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Abstract

In this paper we consider the impact of spillovers occurring within each of two groups of firms on
the long run agglomeration patterns in a market. In each period every single firm can either produce
for this market or choose some outside option (e.g. a risky asset). Firms switch between the two
options based on information about the relative profitability of the market and the outside option. In
the market, due to spillovers, the production costs are influenced by the number of firms from the
same population which are in the market. The resulting model describes the evolution of the size of
the two firm clusters and their market shares over time. We provide a global analysis of the existence
and basins of attraction of equilibria to address the question what impact different constellations of
spillover effects have on the growth of dominant respectively incoming clusters. We demonstrate
that the basins of attraction of coexisting long run equilibria do not depend continuously on the
size of the spillover effects. Furthermore, an increase in the initial cluster size is not necessarily
beneficial if the switching behavior of firms is fast.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The clustering of firms related to an industry in relatively small geographical regions
is a well-observed phenomenon. Industries where such agglomeration patterns have been
observed are, e.g. car manufacturing, computer manufacturing, fashion design or the chem-
ical industry; see Audretsch and Feldman (1996) and, in particular, Ellison and Glaeser
(1997) for an extensive analysis of the geographic concentration of several different US
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industries. Among the main reasons for such clustering are cost reducing externalities due
to technological and intellectual spillovers from other similar companies in the region. The
size of these externalities may differ between regions and industries, as empirical studies
show. For example, the ability of Japanese car manufacturers to yield a sustainable mar-
ket share on western markets is generally attributed to theirkeiretsu organization, which
facilitates internal spillovers, and their superior ability for technological sourcing, which
allows them to use externally-based technologies much faster and more efficient than their
US competitors (Mansfield, 1988).

It is crucial for the success of a cluster in the long run that joining the cluster becomes
attractive for local entrepreneurs and investors. The evolution of the size of the cluster is a
decentralized process governed by production decisions of numerous individual firms. This
raises the question whether general factors can be identified which facilitate or hinder the
long run development of a cluster. In particular, we are interested how initial cluster size and
ability to utilize spillover effects influences the competitive position and the growth potential
of a firm cluster in the market. Which differences in the size of spillover effects allow an
initially marginal cluster to coexist with another cluster of firms in the market? Under which
circumstances can larger spillover effects lead to a market takeover by one cluster? Questions
like that are particularly relevant for regional planners who are interested in attracting or
building up a certain industry cluster in their region by providing appropriate infrastructure
and incentives for the emergence of spillovers and by attracting initial investments. A few
authors have provided policy recommendations on these issues based on empirical studies
(Chuang and Lin, 1999; Porter, 1998) or static models (Carlisle, 1992). However, they did
not explicitly take into account the interaction of distinct clusters in the market and the
dynamics of industry evolution.

In this paper we carry out a dynamic evolutionary analysis of the competition of two
industry groups in a market where spillover effects are present. Our focus here is on industries
like the software industry with low barriers of entry and frequent exit and entry of firms. The
size of the two industry groups depends on the attractivity of the market for both groups,
which is expressed by the profits achieved by firms who are producing for the market in
relation to the profit of some outside option. The market entry and exit decision of firms
is made on the basis of information about the relative profitability of the market which
has been collected via direct communication within the group. We analyze the evolution
of the size and market shares respectively for both firm clusters. Using this evolutionary
approach we will address the questions of industrial evolution stated earlier which have, to
our best knowledge, not been analyzed in the framework of a dynamic model. Entry and
exit dynamics in the presence of externalities have sporadically been analyzed to address
questions of firm organization (Friedman and Fung, 1996) and location and education choice
in cities (Benabou, 1993).

Dynamic evolutionary models based on local interaction of boundedly rational agents
have been used with increasing frequency to gain a better understanding of numerous
important economic problems.1 Whereas, this type of research initially focused on the

1 The fields of application include bargaining models (Young, 1993; Ellingsen, 1997), auctions (Dawid, 1999a;
Lu and McAfee, 1996), the formation of social norms (Young, 1998) or various models of market interaction (Qin
and Stuart, 1997; Vega-Redondo, 1997).
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notion of evolutionary stability (ESS) and deterministic evolutionary dynamics, the larger
part of recent contributions has used stochastic models including ‘experimentation’ or ‘error’
terms. The concept of stochastic stability (Ellison, 2000) which is usually applied in this
framework has the appealing feature that it generates, for most of the models, a unique long
run prediction and, therefore, is a useful tool for equilibrium selection based on evolutionary
arguments. However, it has to be pointed out that these predictions often hold only in the
very long run and there may be a large probability that the process stays for a very long time
close to some state different from the stochastically stable one.2 Whereas, it is reasonable
to consider ultra long run outcomes of processes which govern, e.g. the emergence of social
norms, for the analysis of industry evolution a shorter time-horizon is suitable. For example,
if we consider an emerging industry the initial evolution towards a stable structure most
likely determines the appearance of this industry for its entire life cycle. Transitions to
different structures which are triggered entirely by numerous simultaneous implementation
errors or experiments of firms seem to be hardly relevant for the understanding of such an
evolution. Accordingly, here we look at the intermediate run using a deterministic model of
the evolution of the size of the two industry groups. We follow Friedman (1998), who points
out that “[I]n most applied work it suffices to identify the evolutionary equilibria and their
basins of attraction”, (Friedman, 1991, p. 639), and characterize the equilibria in our model
and their basins depending on the relative size of the spillover effects. To this end we employ
the theory of critical curves and demonstrate how this concept can be used to understand and
predict the changes of the basins of attraction in highly non-linear evolutionary models with
multiple coexisting steady states. Although this technique has been sporadically applied in
economic modeling in the past (Bischi et al., 2000; Bischi and Kopel, 2001), this is the first
study where the merits of this approach for evolutionary analysis are explored.

The paper is organized as follows. In Section 2 we introduce the model. Section 3 charac-
terizes all the possible constellations of fixed points of the model and some general results
about local stability. Section 4 then studies the long run properties of the model when the
size of spillover effects are symmetric between the two populations. Section 5 deals with
the case where spillover effects are asymmetric and Section 6 examines the effect of the
speed of market exit and entry on the evolution of the industry. We summarize and discuss
our main findings in Section 7. All proofs are given in the Appendix A.

2. Markets and spillovers

Consider two groups of firmsi = 1,2 which have to decide whether to produce for a
certain market or not. Alternatively, you might think of two groups of investors who have
to decide whether to invest in a certain local industry branch or not. As laid out in the
introduction, the assignment into one of the groups may be due to several reasons like the
location or the national origin of the firms. The only crucial observation here is that there is
more flow of information within a group than between the two groups. To keep matters as

2 For example Ellison (2000), points out that “. . . it is inherently limited in scope to a characterization of the
very long run limit. This can be problematic because evolution in these models is at times so slow as to be of
limited practical importance.”
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simple as possible we assume that the two groups are of the same size and denote byxit the
fraction of firms in populationi = 1,2, which are in the market at timet . This fraction might
as well be interpreted as the fraction of available capital in each country which is invested
in firms in the market. Assuming constant returns to scale, it does not make a difference
for any of our arguments whether output within one country is produced by several large
or many small firms as long as no firm has relevant market power.

The focus in this paper is on market exit and entry behavior of firms and no explicit
model of the output decision of the firms is provided (see Ghemawat and Spence, 1985 for an
analysis of the implications of spillover effects on the firms production decision). For reasons
of simplicity it is assumed that every firm in the market produces 1 unit of a homogeneous
good per period. Aggregate output in the market is then given by(x1+x2) times the number
of firms. The market clearing price is determined by an inverse demand function

p = p(x1 + x2).

Due to spillovers within each group, marginal costs are smaller the more other firms in the
population produce the same good. We include such cost externalities in our model by as-
suming that the unit costs of a firm depend on the number of firms from the own populations
which produce the good. Hence, we express unit costs of a firm in populationi by ci(xi),
where∂ci/∂xi ≤ 0, i = 1,2. Furthermore, in line with previous theoretical work on the
effects of spillovers, we assume that unit costs decline with a decreasing rate (Kamien et al.,
1992):∂2ci/∂x

2
i > 0, i = 1,2. This gives a per period profit of

πi(x1, x2) = p(x1 + x2) − ci(xi).

The profit of a firm which stays out of the market (i.e. chooses the outside option) is mod-
eled as a stochastic variable. Outside profit of firmf in populationi at timet is ui

f,t with
expected valueUi . Outside profits are independent across individual firms in a population
and time. We writeui

f,t = Ui + εi
f,t where the density ofεi

f,t is independent off andt , has
full supportR and is unimodal and symmetric with respect to 0. The distribution function
of εi

f,t is denoted byΘi .
Each periodt = 0, . . . ,∞ every firm decides whether to enter or to exit the market. If

a firm samples another firm (in the same population) which has chosen a different action
in the previous period, it switches (i.e. exits or enters) whenever the profit of the other
firm has been larger than its own profit. The sampling procedure is assumed to be uniform
and stochastically independent from the outside profitui

f,t . The more firms are outside
the market the more likely it is for an incumbent to sample such an ‘outsider’ and to get
information about the outside option. The probability that an arbitrary firm in populationi

which is now in the market exits after periodt is given by:

pi
out(x1, x2) = (1 − xi)P(πi(x1, x2) < Ui + εi

f,t )

= (1 − xi)(1 − Θi(πi(x1, x2) − Ui)).

On the other hand, a firm currently outside the market enters the market with probability

pi
in(x1, x2) = xiP(πi(x1, x2) > Ui + εi

f,t ) = xiΘi(πi(x1, x2) − Ui).
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The expected fraction of populationi firms (i = 1,2) in the market is therefore:

xi,t+1 = xi,t + (1 − xi,t )p
i
in(x1,t , x2,t ) − xi,tp

i
out(x1,t x2,t )

= xi,t + xi,t (1 − xi,t )(Θi(πi(x1,t , x2,t ) − Ui) − (1 − Θ(πi(x1,t , x2,t ) − Ui))

= xi,t + xi,t (1 − xi,t )Gi(πi(x1,t , x2,t ) − Ui), (1)

whereGi(x) := 2Θi(x) − 1. The evolution of the fractionsx1 andx2 are hence described
by a nonlinear deterministic system in discrete time. Word of mouth dynamics similar to
this one have been analyzed by Ellison and Fudenberg (1993, 1995) or Dawid (1999b). It is
obvious that the shape of the functionGi depends on the distribution functionΘi . However,
from the fact thatΘi is a distribution function and the properties of the corresponding density
(uni-modality and symmetry) it is easy to derive the following statements fori = 1,2:

Gi(0) = 0, limx→∞Gi(x) = 1, limx→−∞Gi(x) = −1.

Furthermore,Gi(x) is symmetric with respect to 0, convex on(−∞,0] and concave on
[0,∞). The slope ofGi at 0 is twice the altitude of the hump of the unimodal density.
It will turn out that the qualitative properties of the long run behavior of the dynamics in
many cases crucially depend on the ‘speed’ of the flow towards the action with the higher
expected profit. We will useG′

i (0) as a measure of this speed and denote it byλi .3

Studying the nonlinear two-dimensional dynamical system (1) allows us to derive qual-
itative features of the evolution of the fraction of firms of the two populations which are
in the considered market. In particular, we are interested in the question how initial market
shares of firms of the two populations,x1,0 andx2,0, and differences in spillovers influence
the convergence properties of the evolutionary process to some long run equilibrium (the
agglomeration pattern). To answer this question, we will provide an extensive analysis of
the equilibria and their basins of attraction. However, before we proceed we need to be more
specific about the functions involved.

We will assume that the demand curve is linear

p(x1 + x2) = P0 − B(x1 + x2).

Furthermore, we use the following rational expression for the unit costs of a firm in popu-
lation i:

ci(xi) = Ci

1 + βixi

, i = 1,2.

The parameterβi > 0 incorporates the effect of spillovers within a firm cluster. As explained
earlier, the qualitative properties of the cost function are inspired by existing theoretical and
empirical work. The profit of a firm in populationi which is in the market is then given by

πi(x1, x2) = P0 − B(x1 + x2) − Ci

1 + βixi

, i = 1,2. (2)

3 For many classes of distribution functions, like the normal distribution, a large slope ofGi at 0 corresponds to
a small variance of the outside profit; for example for the normal distributionλi is inversely proportional toσ .
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We will always assume that if all firms from both populations are in the market, the
payoff for firms in the market is smaller than the expected outside profit. This assumption
rules out the rather unrealistic and uninteresting case where the market is so much more
attractive than the outside option that all firms from both populations want to enter or stay
under all circumstances. On the other hand, the monopoly profit of the firm entering the
market should be larger than the expected outside profit. These conditions are represented
by the following inequalities:

P0 − 2B − Ci

1 + βi

< Ui, i = 1,2

P0 − Ci > Ui, i = 1,2.
(3)

Additionally, we make the more technical assumption that, if there were no spillovers, the
expected profit of the outside option would be higher than the profit in the market if half of
the firms are in the market

P0 − B − Ci < Ui, i = 1,2. (4)

One of the main points we will make in this paper is to show that in the presence of large
spillovers a population of firms can invade a market despite the fact that their initial market
share is small. Accordingly, it is sensible to assume that these spillovers are the reason why
the market may become, on average, more attractive than the outside option. By making this
assumption we avoid the discussion of several cases. However, it would be straightforward
to extend the analysis to cases where this assumption does not hold.

Using the expressions given earlier, we obtain the following evolutionary model which
describes the dynamics of the fraction of firms from both populations in the market:

x1,t+1 = x1,t + x1,t (1 − x1,t )G1

(
A1 − B(x1,t + x2,t ) − C1

1 + β1x1

)

x2,t+1 = x2,t + x2,t (1 − x2,t )G2

(
A2 − B(x1,t + x2,t ) − C2

1 + β2x2

)
,

(5)

whereAi := P0 − Ui . We defineT : [0,1]2 	→ [0,1]2 as the right hand side of (5)
and using this notation the system readsxt+1 = T (xt ). In general terms we have de-
rived a two-population evolutionary model with non-linear payoff functions and inter- and
intra-population interaction.

3. Fixed points and local stability

Obviously, the state spaceS := [0,1] × [0,1] is invariant under the dynamics (5) and
all four corners are fixed points. A standard local stability analysis further shows that under
assumptions (3) the two corners(0,0) and(1,1) are unstable.4 The corner(1,0) is locally

4 The details of the local stability analysis can be found in a technical appendix available upon request from the
authors.
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asymptotically stable if,

P0 − B − C1

1 + β1
> U1, (6)

P0 − B − C2 < U2, (7)

and(0,1) is locally asymptotically stable under the symmetric conditions

P0 − B − C1 < U1, (8)

P0 − B − C2

1 + β2
> U2. (9)

Besides these four fixed points, the system may also have additional stationary points.
Every point in the interior ofS whereπ1(x1, x2) = U1 andπ2(x1, x2) = U2 is a fixed
point of (5). Furthermore, fixed points exist on the upper and lower boundary ofS where
π1(x1, x2) = U1 and on the left and right boundary whereπ2(x1, x2) = U2. To facilitate
the analysis, we define the curvesFi, i = 1,2 as the set of all points(x1, x2) where the
profit in the market equals the expected outside profit for a firm of populationi, i.e.

Fi = {(x1, x2) ∈ [0,1]2|πi(x1, x2) = Ui}. (10)

Interior equilibria exist at all intersections of the curvesF1 andF2. Fixed points at the
boundary occur either at the intersection ofF1 with x2 = 0 or 1, or at the intersection ofF2
with x1 = 0 or 1. Note however, that fixed points on the boundary might not correspond to
Nash equilibria of the model. In the following proposition we characterize the fixed points
(other than the vertices) of the dynamics under our assumptions.

Proposition 1. For βi > 0 the dynamical system (5) can have at most one fixed point in
the interior of [0,1]2 and if it exists it is always unstable. Additionally, there can be either
at most two fixed points on the boundary x1 = 1 or one fixed point on x1 = 0 and either
at most two fixed points on the boundary x2 = 1 or one fixed point on x2 = 0. There can
never be fixed points on xi = 0 and 1, i = 1,2 simultaneously for the same values of the
parameters.

Taking into account Proposition 1 we conclude that our model can have up to nine
coexisting fixed points. There are always four at the vertices of [0,1]2, at most four on
the boundary and at most one in the interior of the unit square. Short introspection further
establishes that there can be at most one stable equilibrium in the interior of a boundary
line of the unit square. Therefore, all together there can be at most four locally stable fixed
points. Any of these stable fixed points is the potential long run outcome of the evolutionary
process driven by the switching behavior of the firms. Standard arguments used in the
evolutionary game theory literature (Weibull, 1995) imply that every locally stable fixed
point corresponds to a Nash equilibrium of the underlying two population game. Which
locally stable equilibrium is actually chosen depends on the initial market share firms in
populationi have. In order to obtain a thorough understanding of the interplay between
initial market shares, long run outcomes and their dependence on parameters, for each
equilibrium we need a characterization of the set of initial conditions for which the process
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converges to it. In other words, what is needed is not only an identification of the set of
locally stable fixed points, but also a characterization of their basins of attraction and the
changes these basins undergo as parameters are varied.

To make matters simple, we introduce a coherent notation for all fixed points on the bound-
ary which we will use throughout the analysis. We denote the vertices as: 0= (0,0), VI =
(1,0), VII = (1,1), VIII = (0,1), and the unique interior fixed point asS = (s1, s2). Obvi-
ously,VI characterizes an agglomeration pattern where all firms of population 1 are in the
market and all firms of population 2 choose the outside option. Conversely, inVIII popula-
tion 2 firms are in the market and population 1 firms choose the outside option. We denote
byPI = (pI1,0) the interior fixed point on the boundary linex2 = 0, byQII = (1, qII2) and
PII = (1, pII2) the two fixed points onx1 = 1, whereqII2 < pII2 , by QIII = (qIII1 ,1) and
PIII = (pIII1 ,1) the two fixed points onx2 = 1, whereqIII1 < pIII1 and byPIV = (0, pIV2)

the interior fixed point onx1 = 0. For example,PIII characterizes a situation where in the
long run firms of population 2 dominate the market. However, not all firms of population 1
are driven out of the market: a fraction of firms of population 1 coexists.

To keep our exposition as clear and simple as possible we assume that the constant unit
costs of a single firm from either population are identical:C1 = C2 = C. In other words,
the profit a single firm can achieve when entering a market where no other firm of the
same population is in, is independent of the population the firm belongs to. Furthermore,
we assume that the distribution of the outside profit is identical in both populations, i.e.
Θ1 = Θ2, which in particular impliesG1 = G2 := G andU1 = U2. Therefore, we have
A1 = A2 = A. The populations might differ, however, with regard to their infrastructure
facilitating spillovers and cost externalities between their members (i.e. with respect toβi).

4. Symmetric spillovers and slow dynamics

Discrete time dynamics have the generic property that they might ‘overshoot’ equilibria
if the step size is too large. We do not consider such effects as a mathematical anomaly but
as a phenomenon which is observable in many real world markets. However, throughout
this first part of the analysis we will avoid this by assuming that the dynamics is “sufficiently
slow” (i.e. λ1 = λ2 := λ is sufficiently small), such that no local overshooting occurs at
any fixed point. This corresponds to a situation where the variance of the outside profit is
large. Later on in our analysis we will also deal with the effect of an increase of the speed
of the flow in and out of the market.

Let us start with the symmetric case where spillovers in both populations are equal, i.e.
β1 = β2 := β. Initially, we will assume very small spillover effects and characterize how
the set of fixed points and the set of initial conditions for the fraction of firms (x1,0 and
x2,0) which converge to these equilibria change asβ is increased. In the limit caseβ = 0,
the curvesF1 andF2 are coinciding straight lines defined byA − B(x1 + x2) − C = 0,
which according to assumption (4) is below the linex1 +x2 = 1. Note that this implies that
we have a continuum of interior fixed points. Generically, in such a case different initial
conditions lead to different long run states.

If we slightly increaseβ, the curveF1 bends upwards; the intersection point withx1 = 0
is fixed and the intersection point withx2 = 0 moves to the right. The curveF2 changes in
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Fig. 1. The curvesFi , i = 1,2 for β < β̂ and a trajectory of the process for(x1,0, x2,0) = (0.2,0.18)
(P0 = 300, B = 100, C = 190, U = 32, β = 0.05, β̂ = 0.131).

a symmetric way. We can therefore conclude that for positive, but very small values ofβ,
additionally to the four vertices, there are three fixed points: the single interior equilibrium,
S, PI on the linex1 = 0 andPIV on the linex2 = 0 (see Fig. 1). Due to (4), the local
stability conditions (6) and (9) forVI andVIII are violated for sufficiently smallβ. Thus, the
two equilibria on the boundary,PI = (pI1,0) andPIV = (0, pIV2), wherepI1 andpIV2 are
identical and satisfy(A−Bp−C)/(1+βp) = 0, are the only two stable equilibria. We know
that the interior fixed point,S, is a saddle point and the complete symmetry of the dynamics
with respect tox1 andx2 implies that the stable set of the saddle is the diagonal of the unit
square. Fig. 1 depicts the curvesF1, F2, all coexisting fixed points and the diagonal.5

Due to the symmetry properties, the diagonal is invariant with respect to the dynamics
and this suggests, that it separates the basins of attraction of the two stable fixed pointsPI
andPIV . In order to rigorously establish this fact, we have to show that the dynamics never
maps a point from one side of the diagonal to the other side. One way to show this, is to
prove that the diagonal is not only forwards, but also backwards invariant with respect to
the dynamics. A simple continuity argument then establishes that if there is a backwards
invariant curve either all points are mapped from one side to the other or none. Since we
know that, for example,T (VI) = VI , showing that the diagonal is backwards invariant is
sufficient to show that it separates the basins of attraction ofPI andPIV . If the inverse of
the generating map of the dynamics is single-valued, it is trivial that the forwards invariant
diagonal is also backwards invariant. In order to see whether the inverse is unique, it is
useful to consider the so-called critical curves LC of the mapT . Critical curves separate
areas where the number of (rank-1) preimages of points coincide. Whenever points have
different numbers of (rank-1) preimages, there has to be at least one critical curve between

5 In all our numerical illustrations we use the parameter values,P0 = 300, B = 100, C = 190, U = 32 for the
market environment and expected outside profits. These values satisfy assumptions (3) and (4) for allβi ∈ [0,1].
Other values of the parameters which satisfy these assumptions would yield qualitatively similar results.
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these points (see Mira et al. (1996), Bischi and Kopel (2001), Bischi et al. (2000) for more
details on critical curves). If we denote the set of all points where the determinant of the
Jacobian of the mapT vanishes by LC−1, then the critical curve LC can be determined by
applying the mapT to all points of this set, i.e. LC= T (LC−1). In Appendix B, it is shown
that every intersection of a critical curve and the diagonal is a critical point of the restriction
of T to the diagonal. Accordingly, the number of preimages ofT and its restriction to
the diagonal coincides for elements of this set. This implies that if the number of rank-1
preimages of points on the diagonal is greater than 1, all additional rank-1 preimages have
to be on the diagonal. Therefore, the diagonal is backwards invariant and indeed separates
the basins of attraction ofPI andPIV .

An intuitive interpretation of this result can be given easily. If spillovers are very small
and symmetric, the population of firms which initially has the smaller fraction of firms in
the market completely leaves the market in the long run and the population with the larger
initial market share completely takes over the market. However, since spillovers (and hence
cost externalities) are small, it only pays to be in the market if the price is rather high.
Consequently, if the number of firms from the own population in the market is too large,
using the outside option is, on average, more advantageous, even if the other population has
completely left the market. As a consequence, only a certain fraction of firms stays in the
market in the long run, whereas, some members of the population (together with all firms
of the other population) end up choosing the outside option.

Looking at the transient part of a path where the initial number of firms in the market is
small in both populations with slight advantages for population 1, it can be observed that
during the early periods the market is attractive for both populations and bothx1 andx2
increase (see Fig. 1). At some point, however, the number of firms in the market becomes so
large that firms in population 2 (which enjoy only smaller cost reductions due to spillovers)
start leaving the market. Since the market is still attractive for population 1, these firms are
replaced by members from population 1and the path converges toPI . So, the strong effect
of the small initial advantages in market share for population 1 becomes apparent only with
a certain delay, but in the long run only the industry cluster with the initial advantage in
market share will survive.

If the size of spillover effects goes up, the size of the population 1 firm cluster in equi-
librium PI increases until eventually for

β = β̂ := C

A − B
− 1 > 0,

cost reducing externalities are sufficiently large such that producing for the market is prof-
itable for population 1 firms even at a price which arises if the entire population is in the
market. Put formally, the fixed pointPI wanders throughVI , which becomes locally asymp-
totically stable6. For the same parameter value ofβ alsoPIV moves throughVIII andVIII
becomes locally asymptotically stable. Thus, now the equilibria(1,0) and(0,1) are the

6 Mathematically speaking, we have a transcritical bifurcation (Lorenz, 1993, p. 111). Note that this bifurcation
occurs only forA − B > 0. Otherwise, for all values ofβ only PI andPIV are stable. We ignore this rather
uninteresting case in the further analysis.
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Fig. 2. The curvesFi , i = 1,2 for β ∈ (β̂, β∗) and a trajectory of the process for(x1,0, x2,0) = (0.2,0.18)
(P0 = 300, B = 100, C = 190, U = 32, β = 1, β̂ = 0.131, β∗ = 1.209).

only two stable equilibria. The stable manifold of the interior saddle point still separates the
basins of attraction. We depict the equilibria and the corresponding curvesF1, F2 in Fig. 2.

We now have a situation where the cost savings in the market due to spillovers are
sufficiently large to make the market option always attractive if there are no firms from
the other population in the market. However, spillovers are still not large enough to make
the market in the long run attractive for the population with the smaller market share.
Trajectories here look very similar to the ones observed in Fig. 1. If both groups initially
are small, then the number of firms from both populations increases. However, at some
point firms from the population with the smaller market share start leaving the market
and, eventually, this group vanishes from the market. On the other hand, all firms in the
population which initially has the larger market share eventually enter the market. Thus,
for such values of the parameters the long run result is a complete market takeover. Since
the distribution of the outside profit—which is the profit earned by all firms who left the
market—is identical in both populations, it follows that the firms in the population which
initially has the the larger fraction of firms in the market end up with higher profits.

The discussion earlier gave us the rather intuitive result that for smallβ increasing local
externalities lead to a long-run concentration of the market. However, it turns out that a
symmetric increase in local spillovers has quite the opposite implication asβ becomes
large. Considering the transient path of the two cluster sizes makes the argument quite
transparent. Assume again that initially both cluster sizes grow. For the relatively small
values ofβ considered earlier the in-flow of firms will lower the price to a level, which
makes the market unattractive for firms in the smaller cluster, while the larger cluster still
grows. Hence, the price keeps going down even as firms in the smaller cluster stop entering
and start leaving. However, if spillover effects are sufficiently large such that the price level,
where firms in the smaller cluster stop entering, is reached at a time when the entire other
population is already in the market, such a stop of entry results in constant prices and (in
expectation) a constant size of both clusters. Clearly, the resulting size of the smaller cluster
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is larger the larger the parameterβ is (i.e. the later this ‘indifference price’ is reached).
Therefore, one has to expect that, after a certain point, further increases in the size ofβ lead
to a decrease in the long run concentration of the market.

To analyze this phenomenon more rigorously we observe that whereas the intersection
point ofF1 with the border linex1 = 0 is not affected by the size ofβ1 = β, the remaining
part of the curve moves upwards whenβ is increased and eventually touches the horizontal
border linex2 = 1. The exact value ofβ where this tangency occurs is given in the following
Lemma.

Lemma 1. For β > β∗, where β∗ > 0 is the larger of the two roots of

((A − B)β∗ − B)2 − 4β∗B(C − (A − B)) = 0 (11)

the curve F1 has two positive intersection points with x2 = 1 and F2 has two positive
intersection points with x1 = 1.

The pair of intersection points ofF1 andx2 = 1 might either appear left or right of the
corner(1,1) of the unit square. In cases where the curveF1 touches the linex2 = 1 right
of (1,1), the behavior of the system in [0,1]2 does not change. Thus, we focus on the case
whereF1 touchesx2 = 1 inside the unit square. We will see that in this case the number
of locally stable equilibria and the qualitative properties of the process suddenly change.
But before we go on to discuss this transition, we summarize the findings for smallβ in the
following proposition.

Proposition 2. If spillover effects are symmetric between the two populations with β < β∗,
all firms from the population with the smaller initial market share eventually leave the market
and the market is completely taken over by firms from the population with the larger initial
market share. Depending on the size of β only a fraction or all of these firms stay in the
market in the long run.

For β > β∗ four additional fixed points arise which all correspond to mixed market
equilibria. Two of them on the boundaryx1 = 1 and two of them onx2 = 1. In each of
these two pairs only one fixed point is locally stable though. In the following proposition
we characterize stability and basins of attraction of all the fixed points under these changed
circumstances.

Proposition 3. Forβ > β∗ and sufficiently smallλ there are four locally stable equilibria—
VI , PII , VIII , PIII —with simply connected basins of attraction. The boundaries of the basins
are given by the diagonal and by the stable manifold of QII between the basins of VI and
PII and the stable manifold of QIII between the basins of VIII andPIII .

Thus, we now have four coexisting locally stable equilibria, two with market takeovers
in the long run and two where clusters of firms from both populations stay in the market.
This makes the characterization of the different basins substantially more difficult than
in the cases we have looked at so far. We will illustrate the results concerning basins of
attractions by figures depicting the different basins and—primarily in the section on fast
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Fig. 3. The basins of attraction of the four stable equilibria forβ > β∗ and slow dynamics (P0 = 300,
B = 100, C = 190, U = 32, β = 1.5, β∗ = 1.209).

dynamics—use the actual shape of the critical curves of the dynamics. This, however,
cannot be done without further specification of the switching functionG. In the numerical
illustrations we provide later we always use the specificationG(x) = (2/π)arctan(λπx/2),
whereλ = λ1 = λ2. This function satisfies all the assumptions for the switching function
G andλ = G′(0)7. In Fig. 3 we use this specifications to depict the basins of attraction and
the equal profit curves for symmetric and large spillover effects.

Proposition 3 shows that if spillovers increase symmetrically in both populations—for
example because the exchange of information within firms of a population (e.g. a country)
is made easier due to improvements in information technology—at some point the long
term properties of the system abruptly change. Although it remains true that the population
which initially has the larger market share will keep a larger market share also in the long
run, forβ > β∗ it needs quite a large initial advantage to be able to drive firms from the
other population completely out of the market. For most initial conditions the system will
end up in a state where all firms from the population with the larger initial market share are
in the market, but at the same time a large fraction of firms of the other population is able
to stay in the market as well (e.g. the equilibriumPIII if x1,0 < x2,0). It is obvious that the
market price is much lower at the statePIII than at the stateVIII . Consequently, the payoff
for firms of population 2 is smaller at the boundary equilibrium than at the vertexVIII . On

7 We decided to use this specification rather than, for example, the switching function resulting from a normal
distribution for pragmatic reasons: a closed form representation makes the calculation of critical curves easier. With
the proper parameterization, a very close match with the switching function stemming from a normal distribution
can be achieved, and it is quite obvious that the qualitative properties of the dynamics do not depend on the exact
specification.
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the other hand, sincePIII is an equilibrium where a fraction of the firms in population 1 is in
the market and a fraction chooses the outside option, it is obvious that the average profit of
a population 1 firm in this equilibrium is identical to the average outside profit. Therefore,
the average profit inPIII is identical to the average profit of population 1 firms inVIII . If we
look at the long run outcomes for initial conditions in the basin of attraction ofPIII , we can
conclude that the difference in profits between firms in the population with the larger and
with the smaller initial market share respectively suddenly shrinks ifβ becomes larger than
β∗ and the new equilibria appear. Whereas, forβ < β∗ a symmetric increase of spillover
effects in both populations is positive for the long run profit of the firms in the cluster with
an initial advantage in market share, the crossing of the thresholdβ∗ has a negative effect
for these firms. Note also that this implies that the equilibriaVI andVIII Pareto dominate
the equilibriaPII andPIII .

Before we go on to consider asymmetric spillover effects, we like to point out that given
our assumptions (3) and (4) no more qualitative changes of the properties of the equilibria
or the structure of the basins occur ifβ is further increased.

5. Asymmetric spillovers and slow dynamics

Up to now we have only considered a scenario where the cost savings due to spillovers are
symmetric in both populations. We have seen that in such cases the population which initially
has the larger market share will keep this advantage also in the long run. Additionally, it
has been demonstrated how the size of this advantage depends on the value of the spillover
parameterβ. Now we will turn to the case where firms from one population operate in an
environment which provides superior possibilities for knowledge exchange and information
flow. We will analyze how such an advantage modifies the relationship between initial
market shares of a cluster and the long run outcome of the evolutionary process with respect
to the scenario analyzed earlier.

We start with the symmetric situation depicted in Fig. 2, where spillovers are belowβ∗
and the two fixed pointsVI andVIII are the only attractors. We recall that in this situation
for each of the two populations in the long run either all firms are in the market or out of the
market depending on the initial market share of the cluster. Now, let us consider a scenario
whereβ2 stays constant, but for population 1 the conditions of the environment are changed
such that the effect of spillovers between firms becomes more significant, i.e.β1 is increased.

To understand the impact of such an asymmetry on the constellation of equilibria we
again refer to the equal profit curves. The curveFi depends only onβi but not onβj , j �= i

and, therefore, curveF1 rotates upwards whereas, curveF2 remains unchanged. Initially,
the only effect of an increase inβ1 is that the interior saddle point moves up along the
unchanged curveF2. The basins of attraction of the equilibriaVI andVIII are separated by
the stable manifold of the interior fixed point which now lies above the diagonal (note that
the diagonal is no longer invariant with asymmetric parameter values). Hence, given that
spillovers in population 1 are higher than in population 2, the former is able to take over
the market even if the initial number of firms from the other population on this market is
slightly larger (Fig. 4a). So, increasing spillover effects in population 1, yields ‘continuous’
effects on the long run market shares if the increase is only small. Considering the insights
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Fig. 4. The basins of attraction of the locally stable equilibria forβ2 ∈ (β̄2, β
∗), β1 > β2, no external spillovers

and slow dynamics: (a)β1 = 1.2 < β∗; (b) β1 = 1.21 ∈ (β∗, β̃1); (c) β1 = 1.35 ∈ (β∗, β̃1); (d) β1 = 1.4 > β̃1.
(P0 = 300, B = 100, C = 190, U = 32, β2 = 1, β̄2 = 0.542, β∗ = 1.209, β̃1 = 1.37).

from the analysis of the case with a symmetric increase ofβ, one might however expect that
eventually a stable mixed market equilibrium arises where a population 1 cluster coexists
with a population 2 cluster of maximum size. It turns out that this only holds true if the
spillover effects in population 2 are not too small:

Proposition 4. Assume that β2 ∈ (β̄2, β
∗), where

β̄2 := B + C − A + √
C(B + C − A)

A − B
. (12)

(i) For β1 > β∗ defined in Lemma 1 there appears a pair of fixed points PIII and QIII
on x2 = 1, where QIII is a saddle point and PIII is locally asymptotically stable.
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For all values (x1,0, x2,0) between the stable manifolds ofQIII and S, in the long
run all firms of population 2 and a fraction pIII1 of firms in population 1 are in the
market.

(ii) As β1 becomes larger than β̃1 = (β2(1 + β2)B)/((1 + β2)(A − B) − C) > β∗, PIII
becomes unstable, its basin of attraction suddenly disappears, and for all initial values
(x1,0, x2,0) below the stable manifold of QIII all firms from population 2 eventually
leave the market which is completely taken over by population 1 (convergence to VI ).

For values ofβ2 which are not too small, advantages of population 1 in terms of the size
of spillover effects do not have continuous effects on the success of this firm cluster in the
market. Rather, it is important to cross the two thresholdsβ∗ andβ̃1 to be able to stay in
the market or take over the market, even if the other population is initially dominant in the
market.

The discontinuous transition of the basins of attraction is somehow similar to the sym-
metric case. Asβ1 crossesβ∗, all of a sudden, for all initial conditions between the stable
manifold of QIII and the stable manifold of the interior equilibriumS, population 2 no
longer controls the whole market in the long run, but a fractionpIII1 of firms of population
1 will stay in the market (Fig. 4b). Now for more than half of all possible initial market
conditions population 1 eventually controls the whole market and for an additional set of
initial conditions with positive measure, at least a certain fraction of firms from population
1 stays in the market. Note that this huge competitive advantage for population 1 can be
gained by a rather small advantage in the parameterβ (in the example depicted in Fig. 4b
it is about 20%).

If β1 is further increased, the effect is, for some time, continuous again. The interior equi-
librium and, therefore, also its stable manifold (which is the boundary between the basins
of attraction ofPIII andVI ) moves up and to the left. Hence, the basin ofVI continuously
expands asβ1 is increased. In Fig. 4c we show the basins of the three coexisting stable
equilibria, where the difference in spillovers in the two populations is almost twice as large
as in Fig. 4b. We see that the extents of the three basins have not significantly changed. The
only noticeable changes are a slight increase in the extent of the basin ofVI and a small
reduction of the basin ofVIII . However, starting from this situation, ifβ1 is only slightly
increased abovẽβ1, another abrupt structural change in the basins can be observed (Fig. 4d).
The basin of attraction of the equilibriumPIII suddenly disappears and is replaced by a part
of the basin of attraction of the equilibriumVI . Accordingly, in such a situation for a rather
large set of initial conditions, despite the fact that population 2 has a larger initial market
share, the cluster in population 1 is not only able to survive, but can eventually take over
the entire market and drive all firms from population 2 out.

Even larger advantages ofβ1 compared toβ2 expand the basin of(1,0), but we know
from our analysis of the symmetric case that the saddle pointQIII always stays to the right
of VIII . Accordingly, the basin of(1,0) can never cover the whole unit square. In other
words, regardless of the size of the difference in the spillovers, there are always initial
market conditions such that the population with the smaller spillovers is able to eventually
drive firms from the other population out of the market. Of course, the extent of the set
containing these initial market conditions becomes very small as the difference in spillover
effects becomes large.
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On the other hand, if we start with a small symmetric level of spillovers (β1 = β2 < β̄2)
and increase the size of spillovers in population 1, no additional stable equilibria arise and
we get an entirely continuous transformation of the basins of attraction:

Proposition 5. Assume that β2 ∈ (C/(A−B)−1, β̄2). Then, the only stable equilibria for
β1 > β2 are VI and VIII . The basin of attraction of VI always increases continuously in β1.

The reason that we can never observe mixed market equilibria in such a scenario is
that given the relatively small cost externalities in population 2, a population 2 cluster of
maximum size can only be profitable if the coexisting cluster of population 1 is small.
However, as long as clusters are small, the positive marginal cost effect of one additional
firm in the cluster outweighs the negative price effect. Accordingly, if the small population
1 cluster is profitable, it will further grow and eventually drive out the population 2 cluster.
If it is not profitable, it will shrink and disappear. In both cases market takeovers can be
observed in the long run. This also makes the more general point that a mixed market
equilibrium can only be stable if both clusters have a size where the marginal price effects
outweighs the marginal cost effect. As we have shown, a certain minimal level of spillover
effects is a necessary condition for this to happen.

6. Asymmetric spillovers and fast dynamics

Up to now we have assumed that the dynamics of the switching behavior of firms in the
two populations is rather slow, i.e. that the parameterλ is very small. This means that the
probability that a firm changes to the option which is, on average, more attractive is slowly
increasing in the difference of the expected profits. Although it might be argued that the
increasing synchronization of the entry and exit decisions, which results in a discrete time
setup like this if the switching intensity is increased, is not realistic, we still believe that the
consideration of such dynamics is relevant. Lags between the point of decision making and
the point when the decision is observable in the market lead to scenarios with structures
closer to a discrete than a continuous time model. Just considering the recent dynamics of
the number of internet-based businesses offers a nice real world example of simultaneous
massive entry into a market with subsequent synchronous exits. We will investigate how
faster dynamics influence the effect of differences in spillovers. Let us again consider the
scenario depicted in Fig. 4b where the spillovers in population 1 are larger than the threshold
valueβ∗, whereasβ2 ∈ (β̄2, β

∗). In this situation three locally stable equilibria coexist.
Note that Fig. 4b depicts a scenario where switching is slow (λ = 0.2/π ). If the speed of
switching is increased (λ = 2.2/π ), the basin boundaries change (Fig. 5a). Although the
boundary between the basins ofVI andPIII is no longer smooth,8 the change of the basins
is continuous inλi and we still have three simply connected basins.

8 The non-smoothness of the basin boundary is due to the fact that the interior equilibrium was transformed from
a saddle to an unstable node by a sequence of local bifurcations. For a parameter setting like the one in Fig. 5a the
boundary is formed by the stable set of a cycle, and the closure of such a stable set also includes many repelling
nodes, whose presence yields the non-smoothness of the boundary.
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Fig. 5. The transition of the basins of attraction of the three locally stable equilibria as the dynamics becomes
faster and the critical curve crosses a basin boundary: (a) no intersection of the critical curve with the boundary
between the basins ofVIII andPIII (λ = 2.2/π); (b) the critical curve has crossed the boundary between the basins
of VIII andPIII (λ = 2.6/π); (c) and (d) enlargement of the area where the intersection between LC and the basin
boundary occurs. (P0 = 300, B = 100, C = 190, U = 32, β1 = 1.21, β2 = 1).

However, ifλ is increased a little bit further, a quite remarkable change of the basins of at-
traction can be observed (Fig. 5b). The basin of attraction ofVIII has become non-connected,
i.e. disjoint portions of it (so-called “islands”) are nested inside the basin of another equi-
librium. The basin of the boundary equilibriumPIII is now a multiply connected set (i.e.
connected with “holes” inside it). This has quite interesting and surprising implications. For
a given number of firms in population 1 in the market, an increase in the initial number of
firms from population 2 in the market does not necessarily imply a higher long run market
share for this population. On the contrary, a higher initial fraction of firms in the market may
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lead to a long run market share of 0 whereas a lower initial fraction leads to convergence
to PIII and the long run survival of a firm cluster from population 2 in the market.

The reason for this phenomenon lies in the interaction of overshooting effects at the equi-
librium PIII with the cost externalities imposed by the spillovers. Given the fast switching
behavior of firms, convergence to the mixed market equilibriumPIII is no longer monotonic,
but the size of the population 1 cluster fluctuates due to excessive entry and exit of firms
in this population. Of course this results also in price fluctuations but these fluctuations are
dampening and in the absence of externalities the process would end up atPIII . However, in
the presence of spillover effects there are global implications of the overshooting behavior
atPIII . If the number of population 1 firms in the market in periodt is slightly larger than
pIII1 (thus, the outside option is more attractive) and the inertia in the firms decision is small,
so many firms leave the cluster in population 1 that afterwards the size of the spillovers
falls short of the threshold making this cluster viable. Accordingly, the remaining firms
leave the market in the following periods and the cluster vanishes although a cluster of
sizepIII1 would have been viable. Initially, it is virtually impossible to predict whether the
fluctuation will lead the cluster size below the threshold and this creates the complex basins
of attraction.

Note that the constellation of fixed points and their local stability properties have not
changed in this transition to faster dynamics. Accordingly, and this is important to realize,
local analysis cannot be used to explain this change in the long run properties of the process.
In the remainder of this section we demonstrate how the theory of critical curves can be
employed to analyze such a global bifurcation from a mathematical point of view. Although
the complex basins are in our case created by local overshooting effects, this technique can
be used for the examination of the structure of the basins of attraction of any non-invertible
dynamics.

In Fig. 5c it can be observed that both LC−1 (which is the locus where the determinant
of the Jacobian vanishes, det DT(x1, x2) = 0) and LC= T (LC−1) are closed curves. The
region outside LC is the regionZ1 of points with only one rank-1 preimage, and inside LC
there are points with three rank-1 preimages, i.e. the regionZ3. Note that the regionZ3
is entirely included in the basins ofPIII andVI for this value ofλ. As λ is increased, the
critical curve LC and the stable set of the boundary fixed pointQIII , which constitutes the
boundary between the basins ofPIII andVIII , have a contact (in fact, numerical evidence
reveals that the first contact of LC and the boundary which separates the basins occurs
along the boundaryx2 = 1). After this contact occurred, a small portion ofZ3 enters the
basin ofVIII (compare Fig. 5c and d). This means that suddenly a small portion of the
basin ofVIII has a larger number of preimages, namely three instead of one. The two new
rank-1 preimages of this portion merge along LC−1 (Fig. 5d). Since they are insideZ3
these preimages again have three (rank-1) preimages (which are rank-2 preimages of the
small region which has been created when LC crossed the basin boundary). This leads to
an arborescent sequence of preimages. All these preimages belong to the basin of attraction
of VIII , since they are mapped into the immediate basin ofVIII after a finite number of
iterations.

Since the first contact of LC and the basin boundary betweenPIII andVIII occurs along
x2 = 1, the occurrence of the global bifurcation which changes the structure of the basins
can be understood by looking at the one-dimensional restriction of the mapT to the invariant
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Fig. 6. Illustration of the effect of the crossing of a basin boundary by a critical curve for the one-dimensional
restriction ofT to the linex2 = 1: (a) and (b)λ = 2.2/π ; (c)λ = 2.6/π . (P0 = 300, B = 100, C = 190, U = 32,
β1 = 1.21).

line x2 = 1.9 The critical points (local maxima and minima) of these restrictions are the
intersections of LC andx2 = 1. In Fig. 6 the graphs of this restriction,h(x) see (A.6) is
shown for the parameter values corresponding to Fig. 5a and b respectively.

In Fig. 6a the two stable fixed points have connected basins bounded by unstable fixed
points. The local minimum is inside the basin of the positive stable fixed point (see the
closeup in Fig. 6b). The change ofλ first causes a contact of the local minimum and the
unstable fixed point. After this contact a “hole” of the basin ofx = 0 is created around
the minimum. This can be clearly seen in Fig. 6c, whereH1, H2 andH3 indicate points
right of pIII1 which are mapped to the left ofqIII1 in 1, 2 respectively 3 iterations. All the
points in these intervals, therefore, belong to the basin of attraction of 0. It should be pointed
out that such a ‘basin bifurcation’ has to occur for any switching functionG, whereλ is

9 It should be emphasized that this is a special characteristic of this model, and no general property of this kind
of basin bifurcations.
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sufficiently large andβ sufficiently close toβ∗. So, the transition which is responsible for
non-connected basins in this framework does not depend on the exact specification ofG.

As λ is further increased, the portion of the immediate basin ofVIII insideZ3 becomes
larger and, consequently, the holes enlarge leading to even more fragmented and intermin-
gled basins. It is evident that although the attractors continue to be simple equilibria (stable
fixed points) the structure of the basins is getting more and more complex. This causes a
greater uncertainty about the long-run evolution of the system starting from a given ini-
tial condition in the following sense: A small change in the starting condition has a high
probability to cause a crossing of a basin boundary and, as a consequence, the convergence
to a different equilibrium. Hence, the long run outcome of the process now depends very
sensitively on the initial number of firms from both populations in the market.

We summarize the findings of this global analysis in our final proposition.

Proposition 6. For β2 ∈ (β̄2, β
∗) and β1 > β∗, where β1 is sufficiently close to β∗ and

λ sufficiently large, the basin of attraction of VIII is non-connected and has islands in the
basin of attraction of PIII . The number of population 2 firms which stay in the market in
the long run does not increase monotonously in the initial number of population 2 firms in
the market.

7. Discussion

In this paper we have used an evolutionary industry model to study the effect of spillovers
on the development of competing firm clusters. The decision of a firm whether to produce a
good for the market or to choose some outside option is made using a simple imitation type
decision rule. We have focused our analysis on the long run outcome of the dynamic adapta-
tion process in both populations and in particular have characterized the basins of attraction
of the stable market constellations for different parameter values. We have demonstrated
that a dynamic analysis of the evolution of market shares yields very precise insights into
the relationship between the size of spillover effects, the inertia in the process of market
exit and entry, initial market shares and the long run success of a firm cluster in the market.
The main findings of this analysis may be summarized as follows:

• For symmetric spillovers initial advantages in market share lead to long-run dominance
in the market. For growing industries this takeover occurs with a delay after an initial
growth period for both clusters.

• Increasing symmetric spillover effects increases market concentration if current spillovers
are small but decreases market concentration if current spillovers are large. In any case,
it facilitates the growth of the initially smaller firm cluster. The set of initial conditions
where the smaller cluster stays in the market increases with the size of the spillovers.

• If levels of spillovers are sufficiently large in both populations, increasing differences
in spillovers have discontinuous effects on the basins of long run equilibria. The set of
initial sizes where a cluster stays in the market increases abruptly as the advantages in
the spillovers crosses certain thresholds.

• For fast exit and entry behavior the sets of initial market shares yielding long run domi-
nance of different populations may be intermingled. Hence, long run market shares may
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depend sensitively on initial market shares and are not always monotonously increasing in
the initial cluster size. The faster the switching behavior the larger is the set of initial con-
ditions where the population with the smaller spillover effects can take over the market.

More generally, we have shown that the analysis of dynamic evolutionary models with
non-linear payoff structure may be challenging due to the presence of numerous coexisting
locally stable equilibria with complicated basins of attraction. For a sound understanding of
the long run properties of the process, a characterization of these basins is necessary and we
have demonstrated how the theory of critical curves can be used in addition to local bifurca-
tion theory to explain the structural changes in the long run properties of the process. The use
of this technique should facilitate the applicability of deterministic evolutionary analysis in
many other models as well, and could in some cases generate predictions for a more realistic
time horizon than a stochastic approach. Thus, we believe that the analysis provided here
is of general interest for researchers working in the field of evolutionary modeling as well.
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Appendix A

A.1. Proof of Proposition 1

We start the proof by giving a characterization of the equal profit curvesF1 andF2. The
curve of equal profitF1 is given by

Bβ1x
2
1 + Bβ1x1x2 + (B − A1β1)x1 + Bx2 + C1 − A1 = 0, (A.1)

and the curveF2 satisfies

Bβ2x
2
2 + Bβ2x1x2 + (B − A2β2)x2 + Bx1 + C2 − A2 = 0 (A.2)

Thus, these curves are hyperbolae with centersK1 = (−1/β1, (B+A1β1)/Bβ1) for F1 and
K2 = ((B +A2β2)/Bβ2,−1/β2) for F2. The slopes of the asymptotes are−1 and−∞ for
F1 and−1 and 0 forF2. We concentrate on the properties ofF1, the corresponding properties
of F2 follow by symmetry. Since the center ofF1 is left of [0,1]2, the curveF1 in this area is
upward bending (it has positive curvature). Analogously, the curveF2 is downward bending
(it has negative curvature). It is further easy to see from (A.1) that there has to be exactly one
intersection ofF1 with the line segment{0} × [0,∞). Note further that along any straight
line in [0,1]2 with slope-1 the overall number of firms in the market and, therefore, also the
market price stays constant. Since we assumeβi > 0, the profit differenceπi(x1, x2) − Ui

increases along any such line. In particular, this means that if we draw a straight lineL with
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slope -1 through an arbitrary point(x1, x2) of F1 we haveπ1(x̃1, x̃2) > U1 for every point
(x̃1, x̃2) ∈ L, such thatx̃1 > x1 andπ1(x̃1, x̃2) < U1 for every point(x̃1, x̃2) ∈ L, such
that x̃1 < x1. The same argument shows that ifL is a straight line with slope-1 through a
point (x1, x2) onF2 π2(x̃1, x̃2) < U2 for every point(x̃1, x̃2) ∈ L, such that̃x1 > x1, and
π2(x̃1, x̃2) > U2 for every point(x̃1, x̃2) ∈ L, such that̃x1 < x1.

We will now characterize the fixed points on the boundary. To minimize notation let us
denote the boundary line of [0,1]2 with x2 = 0 by BL1 the one withx1 = 1 by BL2, the
one withx2 = 1 by BL3 and the one withx1 = 0 by BL4. Due to our assumptions (3) and
(4) there has to be an odd number of intersections ofF1 respectivelyF2 with BL1 ∪ BL2
and an odd number of intersections in BL3 ∪ BL4. Note further that due to our assumption
thatβi > 0, F1 cannot intersect with BL1 without intersecting with BL4 andF2 cannot
intersect with BL4 without intersecting with BL1. Furthermore, the arguments in the last
paragraph imply that ifF1 intersects with BL1 the whole curve must lie below the straight
line with slope-1 through this intersection point, which in particular shows thatF1 cannot
also intersect with BL3. This leaves us with five different cases: (a) The equal profit curve
never enters [0,1]2. (b)F1 has one intersection point with BL1, then there has to be exactly
one intersection point with BL4 but no intersection points with BL2 and BL3. If F1 has no
intersection point with BL1 then there has to be exactly one intersection point with BL2 (if
there were more than one intersection points there would have to be at least three which
is ruled out by the hyperbolic shape ofF1). This gives three more cases. (c) There is one
intersection point with BL2 and one with BL4. (d) There is one intersection point with
BL2 and one with BL3; e) there is one intersection point with BL2, two intersection points
with BL3 and one intersection point with BL4. The claim of the proposition concerning the
boundary equilibria follows directly.

To show that there can be at most one interior fixed point, we simply have to observe
that if we draw a line with slope -1 through an intersection point(x∗

1, x
∗
2) of F1 andF2 all

points onF1 with x1 > x∗
1 have to lie above this line, all points onF1 with x1 < x∗

1 have to
lie below this line. On the other hand, every point onF2 with x2 > x∗

2 has to lie below the
line and any point onF2 with x2 < x∗

2 has to lie above this line. Therefore, there cannot be
a second point of intersection ofF1 andF2.

Finally, we show that the interior equilibrium is always unstable. Since we know that the
dynamics along the straight line with slope -1 points away from the equilibrium, obviously
the interior equilibrium always has to have at least one unstable manifold. Furthermore, it is
easy to realize that a straight line between(0,0) and the equilibrium never intersects either
F1 or F2. Given our assumptions about the direction of the dynamics at(0,0) it follows
that the dynamics points towards the interior fixed point along this line. Accordingly, the
interior fixed point either has to be a saddle point or a repelling node with one positive and
one negative eigenvalue, where both have absolute values larger than 1.

A.2. Proof of Lemma 1

The condition forF1 to have a tangency withx2 = 1 is that the equation

A − B(1 + x1) − C

1 + βx1
= 0. (A.3)
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which is equivalent to the quadratic equation

βBx2
1 − ((A − B)β − B)x1 − (A − B − C) = 0 (A.4)

has a positive real solution. Assumption (4) guarantees that the left hand side is positive for
x1 = 0. Hence, if there exist real roots, either both of them are negative or both of them are
positive. Real roots exist if

((A − B)β − B)2 − 4βB(C − (A − B)) ≥ 0. (A.5)

To show that there exists a pair of positive real numbers where the inequality is binding, we
observe that the left hand side goes to infinity forβ → ∞, is positive forβ = 0, and, given
assumption (4) is negative forβ = B/(A − B). We denote the two real roots of (A.5) by
0 < β̂ < β∗. It is now straight forward to see that (A.4) has two negative roots forβ < β̂,
no real roots forβ̂ < β < β∗ and two positive roots forβ > β∗.

A.3. Proof of Proposition 3

To understand the changes in the number of fixed points and their local and global stability
properties as the size of the spillovers cross the levelβ = β∗, it is useful to consider the
restriction of the mapT to the invariant linex2 = 1. Many properties of the two-dimensional
dynamical system on [0,1]2 can be inferred from this one-dimensional restriction. Forx2 =
1, the time evolution ofx1 is given by the systemx1,t+1 = h(x1,t ), where

h(x1,t ) = x1,t + x1,t (1 − x1,t )G

(
A − B(x1,t + 1) − C

1 + βx1,t

)
(A.6)

It follows from (4) and continuity that for small values ofβ the graph ofh lies below the di-
agonal on the entire interval(0,1). This implies that the maph has only two fixed points: 0 is
locally stable and 1 is unstable. Ifβ is increased, at the valueβ∗ the graph ofh touches the di-
agonal from below and, for even largerβ, a pair of additional fixed points appears10(as poin-
ted out in the text we only consider parameter values where this pair is in [0,1]). Clearly, the
stability properties of the corner fixed points remain unchanged, whereas the left of the two
new additional fixed points,qIII1 , is unstable and the right,pIII1 is stable. This can be easily
seen in Fig. 7, where we show a schematic representation of the restricted maph for β > β∗.

The maph is monotone ifλ is sufficiently small and thus any trajectory starting right
of qIII1 stays right ofqIII1 and converges topIII1 . On the other hand, any trajectory with
initial conditionx1,0 < qIII1 converges to 0. The local stability properties of the additional
fixed pointsqIII1 andpIII1 of h determine the stability of the fixed pointsQIII andPIII of
the mapT along the invariant manifoldx2 = 1. Standard local stability analysis shows
that the eigenvalue for the transversal eigenvector is given by 1−G(π2(x1,1)−U), where
x1 = qIII1 or x1 = pIII1 depending on the fixed point we consider. We treat the case ofQIII ,
but all arguments also apply toPIII . SinceQIII is a fixed point, we have

π1(qIII1 ,1) − U = A − B(1 + qIII1 ) − 1

1 + βqIII1
= 0,

10 In mathematical terms, the maph undergoes a tangent bifurcation (Lorenz, 1993).
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Fig. 7. The restriction of the mapT to the linex2 = 1 for β > β∗ and slow dynamics (P0 = 300, B = 100,
C = 190, U = 32, β = 1.5, β∗ = 1.21).

which implies

π2(qIII1 ,1) − U = A − B(1 + qIII1 ) − 1

1 + β
> 0.

Thus,G(π2(qIII1 ,1) − U) > 0 and the transversal eigenvalue is in(0,1). This implies
that QIII is a saddle point andPIII is locally asymptotically stable. The same line of
arguments as used to show that the backwards invariant diagonal cannot be crossed by
a trajectory implies that the stable set of the saddle pointQIII cannot be crossed if all
points in this set have only one rank-1 preimage. The properties ofG (in particular its
S-shape) imply that the map of the dynamics (5) is invertible on [0,1]2 for sufficiently
small λ. This implies that the considerations forx2 = 1 can be extended to the whole
unit square and forβ > β∗ and sufficiently smallλ the stable set of the saddle pointQIII
is a smooth curve connectingQIII and 0. The stable set ofQIII splits the former basin
of attraction ofVIII into a smaller basin ofVIII and a basin of attraction of the new sta-
ble equilibriumPIII . The triangular basin below the diagonal undergoes exactly the same
transition.

A.4. Proof of Proposition 4

(i) Like in the symmetric case, ifβ1 crosses the threshold valueβ∗, the curveF1 has a
contact with the linex2 = 1 and, ifβ1 is further increased, a pair of new equilibriaQIII
andPIII appears. In contrast to the case of a symmetric increase ofβ1 andβ2, this pair of
additional equilibria might in general also appear to the right of the intersection of the curve
F2 with x2 = 1. Hence, we have to show that under condition (12) the point where the curve
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F1 touchesx2 = 1 forβ1 = β∗ is left to the intersection ofF2 andx2 = 1. This intersection
(x̃1,1) is defined by the equalityA−B(1+ x1)−C/(1+β2) = 0, and, therefore, we have

x̃1 = 1

B

(
A − B − C

1 + β2

)
. (A.7)

(ii) If β1 is increased aboveβ∗, eitherQIII orPIII eventually collides with(x̃1,1). To prove
our claim we have to show thatPIII , which is right ofQIII , collides with(x̃1,1). Both at
QIII andPIII we haveA − B(1 + x1) − C/(1 + β1x1) = 0 and thus when one of the two
points collides with(x̃1,1) we must haveβ1x̃1 = β2, which implies

β1 = β̃1 := β2(1 + β2)B

(A − B)(1 + β2) − C
.

Note that the denominator is positive forβ2 > β̄2. Considering the derivative of population
1 payoffs with respect tox1 at this point forβ1 = β̃1, we get

∂π1(x̃1,1)

∂x1
= −B + Cβ̃1

(1 + β̃1x̃1)2
= −B + Cβ̃1

(1 + β2)2

= −B + CBβ2

(1 + β2)((A − B)(1 + β2) − C)
.

The last expression is negative if and only ifCβ2/((1 + β2)((A − B)(1 + β2) − C)) < 1.
Straightforward calculations show that this is true if and only if (12) holds. It follows from
π1(1,1) < 0 that, the inequality∂π1(x1,1)/∂x1 < 0 can only hold atPIII . Hence, under
condition (12) the pair of equilibria appears to the left of the intersection ofF2 with x2 = 1
and by the same arguments as used in the symmetric case the fixed pointQIII is a saddle
point,PIII is locally stable and the basins ofVI andPIII are separated by the stable manifold
of QIII .

To show (ii) we only have to observe that for the valueβ̃1 where(x̃1,1) andPIII collide
the equal profit curvesF1 andF2 intersect on the linex2 = 1. Accordingly, at this point the
interior equilibriumS moves through the equilibriumPIII on the boundary and an exchange
of stability occurs. The former stable equilibriumPIII becomes a saddle point and the interior
saddle pointS leaves the unit square. The stable set of the saddle pointPIII is the invariant
boundaryx2 = 1, but this line now is repelling in the transversal direction in a neighborhood
of PIII .

A.5. Proof of Proposition 5

It follows from the proof of Proposition 5 that forβ2 < β̄2 the pair of new equilibria
QIII , PIII which appears forβ1 = β∗ is initially right of the intersection ofF2 with x2 = 1.
This means that both are unstable in the direction transversal tox2 = 1. Accordingly,QIII
is unstable andPIII is a saddle point where the stable manifold is the linex2 = 1. Thus,
also forβ1 > β∗ there exist only two stable equilibria,VI , VIII and the basin of attraction
of VI increases continuously with increasingβ1, where the basin boundary is still given by
the stable manifold ofS. Forβ1 = β̃1, the interior equilibriumS wanders throughQIII and
the stable manifold ofS becomes the stable manifold ofQIII which is now a saddle point.
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Again, no discontinuous changes in the basins of attraction occur and forβ1 > β̃1 the basin
boundary is the stable manifold ofQIII .

Appendix B

Since we consider a case with symmetric parameter constellations we haveT1(x, y) =
T2(y, x)∀(x, y) ∈ [0,1]2. Let us denote the restriction of the map to the diagonal byf (x):
f (x) := T1(x, x) = T2(x, x). Thus,f ′(x) = T1x1(x, x) + T1x2(x, x). We show that any
intersection of the critical curve separating a region with three preimages,Z3, from the
region with only one preimage,Z1, with the diagonal has to be a critical point of the mapf .
This implies that the number of preimages off on the diagonal switches from 1 to 3. Let us
denote this intersection by(z, z). Any point on the critical curve has two rank-1 preimages,
two merging in a point of LC−1 and an extra preimage. Since the diagonal is invariant, at
least one of the two rank-1 preimages of(z, z) has to be on the diagonal. However, since the
dynamical system is perfectly symmetric with respect to the diagonal this implies that also
the second rank-1 preimage is on the diagonal. At the point(v, v) ∈ LC−1, where the two
merging rank-1preimages are located, the determinant of the Jacobian has to vanish. Due
to the symmetry of the mapT we haveT1x1(v, v) = T2x2(v, v), T1x2(v, v) = T2x1(v, v)

and the characteristic polynomial of the Jacobian at(v, v) is given by(T1x1 − ν)2 − T 2
1x2

.
Thus, the eigenvalues of the Jacobian at(v, v) are given byν1 = T1x1(v, v) + T1x2(v, v)

andν2 = T1x1(v, v) − T1x2(v, v). Simple calculations show that

T1x1(v, v) − T1x2(v, v) = 1 + (1 − 2v)G

(
A − 2Bv − C

1 + βv

)

+ v(1 − v)G′
(
A − 2Bv − C

1 + βv

)
Cβ

(1 + βv)2
.

From our assumption thatβ > 0 it follows from that this expression is positive. Since the
Jacobian has to vanish at(v, v), T1x1(v, v) + T1x2(v, v) = 0 has to hold. We know that
f ′(v) = T1x1(v)+T1x2(v) and this implies thatz has to be a critical point off . Accordingly,
the number of additional preimages of points on the diagonal across the critical curve with
respect toT coincide with the number of additional rank-1 preimages with respect tof . In
other words, all additional rank-1 preimages have to be on the diagonal. Observing that the
point (0,0) has one rank-1 preimage with respect toT and 0 has one rank-1 preimage with
respect tof now establishes that for all points on the diagonal the number of preimages with
respect toT and with respect tof coincide. Therefore, the diagonal is for all symmetric
parameter constellation forward and backward invariant with respect toT .

Having done this we show that for sufficiently fast switching there is local overshooting
around the interior fixed point on the diagonal, which implies that there is a regionZ3
aroundS in the unit square whereT has three preimages. The dynamics along the invariant
diagonal reads

xt+1 = f (xt ) := xt + xt (1 − xt )G

(
A − 2Bxt − C

1 + βxt

)
,
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wherex1,t = x2,t = xt . The derivative off is given by

f ′(x) = 1 + (1 − 2x)G

(
A − 2Bx − C

1 + βx

)

+ x(1 − x)G′
(
A − 2Bx − C

1 + βx

) (
−2B + βC

(1 + βx)2

)
.

We havef (0) = 0, f (1) = 1 and, due to assumption (3),f ′(0) > 1. Furthermore, we
know that there is at most one interior fixed point of the map. If such an interior fixed point
s exists, we therefore always havef ′(s) < 1. Since the second term in the expression forf ′
has to be 0 ats, the third one has to be negative which implies−2B + βC/(1+ βs)2 < 0.
Accordingly, we have

f ′(s) = 1 + G′(0)
(

−2B + βC

(1 + βv)2

)
,

which is negative for sufficiently largeG′(0) = λ. At the value ofλ wheref ′(s) = 0, a
critical curve appears which surrounds the interior fixed point for larger values ofλ.
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