreases).
This may cause a higher or lower number of fixed points than Nash equilibria of the
true game. Furthermore, some of these fixed points might be located “far away”
from the Nash equilibrium in the strategy space. The qualitative representation in
Fig. 1 captures the basic mechanism for the emergence of several perceived equilibria
when one or both error parameters εi are varied. If ε1 = ε2 = 1 there is a unique
positive Nash equilibrium given by the intersection point of the reaction curves.
Figure 1(b) illustrates the possible change in the number and location of equilibria
in the perceived game (ε1 �= 1, ε2 �= 1). In the situation depicted here there exist 3
intersections of the two parabolas P1 and P2 in the interior of the unit square and,
accordingly, 3 potential long run outcomes of the game (depending on the stability
properties). If, for example, it turns out that ES and E1 are locally asymptotically
stable (cf. Fig. 6(b)), then adjustment and “learning” might guide the players to
the equilibrium ES and, therefore, close to the Nash equilibrium of the true game.
However, players might in the long run also end up in a situation represented by E1

and, hence, far away from the Nash equilibrium of the original game.e In order to
make this informal statement more precise, we will compare the welfare properties
of the (unique and locally stable) Nash equilibrium and the locally stable perceived
equilibria in what follows. The expressions for the profits Πi(q1, q2) of the players are
given at the beginning of this section. The consumer surplus in the case of a linear
inverse demand curve can be calculated by the expression CS(q1, q2) = b(q1 + q2)2.
The welfare in a corresponding pair of quantities is then given by the sum of these
expressions W (q1, q2) = Π1(q1, q2)+ Π2(q1, q2)+ CS(q1, q2). Note that the demand
parameter b appears in all three expressions as a scaling factor. In the subsequent
comparison we will neglect it as we are only interested in the ranking of equilibria.

A rigorous analysis of the properties of the difference equation system (25) —
even with quadratic reaction functions — is a challenging task. Therefore, we start
(in Sec. 3.2) with the case of identical players, µ1 = µ2 and ε1 = ε2, i.e., players

eAlthough we only illustrate this phenomenon for the case of quadratic reaction functions, we may
speculate that such situations are quite common when duopoly games with unimodal reaction
functions and misspecified demand functions of the form D̃i(p) = εiD(p) are considered.
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Fig. 1. Occurrence of multiple steady states due to misspecified demand (a) Reaction functions
and the unique Nash equilibrium NE (b) Subjective reaction functions, and multiple steady states,
obtained by increasing εi.
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are homogeneous with respect to their reaction functions and their accuracy of the
subjective beliefs. Subsequently, on the basis of the analytic results obtained for
the symmetric model, we move to the case of heterogeneous players (in Sec. 3.3).
The heterogeneity may arise either with respect to their reaction functions, i.e.,
µ1 �= µ2, or their demand misspecification, i.e., ε1 �= ε2. On the basis of numerical
simulations we will investigate local and global bifurcations that determine the
number and the kind of possible long run outcomes as well as the structure of their
basins of attraction. A welfare comparison will complement this analysis.

3.2. The case of homogeneous players

In this section we consider the case of homogeneous players, characterized by iden-
tical parameters

µ1 = µ2 = µ; ε1 = ε2 = ε. (32)

In Subsec. 3.2.1 we analyze the map that occurs in this case and the steady states
to which it can give rise. In Subsec. 3.2.2 we carry out a stability analysis, referring
to results for the standard logistic map.

3.2.1. The map and its steady states

Under the assumption (32) the map (29) assumes the symmetric form

T̃s:




q1(t + 1) = µ

[
εq2(t)(1 − q2(t)) + (ε − 1)q1(t)

(
1 − ε − 1

ε
q1(t) − 2q2(t)

)]
,

q2(t + 1) = µ

[
εq1(t)(1 − q1(t)) + (ε − 1)q2(t)

(
1 − ε − 1

ε
q2(t) − 2q1(t)

)]
,

(33)

where ‘symmetry’ refers to the fact that the map remains the same if the variables
q1 and q2 are swapped. More formally, T̃s ◦ S = S ◦ T̃s, where S: (q1, q2) → (q2, q1)
is the reflection through the diagonal ∆ = {(q, q), q ∈ R}. This symmetry property
implies that the diagonal ∆ is a trapping subspace for the map T̃s, i.e., T̃s(∆) ⊆ ∆.
In other words, in a deterministic framework, identical players who choose the same
initial quantities q1(0) = q2(0), behave identically over time, i.e., q1(t) = q2(t) for
each t ≥ 0. These trajectories along ∆ are governed by a one-dimensional map
which is obtained by restricting T̃s to ∆, T̃s|∆: ∆ → ∆, where the map T̃s|∆ results
from setting q1 = q2 = q in Eq. (33) and is thus given by

q(t + 1) = µ(2ε − 1)q(t) − µ

ε
(2ε − 1)2q(t)2. (34)

This map may be interpreted as a one-dimensional model of a “representative
firm”.f It is conjugate to the standard logistic map z(t + 1) = az(t)(1− z(t)), with

a = µ(2ε − 1), (35)

fThis point of view is proposed in Bischi et al. (1999) and Kopel et al. (2000).
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by the linear transformation q = ε
2ε−1z. Using well-known dynamic properties of

the logistic map we will study the properties of the two-dimensional map T̃s.
Under assumption (32) the computation of the fixed points, i.e., real and positive

solutions of (34), becomes straightforward. In fact, apart from the trivial solution
E0 = (0, 0), there is another solution given by

ES = (qS , qS) ∈ ∆, qS =
ε

2ε − 1

(
1 − 1

µ(2ε − 1)

)
, (36)

which represents a positive (symmetric) steady state provided that (2ε − 1)µ > 1.
Two further solutions exist if Ψ(µ, ε) = (2ε − 1)(µ + 1)(µ(2ε − 1) − (2ε + 1)) ≥ 0.
They are located in symmetric positions with respect to the diagonal ∆ and are
given by

E1 = (q̄1, q̄2) and E2 = (q̄2, q̄1), (37)

with

q̄1 = ε
µ + 1 +

√
Ψ

2µ(2ε − 1)
and q̄2 = ε

µ + 1 −√
Ψ

2µ(2ε − 1)
. (38)

We will restrict our analysis to situations where ε > 0.5 holds, since 0 < ε < 0.5
would represent an unreasonably strong underestimation of the demand. Hence,
the condition for the existence of the two further steady states E1 and E2 can be
written as

µ ≥ µP ≡ 2ε + 1
2ε − 1

, (39)

or equivalently

ε ≥ εP ≡ µ + 1
2(µ − 1)

, (40)

where µP (or εP ) plays the role of a critical bifurcation value. Accordingly, we can
state that, for a given µ > 1, two steady states (close to ES in the homogeneous case
that we are considering here) can be created, as the “misspecification” parameter ε

is increased across the bifurcation value εP .

3.2.2. Stability analysis

In this subsection we study the stability properties (in the µ − ε parameter space)
of the fixed points ES , E1 and E2 of the map T̃s. Recall that the map (34) is
topologically conjugate to the standard logistic map z(t + 1) = az(t)(1 − z(t)),
where we know that the fixed point becomes unstable at a = 3 and a stable two-
cycle emerges. For higher values of a stable cycles of even higher period can be
observed. Therefore, from (34) together with (35), we can deduce that increasing
the parameters ε and/or µ may lead to the creation of periodic cycles along the
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diagonal ∆. In fact, the period doubling bifurcation of ES , at which a cycle of
period 2 is created along ∆, occurs at

µ = µF ≡ 3
2ε − 1

or equivalently, ε = εF ≡ µ + 3
2µ

. (41)

The analysis of the eigenvalues of the Jacobian matrix of the symmetric two-
dimensional map T̃s, outlined in Appendix A, allows us to give a complete descrip-
tion of the stability regions of the equilibria in the parameter space, i.e., we can
obtain the analytic expressions of the curves that constitute the boundaries of such
regions. The results of our stability analysis are summarized in Fig. 2, where the
stability domain of ES in the space of the parameters ε and µ is represented by the
shaded region in Fig. 2(a), and the stability domain of the steady states E1 and E2

is represented by the shaded region in Fig. 2(b). Notice first that if players would
know the true demand function (ε = 1), then for 1 < µ < 3 there is a unique,
globally stable Nash equilibrium of the game, namely NE = (1 − 1/µ, 1 − 1/µ)
which in this case coincides with ES . On the other hand, if players overestimate
the demand (εF < ε < εP ), then cyclic (see also Léonard and Nishimura 1999) or
even more complex behavior along the diagonal would be observed.g Notice that if
1 < µ < 3, then εF < εP , so the two steady states Ei, i = 1, 2, are unstable (saddle
points) when they are created at ε = εP . The two curves ε = εH and ε = εFEi ,
represented in Fig. 2(b) together with the curve ε = εP , bound a region in the µ− ε

parameter space where the steady states E1 and E2 are locally stable (these curves
follow from the stability conditions given in the Appendix A) and coexist with the
more complex attractor along the diagonal. So, summarizing the results of our sta-
bility analysis, we can say the following: there are situations where a unique and
globally stable Nash equilibrium exists in the true game. However, agents playing
a perceived game in which they overestimate the true demand, either adjust their
actions towards E1 or E2 or keep on changing actions and beliefs from period to
period.

Which of the long run outcomes will be observed obviously depends on the ini-
tial choices. In Fig. 3 we show the basins of attraction of the two stable equilibria
E1 and E2 of the perceived game, and a coexisting two-cycle, obtained for µ = 2.9
and ε = 1.08 (the two steady states are locally stable for an overestimation of
demand between 3.6% and 18.6%). We stress that for µ = 2.9 and ε = 1, i.e., in
the case of players who know the true demand function, a unique (Nash) equilib-
rium exists (it is represented by a small cross in Fig. 3) which is globally stable,

gIf ε1 = ε2, then the stable cycle belongs to the invariant diagonal ∆. The long-run dynamics
along ∆ are characterized by the period-doubling route to chaos as ε1 and ε2 are increased. For
example, with µ1 = µ2 = 2.9 and ε1 = ε2 = 1.1, the stable cycle C2 is replaced by a stable cycle of
period 4, and a further increase leads to a chaotic attractor along ∆. If players are heterogeneous
with slightly different values of εi, the chaotic attractor persists even if it is no longer trapped
inside the diagonal; it becomes a two-dimensional chaotic area.
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Fig. 2. Stability regions, in the parameter space (ε, µ), in the symmetric case of homogeneous
players. (a) The stability region of the steady state ES . (b) The stability region of the steady
states E1 and E2.

i.e., every initial condition taken in the interior of the strategy space converges to
it. So, the steady states E1 and E2 have been created as a consequence of demand
overestimation. Moreover, it can be noticed that the steady state ES , close to the
Nash equilibrium NE, is unstable.
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µ1 = µ2 = 2.9    ε1 =  ε2 = 1.08

q1

q2

0
0

1

1

ES

E1

E2

NE

c1

c2

Fig. 3. Multiple steady states and their basins of attraction in the case of homogeneous play-
ers E1 and E2 are stable steady states, with basins represented by light and dark grey regions
respectively. The initial conditions taken in the white regions generate paths that tend to a stable
cycle of period 2 (the periodic points are denoted by c1 and c2), the initial conditions in the
black region generate unfeasible trajectories. Profits and welfare in NE are Π1 = Π2 = 0.429,
W = 1.717; Profits and welfare in E1 are Π1 = 0.519, Π2 = 0.247, W = 1.549; Profits and welfare
in E2 are Π1 = 0.247, Π2 = 0.519, W = 1.549.

The profits of the two firms in the steady state E1 = (0.78, 0.472) are Π1 = 0.519
and Π2 = 0.247. Hence, firm 1 has a higher market share and earns a higher
profit. The consumer surplus is CS = 0.784 and welfare is W = 1.549. In the
symmetric Nash equilibrium NE = (0.655, 0.655) the profits are Π1 = Π2 = 0.429,
consumer surplus is CS = 0.858 and welfare is, therefore, W = 1.717. Obviously,
welfare and industry output is higher in the full-information Nash equilibrium.
However, note that the profit of firm 1 is higher than the profit it would earn in
the Nash equilibrium and this firm, although unwittingly, has an advantage from
not having perfect information about the true demand. The situation in E2 is the
same, although with the roles of firms 1 and 2 interchanged.

3.3. Heterogeneous players: numerical investigation of global

dynamics and bifurcations

In this section the assumption of homogeneous players will be relaxed. We consider
situations where the players differ with respect to their reaction functions (µ1 �= µ2)
and/or the scale of demand misspecification (ε1 �= ε2). In the presence of such
heterogeneities the symmetry properties of the map (29), which allowed us to obtain
in Sec. 3.2 some analytical results on the existence, stability and local bifurcations
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of steady states, no longer hold. In the more general heterogeneous case even an
analytic computation of the fixed points is not an easy task. However, it turns out
that many of the results described in Sec. 3.2 continue to hold (mutatis mutandis) in
the presence of heterogeneities, in particular, that situations of multistability arise
as a consequence of variations of the “accuracy parameters” εi. So, in this subsection
we employ a numerical approach that is guided by the previous results and some
global geometric properties of the map (29). When several coexisting attractors
are present, the boundaries that separate their basins of attraction will be studied
numerically to gain some insights into their complex topological structure.

3.3.1. Heterogeneity and differences in outcome

As a starting point, let us consider a situation with homogeneous players, who
know the true demand function: µ1 = µ2 = 2.9 and ε1 = ε2 = 1. The unique Nash-
equilibrium, NE = (1 − 1/µ, 1 − 1/µ) 
 (0.655, 0.655), is globally asymptotically
stable, i.e., any initial condition chosen in the strategy space S = {[0, 1] × [0, 1]}
generates a trajectory that converges to NE.h

We will first consider the dynamics if the symmetry is broken by a slight mis-
specification of the demand only by player 2 and compare it with the case of homo-
geneous players. We will continue to denote the fixed points of (29) as ES , E1

and E2, although the reader should be aware that their actual coordinates now
differ from those given in (36) and (38). Of course, as before the fixed points do
not coincide with NE. For ε2 = 1.05 we observe that ES loses its stability via a
flip bifurcation (at which it becomes a saddle point), and a stable cycle of period 2
is the unique attractor. If the parameter ε2 is further increased, a pitchfork bifur-
cation of ES occurs at ε2 
 1.052, at which two saddle fixed points are created.
At this stage the stable cycle of period 2 is still the unique attractor. However,
if ε2 is increased further, the steady state E2 (which is characterized by a higher
quantity for player 2) becomes stable via a subcritical flip bifurcation. For instance,
if ε2 = 1.08 (player 2 overestimates demand by 8%), and ε1 = 1 (player 1 knows the
true demand function), then for a set of initial quantities player 2, although unwit-
tingly, achieves market dominance. This situation is depicted in Fig. 4(a), where the
light grey regions represent the basin of attraction of the steady state E2, denoted
B(E2). The white region represents the basin of attraction of the stable cycle of
period 2, denoted B(C2), where the 2-cycle C2 
 ((0.502, 0.542), (0.720, 0.777)) is
represented by two black dots in the figure. The strategy space S is no longer trap-
ping. There exists a small region inside S, the black region in Fig. 4, whose points
generate diverging and negative trajectories. As these trajectories leave the strategy
space, we will say that these points belong to the basin of infinity, B(∞). In the

hIndeed, if µi ∈ [0, 4], i = 1, 2, and εi = 1, i = 1, 2, then the region S is trapping, i.e., any trajectory
starting inside S is entirely included inside S, as T̃ (q1, q2) = (µ1q2(1 − q2), µ2q1(1 − q1)) ∈
[µ1/4, µ2/4] ⊆ S for each (q1, q2) ∈ S.
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Fig. 4. Multiple steady states and their basins of attraction — heterogeneous players. Profits and
welfare in NE: Π1 = Π2 = 0.429, W = 1.717. Panel (a): Profits and welfare in E2: Π1 = 0.278,
Π2 = 0.521, W = 1.629. Panel (b): Profits and welfare in E1: Π1 = 0.493, Π2 = 0.368, W = 1.694.
Profits and welfare in E2: Π1 = 0.237, Π2 = 0.521, W = 1.568.

figures NE denotes the Nash equilibrium of the “true” game. A comparison with
the case of homogeneous players (where both players overestimate the true demand
by the same factor) surprisingly shows that the asymmetry in the accuracies of the
knowledge of players actually hurts the player who knows the true demand function.
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The profits of the firms in E2 are Π1 = 0.278 and Π2 = 0.521 respectively. Recall-
ing that in the Nash equilibrium NE the profits are Π1 = Π2 = 0.429, obviously
player 2 not only gets a higher market share but also earns a higher profit than
player 1. On the other hand, as in the homogeneous case overall welfare in E2 is
W = 1.629 and hence lower than in the full information Nash equilibrium.

3.3.2. Topological structure of basins of attraction

The topological structure of the basins is also sensitive to the parameters εi and µi

and needs to be studied if the dynamics of the map are to be fully understood. In
particular consider the structure of B(E2) in Fig. 4(a), obtained with parameters
µ1 = µ2 = 2.9, ε1 = 1 and ε2 = 1.08, which consists of several nonconnected
portions nested inside B(C), the basin of the two-cycle C = (c1, c2). This kind of
basin structure is specific to noninvertible maps, which are transformations mapping
distinct points into the same point (see the Appendix B for more details, see also
Mira et al., 1996a, Abraham et al., 1997).i

If ε2 is further increased, the basin structure becomes even more complex. The
steady state E1 also becomes stable (via the subcritical flip bifurcation), and the
situation illustrated in Fig. 4(b) for ε2 = 1.1 is obtained. The dark-grey region repre-
sents the basin B(E1) of the equilibrium E1, where firm 1 has a higher market share.
Now, similar to the homogeneous case we observe three coexisting attractors: the
two locally stable equilibria E1 and E2, each with its own non connected basin, and
a stable cycle of period two. Such a situation of a quite complex topological struc-
ture of the basins is typical if multistability (i.e., coexistence of several attractors)
occurs. Notice the difference in the three long run patterns caused by the demand
misspecification of only one player. In E2 player 2 has a higher market share and
the profits are Π1 = 0.237 and Π2 = 0.521. The welfare in E2 is W = 1.568 and
again smaller than in the Nash equilibrium. In E1 player 1’s market share is larger,
and Π1 = 0.493 and Π2 = 0.368. Although welfare is again smaller than in the Nash
equilibrium, W = 1.694, the sum of the profits of the two players is larger than
in NE. For a large set of initial quantities (the white region in Fig. 4(b)) the long
run pattern is periodic and the two players behave in a quasi-synchronized way, as
the periodic points are close to ∆. It is also worth pointing out that the equilibrium

iThe basic mechanism leading to the creation of non-connected basins, like B(E2) in Fig. 3(a), is
a consequence of the fact that the iterated map T̃ is a noninvertible map (see the Appendix B for
definitions and properties concerning noninvertible maps). Let A be an attractor for the iterated
map T̃ . This means that a neighborhood U(A) exists whose points converge to A. Of course U(A) ⊆
B(A), but also the points of the phase space which are mapped inside U after a finite number
of iterations belong to B(A), so that the total basin of A is given by B(A) =

S∞
n=0 T̃−n(U(A)),

where T̃−n(x) represent the set of the rank-n preimages of x (i.e., the points mapped into x after
n repeated applications of T̃ ). If T̃ is a noninvertible map, then the total basin may be non-
connected because if U(A) (or its preimages) belongs to regions whose points have several distinct
preimages, the action of the distinct inverses, may give preimages of U(A) which are disjoint from
U(A). Due to the unfolding process of the Riemann foliation (see the Appendix B) under the
action of the several distinct inverses, those preimages might be far away from U(A).
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Fig. 5. The stabilizing effect of opposite misspecification of demand.

E1 in Fig. 4(b), which just attains stability, is not robust in the following sense: it is
very close to the boundary of its basin and not robust to exogenous perturbations.
Even if the total basin B(E1) has a considerable extension inside S, the trajectories
starting (or passing) at points located in a small neighborhood of E1 may escape
the basin e.g., as a consequence of a very small exogenous noise (thus causing an
irreversible departure from E1).

It is of interest to consider how the long run behavior is affected if one player
overestimates the demand, whereas the other player underestimates it. As an exam-
ple consider Fig. 5, where as before µ1 = µ2 = 2.9, but ε1 = 0.9 and ε2 = 1.1. In
this situation only one steady state, namely ES , exists and all feasible (i.e., non
diverging) trajectories converge to it. These observations seem to suggest that some
stabilizing effect occurs if the players’ misspecification of demand is in opposite
directions (this insight is also confirmed by other numerical simulations). Further-
more, ES is close to the Nash equilibrium, the industry output is basically the same
(q = 1.31) and welfare is almost as high (W = 1.691).

3.4. Non-identical reaction functions

Up to now, we have restricted our analysis to players with identical reaction func-
tions (µ1 = µ2). We now briefly describe some numerical results obtained when the
interfirm externality is asymmetric, which might be interpreted as a difference in
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Fig. 6. The effect of non-identical reaction functions profits and welfare in NE: Π1 = 0.338,
Π2 = 0.498, W = 1.665. Panel (a): Profits and welfare in ES : Π1 = 0.318, Π2 = 0.518, W = 1.632.
Panel (b): Profits and welfare in E1: Π1 = 0.465, Π2 = 0.2, W = 1.455. Profits and welfare in
ES : Π1 = 0.312, Π2 = 0.524, W = 1.612.

firms’ abilities to gain an advantage from actions from the other firm. Firms’ reac-
tion functions have now slightly different heights as the values of the parameters µi

differ slightly. As in the previous sequence of numerical simulations, we start from
the benchmark case (26), i.e., ε1 = ε2 = 1, with a set of parameters at which NE is
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the unique, globally stable (Nash) equilibrium. This is obtained, for example, with
µ1 = 2.8, µ2 = 2.9. If we now increase ε1, first a stable cycle of period 2 appears
due to a saddle-node bifurcation, and dynamic situations similar to the one shown
in Fig. 6(a), obtained with ε1 = 1.12 and ε2 = 1, are observed. In this case the
strategy space is constituted by the basins of the two coexisting attractors: the
equilibrium ES and a two-cycle C = (c1, c2) (as well as a small portion of B(∞)).
Also in this case, as ε1 is further increased, two new steady states are created, say
again E1 and E2. The difference with respect to the situations considered before
is that these new equilibria are created via a saddle-node bifurcation (through a
mechanism similar to the one shown in Fig. 1). As a result these new steady states
appear far away from ES , and one is stable (a stable node) and one is unstable.
Since these new steady states are located quite far away from the Nash equilib-
rium, a welfare comparison is even more important. For example, the situation for
ε1 = 1.18 is represented in Fig. 6(b). Two stable steady states coexist, ES and E1,
where the latter is a stable node. Furthermore, a stable cycle C2 coexists.j However,
despite this difference in the kind of bifurcation which creates the fixed points, the
global dynamic scenario obtained is quite similar to the one shown in the case of
equal reaction functions, see e.g., Fig. 4(b). The Nash equilibrium NE is located in
the basin and near to ES , industry output and welfare in the perceived equilibrium
ES is again smaller.k If play converges to E1, then firm 1 has a higher market share
and profit (Π1 = 0.465) than firm 2 (Π2 = 0.2). Welfare, however, is considerably
smaller in E1, namely W = 1.455, which is mainly caused by the very low profit of
firm 2 in this situation. Again note that it is player 1 who overestimates demand
and, despite the fact that player 2 knows the true demand, achieves (although
unwittingly) not only market dominance, but gains a higher profit than in the full
information case, whereas firm 2’s profit is reduced by more than 50%.

4. A Duopoly Model with Misspecified Demand and Inertia

In the previous section we assumed that players, although they use misspecified
demand functions, always produce the quantities which maximize their expected
profits. One might argue, however, that in such a situation of uncertainty play-
ers might exhibit some lack of confidence in their computed “best replies” and
show some bias towards the status quo. In other words, their uncertainty about
the actual customer behavior leads the players to adjust their quantities only par-
tially to the best response. Recent experimental evidence by Rassenti et al. (2000)
and Huck et al. (1999) suggests that such partial adjustment to the best response
describes the behavior of real decision makers quite well. A different interpretation

jThe other fixed point E2 is an unstable node located on the boundary among the three basins
B(E1), B(ES) and B(C2).
kThe profits of the firm in the Nash equilibrium are Π1 = 0.338 and Π2 = 0.498 respectively.
The welfare is W = 1.665. Profits and welfare in ES are similar, Π1 = 0.312, Π2 = 0.524 and
W = 1.612.
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of inertia of the agents in our model is that the players are exhibiting a lower degree
of rationality than the agents using best reply dynamics.

Recalling that the best reply behavior is represented by (6), if we now assume
that players only partially adjust their quantities towards the (perceived) best
replies, we have to replace these equations with (see also Kopel, 1996, Puu, 1991,
Huang, 2001)

q1(t) = q1(t − 1) + λ1

(
R̃1(q

e,prior
2 (t)) − q1(t − 1)

)
,

q2(t) = q2(t − 1) + λ2

(
R̃2(q

e,prior
1 (t)) − q2(t − 1)

)
, (42)

or equivalently with

q1(t) = (1 − λ1)q1(t − 1) + λ1R̃1(q
e,prior
2 (t)),

q2(t) = (1 − λ2) q2(t − 1) + λ2R̃2(q
e,prior
1 (t)).

The parameters λi ∈ [0, 1], i = 1, 2, represent the speeds of adjustment and
can be seen as a measure of the inertia: players exhibit no inertia for λi = 1 and
increasing inertia for decreasing values of λi. The other Eqs. (15)–(17), of course,
remain the same, since they describe the price formation process and the expecta-
tion updating, respectively. Analogously to (18) and (19), the resulting dynamical
system can be reduced to

q1(t + 1) = (1 − λ1)q1(t) + λ1R̃1(D̃1(f(q1(t) + q2(t))) − q1(t)), (43)

q2(t + 1) = (1 − λ2)q2(t) + λ2R̃2(D̃2(f(q1(t) + q2(t))) − q2(t)). (44)

It is important to notice that the introduction of inertia does not change the fixed
points: setting qi(t + 1) = qi(t) in Eqs. (43) and (44) gives the same conditions as
in the previous section. Consequently, the profits and welfare properties of the long
run outcomes are unchanged by the inertia of players.

If we again consider the special case (20), i.e., player 2 knows the true demand
function and player 1’s misspecified demand function is D̃1(p) = εD(p), we have

q2(t + 1) = (1 − λ2)q2(t) + λ2R2(q1(t)).

Furthermore, using the same arguments as before, we get

q1(t + 1) = (1 − λ1)q1(t) + λ1εR1

[
ε − 1

ε
q1(t) + q2(t)

]
.

Of course, if both players have misspecified demand functions, then a similar equa-
tion is derived for player 2.



September 27, 2004 23:32 WSPC/151-IGTR 00025

The Long Run Outcomes and Global Dynamics of a Duopoly Game 367

4.1. Global dynamics and the influence of inertia

If we again, as in Sec. 3, use a linear inverse demand curve and cost functions with
interfirm externalities, the best replies are quadratic. Hence, the dynamics in this
case are governed by the map

T̃λ:




q1(t + 1) = (1 − λ1)q1(t) + λ1µ1

[
ε1q2(t)(1 − q2(t))

+ (ε1 − 1)q1(t)
(

1 − ε1 − 1
ε1

q1(t) − 2q2(t)
) ]

,

q2(t + 1) = (1 − λ2)q2(t) + λ2µ2

[
ε2q1(t)(1 − q1(t))

+ (ε2 − 1)q2(t)
(

1 − ε2 − 1
ε2

q2(t) − 2q1(t)
) ]

.

(45)

Of course, for λi = 1, i = 1, 2 this map reduces to T̃ given in Eq. (29). In
the following analysis we investigate how the dynamics of (45) depend on the
parameters λi.

Again, in the symmetric case, i.e., µ1 = µ2 = µ, ε1 = ε2 = ε and λ1 = λ2 = λ,
we obtain a map which is symmetric with respect to the diagonal ∆. The dynamics
embedded into the invariant submanifold ∆ is governed by the one-dimensional map

q(t + 1) = [1 − λ + λµ(2ε − 1)] q − λµ

ε
(2ε − 1)2q2, (46)

which is conjugate to the standard logistic map z = az(1 − z), with

a = 1 − λ + λµ(2ε − 1) (47)

by the linear transformation

q =
ε(1 − λ + λµ(2ε − 1))

λµ(2ε − 1)2
z.

The fixed points of the map (45) do not depend on the parameters λi and, hence,
are the same as those of the map T̃ given by the solutions of the algebraic system
(31). A study of the Jacobian matrix of T̃λ (see the appendix) reveals that the
analysis of the local stability and the local bifurcations of the steady states in the
case of homogeneous players is similar to the one described in Sec. 3.2. In particular,
the condition for the pitchfork bifurcation of ES in the direction perpendicular to ∆,
at which the two equilibria E1 and E2 are created, is exactly the same, i.e., ε = εP .
On the other hand, the condition for the flip bifurcation of ES along ∆, at which a
stable cycle of period 2 is created, is influenced by the parameter λ, and occurs at

ε = εF,λ ≡ 2 + λ(µ + 1)
2λµ

. (48)

This can also be easily deduced from the restriction T̃λ|∆ given in Eq. (46),
whose first flip bifurcation occurs for a = 3, with a given in Eq. (47). The difference
between the two values of ε in Eqs. (48) and (41) is given by εF,λ−εF = (1−λ)/λµ.
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From this expression it is easy to see that for a given value of µ the creation of stable
cycles along ∆ occurs for increasing values of the “misspecification” parameter ε if
λ is decreasing in (0, 1). This can be interpreted by saying that in the homogeneous
case increasing inertia has some kind of dampening effect since it inhibits the occur-
rence of endogenous oscillations (periodic or chaotic) which would occur for higher
values of ε. This feature is also observed in the numerical explorations performed
in the case of heterogeneous players. However, these numerical results also reveal
that the other route to complexity, which is related to the complex structure of the
basins of attraction of coexisting stable steady states, may be still observed.

In order to see this, we take the sets of parameters µi and εi used in the previous
section and focus on the role of the inertia parameters λi. This enables us to directly
compare the dynamics of the two cases. We start our numerical explorations with
µ1 = µ2 = µ = 2.9, ε1 = 1, ε2 = 1.08 and λ1 = 0.7, λ2 = 0.6, which means
that player 1 has a lower degree of inertia than player 2 and knows the demand
curve, whereas player 2 overestimates the demand by 8%. Figure 7(a) depicts this
situation. There are three positive steady states. The steady state E1 with basin
B(E1) (which is represented by the dark-grey region), the steady state E2 with basin
B(E2) (represented by the light-grey region), and ES , which is a saddle point. The
stable set of ES constitutes the boundary which separates the two basins. This
contrasts with the model without inertia (compare with Fig. 4(a)) as no stable
cycles exist, but the perceived equilibrium E1 is stable. The only kind of long-run
dynamics is given by one of the equilibrial E1 and E2, where E1 has a very large
basin. The fact that players show inertial behavior now benefits player 1, and for
most initial choices player 1, who has perfect knowledge of the demand function,
benefits in the long run. In the equilibrium E1 player 1 has a higher market share
and earns a higher profit than player 2 (Π1 = 0.477, Π2 = 0.384), whereas in the
case without inertia only the equilibrium E2 is stable, where firm 2 dominates the
market. If the degree of inertia of player 2 is decreased, the basin B(E2) enlarges. So,
obviously, the difference between the degrees of inertia between the players matter
for the long run outcome of the game.

As a final observation we want to point out that the basin B(E2) may even
undergo some global (or contact) bifurcations which cause qualitative changes in its
topological structure. For example, by increasing λ2 from 0.6 to 0.65 (see Fig. 7(b))
we observe an important change in the structure of B(E2): it is transformed from
a simply connected set into a non connected set, where the latter is formed by
several disjoint portions nested inside B(E1). This is a typical contact bifurcation
described in textbooks on noninvertible maps (see e.g., Mira et al., 1996a, Abraham
et al., 1997). Here we just give a general qualitative description of the mechanism
that leads at the formation of non-connected portions of a basin of attraction, see
Appendix B for more details. Such bifurcation is due to a contact between the
boundary which separates the basins, that is, the stable set W s(ES) of the saddle

lNote also that the strategy space is trapping.
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Fig. 7. The effect of inertia Profits and welfare in NE: Π1 = Π2 = 0.429, W = 1.717; Profits and
welfare in E1: Π1 = 0.477, Π2 = 0.384, W = 1.705.

point ES and the critical curve LC(b) which separates two regions, denoted by Z2

and Z4 in Fig. 7, whose points have two and four preimages respectively.
In fact, a map T is noninvertible if there exist distinct points that have the

same image. This means that several rank-1 preimages of a given point may exist
and, accordingly, the space can be subdivided into regions Zk, k ≥ 0, whose points
have k distinct rank-1 preimages. These regions are separated by critical curves
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Fig. 8. Players have the same degree of inertia. Firm 1 has a correct knowledge of the demand
function, whereas firm 2 overestimated the demand. (a) Two stable subjective equilibria E1 and
E2 exist. (b) By decreasing the demand overestimation of firm 2, the unique attractor is the
subjective equilibrium ES, close to the Nash equilibrium NE.

(see the Appendix B). This helps us to understand the basic mechanism for the
creation of non-connected basins. We recall that the basin of an attractor A is
the set of all the points that generate trajectories converging to A. So, if U is a
neighborhood of A whose points converge to A (which exists by definition of an
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attractor) then U ⊆ B(A), and also the points which are mapped inside U after a
finite number of iterations belong to B(A), thus the basin of A is formed by all the
preimages of the points of U , i.e., B(A) =

⋃∞
j=0 T−j(U), where T−1(x) represents

the set of the rank-1 preimages of x (i.e., the points mapped into x by T ), and
T−j(x) represents the set of the rank-j preimages of x (i.e., the points mapped
into x after j applications of T ). If we assume that B(A) is a connected basin for
a given set of parameters, and as a parameter is changed B(A) has a contact with
a critical curve after which a portion of B(A) enters a region with more preimages,
then new portions of B(A) will be created after the contact, thus giving a sudden
enlargement of the basin due to the creation of new non-connected portions (also
called islands in Mira et al., 1996).

Finally, let us consider what happens if the degrees of inertia of the players are
equal, i.e., λ1 = λ2. In this case the two basins approximately occupy an equal
portion of the strategy space (see Fig. 8(a), where λ1 = λ2 = 0.7). Moreover, the
two basins have a quite complicated structure. Much simpler dynamics are obtained
if the overestimation of demand by player 2 is less strong. For example, in Fig. 8(b),
where ε2 = 1.05, only one steady state exists (close to the Nash equilibrium NE),
which is globally asymptotically stable in the strategy space S. Recall that for the
same sets of parameters µi and εi, i = 1, 2, in the case without inertia, i.e., λi = 1
(i = 1, 2), a stable cycle of period 2 as unique attractor occurs, as described in
Sec. 3.3.

5. Conclusion

In this paper we have analyzed a quantity-setting duopoly game where firms do
not know the true demand relationship, but use some conjecture of it instead. Two
versions of firm behavior in this duopoly game have been considered here. In the
first version, players choose their quantities such that their (perceived) profits are
maximized. In the second version it is assumed that players exhibit some kind of bias
towards their current production choice and only partially adjust to the (perceived)
best reply. Both scenarios have been compared to the situation where players know
the demand function. For the sake of illustration, we used a linear inverse demand
curve and quadratic reactions functions that can be obtained by choosing nonlinear
cost functions including an interfirm externality. This choice enabled us to give a
variety of results based on a combination of analytical and numerical arguments.

It turns out that although in the game which represents the true situation a
unique, globally stable Nash equilibrium exists, if players use a misspecified demand
function and/or exhibit inertia, the long run outcome of the game may be quite
different. Multiple equilibria may occur in the perceived game and coexist with
other long run outcomes (cycles and even chaotic attractors). The performance
properties (profits and welfare) in these equilibria may be quite different than in the
Nash equilibrium. Furthermore, these equilibria may have quite complex basins of
attraction. We have also briefly described the mechanism which is responsible for the
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creation of the complicated structure of the basins of attraction, by referring to
the role of noninvertibility of the two-dimensional map generating the dynamics of
the game. For economists, the significance of observing such a complicated structure
of the basins of the equilibria stems from the fact that the outcome of the game
strongly depends on the initial conditions. The same game starting from nearby
initial conditions may end up at different perceived equilibria with quite different
welfare properties and often far away from the Nash equilibrium of the true game.

It is important to stress that when the economy ends up in one of the equilibria,
the agents have no reason to seek to change their behavior, because the economic
outcome they observe is perfectly consistent with their beliefs. In fact, they have
no way of becoming aware of the overall welfare loss that is occurring, and indeed
usually one player undergoes a welfare gain compared to the full information Nash
equilibrium. The welfare loss/gain results from the fact that each player is putting
onto the market a quantity different from what they would offer in the full infor-
mation case. This in turn leads to a different price than would prevail in the full
information case. The welfare loss/gain is related to the value (at the market clear-
ing price) of the quantity differences just referred to. It seems more likely that agents
might seek to change behavior when the game converges to the cyclical outcomes
that can sometimes occur (see e.g., Fig. 4). These outcomes should perhaps be seen
as taking the model beyond its usable range, since here agents would surely seek to
actively learn about the demand function. This is an obvious and important exten-
sion of the model developed here, but one that takes us beyond the aims and the
scope of this paper, so it is left for future research. Attempts to incorporate learning
into models with misspecified demand include Schinkel et al. (2002), Szidarovszky
and Krawczyk (2003) and Wenzelburger (2003).

Finally we make the point that although we have provided a specific example
with a linear demand function and quadratic reaction function, we may conjecture
that the phenomena observed here would occur more generally in models with down-
ward sloping demand functions and unimodal reaction functions as those are the
ingredients that give rise to the multiple steady states and the noninvertible map.
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Appendix A. Local Stability Analysis in the Case of Homogeneous
Players

In this appendix we describe the eigenvalues analysis that leads us to the charac-
terization, shown in Fig. 2, of the stability domains, in the parameter space µ − ε,
of the steady states ES , E1 and E2, given in (36) and (37), of the map T̃s defined in
(33). This analysis is based on the study of the eigenvalues of the Jacobian matrix
of the two-dimensional map T̃s, given by

DT̃s(q1, q2) =

[
µ(ε − 1)

(
1 − 2 ε−1

ε q1 − 2q2

)
µ(ε(1 − 2q2) − 2(ε − 1)q1)

µ(ε(1 − 2q1) − 2(ε − 1)q2) µ(ε − 1)
(
1 − 2 ε−1

ε q2 − 2q1

)
]

,

(A.1)

computed at the fixed points.
Let us note, first, that at any point (q, q) ∈ ∆, the Jacobian DT̃s has the

structure

DT (q, q) =
[

A B

B A

]
(A.2)

with A = µ(ε − 1)
(
1 − 2 2ε−1

ε q
)

and B = µ(ε − 2(2ε − 1)q). Such a matrix has real
eigenvalues, given by

z‖(q) = A + B with eigenvector r‖ = (1, 1) along ∆,

z⊥(q) = A − B with eigenvector r⊥ = (1,−1) perpendicular to ∆.

It is easy to see that the product of such matrices has the same structure, hence
all the fixed points and the cycles embedded in the invariant diagonal ∆ have real
eigenvalues with eigenvectors along ∆ and perpendicular to ∆, respectively. This
allows us to carry out a complete analysis of the local stability and bifurcations of
the two symmetric steady states. In fact, from z‖(0) = µ(2ε − 1) and z⊥(0) = −µ

we deduce that E0 is stable for µ < 1 and ε < (1 + µ)/2µ. So, if ES is positive
then E0 is unstable. Indeed, at ε = εT ≡ (1 + µ)/2µ we have E0 ≡ ES and if ε is
increased across εT a transcritical bifurcation occurs along ∆.

For the positive symmetric fixed point ES we have z‖(qS) = 2 − µ(2ε − 1)
and z⊥(qS) = µ − 2/(2ε − 1). So, from the sufficient conditions for stability,
−1 < z‖(qS) < 1 and −1 < z⊥(qS) < 1, we deduce that:

• 0 < µ ≤ 1: ES is stable for εT < ε < εF , and at εF a flip (or period doubling)
bifurcation occurs at which ES becomes a saddle point, with unstable set along
∆, and a stable cycle of period 2 is created along ∆.m

• 1 < µ ≤ 3: ES is stable for (µ + 3)/(2(µ + 1)) < ε < εF . For εT < ε <

(µ + 3)/(2(µ + 1)) the steady state ES is a saddle point, with stable set along
∆ and unstable set perpendicular to ∆. If ε is increased beyond εP , a pitchfork

mNote that after the occurrence of the flip bifurcation transverse stability in the direction
orthogonal to ∆ is not changed.
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bifurcation in the direction r⊥ occurs at εP > εF , and ES becomes a repelling
node (i.e., it becomes unstable also in the direction r⊥). Two new fixed points
E1 and E2 are created, which are saddle points with stable set along r⊥ and
unstable set along ∆.

• If µ = 3 then εF = εP = 1, i.e., if ε is increased across the value 1 (the case of
correct demand estimate) then the two bifurcations occur simultaneously, i.e., ES

becomes a repelling node, two fixed points are created in the direction orthogonal
to ∆ and, simultaneously, a cycle of period 2 is created along ∆.

• If µ > 3 we have εP < εF , so ES is stable for (µ + 3)/(2(µ + 1)) < ε < εP . In
this case, at ε = εP a pitchfork bifurcation occurs at which the stable node ES

becomes a saddle point with unstable set in the direction r⊥ and two stable fixed
points, E1 and E2 are created. If ε is increased beyond εP a flip bifurcation along
∆ occurs at εF > εP , ES becomes a repelling node, and a saddle-cycle of period
2 is created along ∆.

In order to obtain the boundaries of the stability domain of the steady states E1

and E2, let us consider the Jacobian matrix (A.1) computed at E1 and E2, given by

DT̃s(E1) =
[

A1 B1

B2 A2

]
and DT̃s(E2) =

[
A2 B2

B1 A1

]

respectively, where

A1 =
(ε − 1)(1 +

√
Ψ(ε, µ) − 2ε)

2ε − 1
, A2 =

(ε − 1)(1 − √
Ψ(ε, µ) − 2ε)

2ε − 1
,

B1 =
ε(1 +

√
Ψ(ε, µ) − 2ε)
2ε − 1

, B2 =
ε(1 − √

Ψ(ε, µ) − 2ε)
2ε − 1

.

It is easy to see that E1 and E2 have the same characteristic equation, because
the two matrices DT̃s(Ei), i = 1, 2, have the same trace Tr = A1 + A2 = 2(1 − ε)
and determinant det = A1A2 − B1B2 = 2ε(µ2 − 2) − µ(µ + 2). So, due to the
symmetry of the map T̃s, the two equilibria have the same stability properties and
undergo the same bifurcations.

Since 1 − Tr + det = 2ε(µ2 − 1) − (µ + 1)2 − 1) > 0 for ε > εP , i.e., whenever
E1 and E2 exist, the conditions for the eigenvalues to be inside the unit circle are
det < 1 and 1+Tr+det > 0 (see e.g., Gumowski and Mira, 1980, p. 159, or Medio
and Lines, 2001, p. 52). The condition Det < 1 becomes

ε < εH ≡ 1 + µ(µ + 2)
2(µ2 − 2)

and the condition 1 + Tr + det > 0 becomes

ε < εFEi ≡
µ2 + 2µ − 3
2(µ2 − 3)

.

These two conditions define the stability region represented in Fig. 2(b). Notice
that εFEi ≤ εH for µ ≥ (1 +

√
28)/3 and εFEi ≥ εP for µ ≥ 3. The last inequality
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confirms that the two fixed points Ei, i = 1, 2, are stable just above the curve
ε = εP (i.e., just after their creation) if µ > 3 (and consequently ε < 1).

Appendix B. Noninvertible Maps, Critical Curves
and Non-Connected Basins

In this appendix we give some basic definitions, properties and a minimal vocabu-
lary of the theory of noninvertible maps of the plane and provide the reader with
some basic facts about the method of critical curves. We also describe some prop-
erties of the critical curves of the map T̃λ defined in (45), from which also the
analogous properties of the map T̃ given in (29) can be deduced as T̃ represents a
particular case of T̃λ obtained for λ = 1.

A two-dimensional map T : (x, y) → (x′, y′) transforms a point (x, y) ∈ R
2 into

a unique point (x′, y′) ∈ R
2 according to the transformation

(x′, y′) = T (x, y) = (f(x, y), g(x, y)) (B.1)

where (x, y) ∈ R
2 and f , g are assumed to be real valued continuous functions. The

point (x′, y′) ∈ R
2 is called a rank-1 image of the point (x, y) under T , and (x, y) is

called a rank-1 preimage of (x′, y′). The point (x(t), y(t)) = T t(x, y), t ∈ N, is called
an image (or forward iterate) of rank-t of the point (x, y), where T 0 is identified with
the identity map and T t(·) = T (T t−1(·)). If distinct points, say (x1, y1) �= (x2, y2),
exist that are mapped by T into the same point, say (x′, y′) = T (x1, y1) = T (x2, y2),
then the map T is said to be a noninvertible map. This can be equivalently stated by
saying that the point (x′, y′) has several rank-1 preimages, denoted by T−1

j (x′, y′),
j = 1, . . . , k. This notation can also be expressed by saying that the inverse relation
T−1 is a multivalued function. A noninvertible map has the geometric property of
“folding” the phase space, so that distinct points are mapped into the same point.
Equivalently, the inverses are said to “unfold” the phase space.

As the point (x′, y′) varies in the plane R
2 the number of its rank-1 preimages

can change. According to the number of distinct rank-1 preimages associated with
each point of R

2, the plane can be subdivided into regions, denoted by Zk, whose
points have k distinct preimages. Generally, pairs of real preimages appear or disap-
pear as the point (x′, y′) crosses the boundary separating regions characterized by
a different number of rank-1 preimages. Accordingly, such boundaries are generally
characterized by the presence of two coincident (merging) preimages. This leads us
to the definition of critical curves, one of the distinguishing features of noninvert-
ible maps. The critical curve of rank-1, denoted by LC (from the French “Ligne
Critique”) is defined as the locus of points having two, or more, coincident rank-1
preimages. These preimages are located in a set called the critical curve of rank-0,
denoted by LC−1. The curve LC is the two-dimensional generalization of the notion
of critical value (local minimum or maximum value) of a one-dimensional map, and
LC−1 is the generalization of the notion of critical point (local extremum point).
As in the case of differentiable one-dimensional maps, where the derivative neces-
sarily vanishes at the local extremum points, for a two-dimensional continuously
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differentiable map the set LC−1 belongs to the set of points in which the Jacobian
determinant vanishes:

LC−1 ⊆ {
(x, y) ∈ R

2 | detDT = 0
}

. (B.2)

In fact, since LC−1 is defined as the locus of coincident rank-1 preimages of the
points of LC, in any neighborhood of a point of LC−1 there are at least two distinct
points mapped by T in the same point near LC. This means that the map T is
not locally invertible in the points of LC−1 and, if the map T is continuously
differentiable, it follows that detDT necessarily vanishes along LC−1. If the set
LC−1 is determined by (B.2) then LC is simply obtained as the image of LC−1,
i.e., LC = T (LC−1).

In order to give a geometrical interpretation of the “unfolding action” of the
multivalued inverse relation T−1, it is useful to consider a region Zk as the super-
position of k sheets, each associated with a different inverse. Such a representation
is known as Riemann foliation of the plane (see e.g., Mira et al., 1996a, b). Different
sheets are connected by folds joining two sheets, and the projections of such folds
on the phase plane are arcs of LC.

The map T̃λ defined in Eq. (45) is a noninvertible map. In fact, given a point
(q′1, q

′
2), its preimages are computed by solving the following system with respect

to q1 and q2:


(1 − λ1)q1 + λ1µ1

[
ε1q2(1 − q2) + (ε1 − 1)q1

(
1 − ε1 − 1

ε1
q1 − 2q2

)]
= q′1

(1 − λ2)q2 + λ2µ2

[
ε2q1(1 − q1) + (ε2 − 1)q2

(
1 − ε2 − 1

ε2
q2 − 2q1

)]
= q′2.

(B.3)

This is a fourth degree algebraic system, which may have four or two real solutions
or no real solution at all. Following the terminology of Mira et al. (1996a), we say
that the map T̃λ is a noninvertible map of Z4 − Z2 − Z0 type. Moreover, for the
map T̃λ the set LC−1 coincides with the set of points at which detDT̃λ = 0, where

DT̃ (q1, q2)

=

2
4 1 − λ1 + λ1(ε1 − 1)µ1

“
1 − 2 ε1−1

ε1
q1 − 2q2

”
λ1µ1[ε1(1 − 2q2) − 2(ε1 − 1)q1]

λ2µ2[ε2(1 − 2q1) − 2(ε2 − 1)q2] 1 − λ2 + λ2(ε2 − 1)µ2

“
1 − 2 ε2−1

ε2
q2 − 2q1

”
3
5,

(B.4)

so that the locus of points at which DT̃ (q1, q2) = 0 is a second order algebraic curve,
which represents a hyperbola. So, LC−1 is formed by the union of two disjoint
branches, say LC−1 = LC

(a)
−1 ∪ LC

(b)
−1, see Fig. 7. Also LC = T (LC−1) is the union

of two branches: LC(a) = T
(
LC

(a)
−1

)
and LC(b) = T

(
LC

(b)
−1

)
. The branch LC(a)

separates the region Z0, whose points have no preimages, from the region Z2, whose
points have two distinct rank-1 preimages. The other branch LC(b) separates the
region Z2 from Z4, whose points have four distinct preimages (see again Fig. 7).

This allows us to explain the contact bifurcation that causes the transformation
of the connected basin B(E2) shown in Fig. 7(a) into the non-connected basin B(E2)
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shown in Fig. 7(b). In fact, in Fig. 7(a), W s(S), i.e., the boundary W s(ES) which
separates the two basins, is entirely included inside the regions Z2 and Z0. However,
the fact that in Fig. 7(a) a portion of it is close to the critical curve LC(b) suggests
that if some of the parameters are changed, so that a contact between W s(S) and
LC occurs, this contact will mark a bifurcation which causes qualitative changes in
the structure of the basins. In fact, if a portion of B(E2) enters Z4 after a contact
with LC(b) has occurred, new rank-1 preimages of that portion will appear near
LC

(b)
−1, and such preimages must belong to B(E2). This is the situation shown in

Fig. 7(b) which is obtained by slightly changing the inertia parameter λ2. The
portion of B(E2) inside Z4, denoted by H0 in Fig. 7(b), has two rank-1 preimages,
denoted by H

(1)
−1 and H

(2)
−1 , which are located at opposite sides with respect to LC

(b)
−1

and merge on it
(
in fact, by definition, the rank-1 preimages of the arc of LC(b)

which bound H0 must merge along LC
(b)
−1

)
. The set H−1 = H

(1)
−1 ∪H

(2)
−1 constitutes

a non connected portion of B(E2). Moreover, since H−1 belongs to the region Z4,
it has four rank-1 preimages, denoted by H

(j)
−2 , j = 1, . . . , 4 in Fig. 7(b), which

constitute four other “islands” of B(E2). Points of these “islands” are mapped into
H0 after two iterations of the map T̃λ. Hence, at the contact between W s(S) and
LC, the basin B(E2) is transformed from a simply connected into a non connected
set: the larger connected component of B(E2), which contains E2, is called the
immediate basin B0(E2), and the whole basin is given by the union of its preimages:
B(E2) =

⋃
k≥0 T−k(B0(E2)). Notice that the exact values of the parameter at

which such contact bifurcations occur cannot be computed analytically, as we do
not have an equation for the boundary W s(ES). However, the occurrence of this
bifurcation can be detected by computer-assisted proofs, based on the knowledge
of the properties of the critical curves and their graphical representation (see e.g.,
Mira et al., 1996a, for many examples). This “modus operandi” is typical in the
study of the global bifurcations of nonlinear two-dimensional maps.

We end this Appendix by stressing that if both εi = 1, then the locus of the
vanishing Jacobian is given by the equilateral hyperbola of equation

(
q1 − 1

2

) (
q2 − 1

2

)
=

(1 − λ1)(1 − λ2)
4λ1λ2µ1µ2

,

and if λ1 = 1 or λ1 = 1 this degenerates into the union of the two lines of equation
q1 = 1/2 and q2 = 1/2. The case with ε1 = ε2 = 1 and λ1 = λ2 = 1 corresponds
to the Cournot tâtonnement studied in Bischi et al. (2000), where it is shown that
the property of having LC−1 formed by vertical and horizontal lines, together with
the properties that any map of the form (26) maps vertical lines into horizontal
lines and vice-versa, gives rise to particular global properties of the chaotic areas
and the basin boundaries, namely that the chaotic areas, as well as their basins,
are characterized by rectangular boundaries.
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