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Abstract

This paper studies the evolution of two clusters of 1rms competing on a common market.
Firms exit and enter a cluster based on the perceived chances for pro1ts inside and outside the
cluster. Information about pro1ts are di4used by direct communication between 1rms. Internal
and external spillover e4ects reduce the overall costs of 1rms in the clusters depending on the
number of 1rms in the own and the competing cluster. A discrete time deterministic dynamical
system describing the evolution of cluster sizes is derived. An analysis of the long run attractors
of the system and their basins of attraction is used to compare the e4ects of advantages of a
cluster with respect to the size of internal and external spillover e4ects, respectively. Furthermore,
the implications of slow and fast exit and entry behavior of 1rms for the long run survival and
the size of the clusters are studied.
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1. Introduction

In his early contribution Marshall (1920) gives three di4erent reasons why clusters
of 1rms persist. First, 1rms locate near one another to decrease transportation costs.
Second, 1rms locate near one another so that workers can move from one 1rm to
another in the event of a 1rm speci1c downturn. Third and 1nally, 1rms locate near
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one another because of intellectual spillovers. In a widely cited paper, Krugman (1991)
develops a model based on the interaction of transportation costs and economies of
scale that shows how an industrialized core and an agricultural periphery can develop
endogenously. In a more recent paper Quah (2000) introduces a model to explain
the observed clustering where transportation costs do not matter, but clusters appear
as a result from a trade-o4 between productivity spillovers and a transient stickiness
in the factor input location. In this paper, we also focus on the third of Marshall’s
theories and analyze the intimate relationship between knowledge spillovers and cluster
development.

Globalization has dramatically reduced the cost of transporting not just material
goods but also information across distances. Many activities of 1rms in our information-
based and dynamic economy take place in low cost locations. Tacit knowledge, on the
other hand, cannot easily be transferred across geographic distance. Hence, knowl-
edge spillovers tend to be spatially restricted and many industries are characterized
by clustering of 1rms related to this industry in relatively small geographical regions.
Empirical evidence suggests that location and proximity are important factors in ex-
ploiting knowledge spillovers (see Head et al., 1995; Audretsch and Feldman, 1996;
Ellison and Glaeser, 1997). 1 Porter (1990, 1998) develops a coherent theory which
gives clusters a prominent role. He describes how clusters e4ect competition, produc-
tivity and innovation activities. Moreover, he analyzes how clusters develop, the role
of the government and the management of 1rms in this process and also relates his
cluster theory to the factors inEuencing the decision of corporations to locate in a
certain region. As one of the main driving forces behind cluster development, Porter
identi1es the ability of 1rms within a cluster to capture externalities and spillovers and
emphasizes that clusters can a4ect the productivity of other clusters as well. In other
words, not only spillovers within a cluster, but also between clusters are important for
cluster development. With regard to this latter point, empirical evidence exists. Head
et al. (1995) show that internal spillovers within each group of Japanese and American
car manufacturers in the US are larger than external spillovers between these groups.
Ellison and Glaeser (1997) 1nd in their empirical study that within-county spillovers
are stronger than nearby-county spillovers. Mans1eld (1988) demonstrates that the size
of internal and external spillovers di4er between di4erent regions and industries.

With respect to (government) policy at the cluster level, this raises the question of
the e4ect of creating comparative advantages of a local cluster in utilizing internal and
external spillovers. Empirical studies of e4ects of various public policies concerning
R&D and knowledge di4usion have been carried out for numerous industries (see e.g.
Movery and Nelson, 1999, for a recent contribution). Here, we take a di4erent approach
by considering a highly stylized dynamical model of two competing clusters to address
policy questions like: what are the conditions in terms of the di4erence between internal
and external spillovers that allow an initially marginal cluster to coexist with another

1 In a recent paper Dumais et al. (1997) 1nd empirical support for each of the three theories, where the
location process appears to be dominated by the labor mix of a particular area. They mention, however, that
this e4ect could potentially be occurring because industries with similar labor mixes share ideas as well as
workers and part of their labor e4ect is actually attributable to some form of intellectual spillover instead.



G.-I. Bischi et al. / Journal of Economic Dynamics & Control 27 (2003) 2171–2193 2173

cluster of (e.g. foreign) 1rms in the market? Under which circumstances may internal
and/or external spillover e4ects lead to a market takeover by one cluster? Furthermore,
is an increase in internal or external spillover e4ects more advantageous from the long
run perspective of a local industry group?

To answer these questions we carry out a dynamic evolutionary analysis of the
competition between two industry groups (one might think of Japanese and US car
manufacturers or software companies in the Bay and Boston area) under the presence
of internal and external spillover e4ects. The size of the two industry groups depends
on the attractivity of the market in which both groups compete, where attractivity is
expressed by the pro1ts achieved by 1rms who are producing for the market in relation
to the pro1t of some outside option. The market entry and exit decision of 1rms are
made on the basis of information about the relative pro1tability of the market which
has been collected via direct communication within the group. The evolution of the
sizes of the two 1rm clusters for such dynamics has been analyzed in Bischi et al.
(2002) in a framework where internal spillover e4ects within a cluster decreases overall
costs for a member of this group, but there are no spillover e4ects between clusters.
It has been shown there that increasing internal spillover e4ects make it easier for
relatively small clusters to stay in the market in the long run—even if spillover e4ects
increase symmetrically in both groups. If one of the two clusters gains increasing
advantages with respect to the size of internal spillovers, the e4ects of these asymmetry
are discontinuous. The size of initial market shares which lead to the long run survival
of a cluster change abruptly as the advantages in internal spillover e4ects cross certain
thresholds. Here we will build on these results and concentrate on the question of
what the implications of di4erences in the size of external spillover e4ects between
the two clusters are. We will characterize the evolution of the qualitative long run
properties of the model as the knowledge transfer stream between the two clusters
becomes asymmetric. Furthermore, we will discuss the implications of high Eexibility
in an industry which leads to fast exit and entry behavior of 1rms. Here the long
run implications of di4erences in spillover e4ects are almost impossible to predict and
providing generally valid policy recommendations becomes virtually impossible.

The paper is organized as follows. In Section 2 we introduce the model. Section 3
compares the e4ects of advantages in external and internal spillovers for slow dynamics.
Section 4 discusses the implications of fast switching behavior dynamics. Section 5
brieEy summarizes the main 1ndings. All proofs are given in Appendix A.

2. The model

Consider two groups of 1rms i = 1; 2 which have to decide whether to produce for
a certain market or not. Alternatively, you might think of two groups of investors who
have to decide whether to invest in a certain local industry branch or not. As laid out in
the introduction, the assignment into one of the groups may be, e.g., due to the national
origin of the 1rms or the current location. To keep matters as simple as possible we
assume that the two groups are of the same size and denote by xit the fraction of 1rms
in population i; i= 1; 2; which are in the market at time t. This fraction might as well
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be interpreted as the fraction of available capital in each country which is invested in
1rms in the market. Assuming constant returns to scale, it does not make a di4erence
for any of our arguments whether output within one country is produced by several
large or many small 1rms as long as no 1rm has relevant market power.

For reasons of simplicity it is assumed that every 1rm in the market produces one
unit of a homogeneous good per period. Aggregate output in the market is then given
by (x1 + x2) times the number of 1rms. The market clearing price is determined by an
inverse demand function

p= p(x1 + x2):

Due to internal spillovers within the group, overall costs are lower the more other 1rms
in the population produce the same good. Additionally, there are external spillovers
and cost reductions also arise due to production activities in the other population. We
include such cost externalities in our model by assuming that the unit costs for a
1rm depend on the number of 1rms from both populations which produce the good
in the market. We express unit costs of a 1rm in population i by ci(x1; x2), where
@ci=@xj6 0; i; j = 1; 2; @ci=@xi6 @ci=@xj; i; j = 1; 2; i �= j. Hereby we assume that
internal spillover e4ects are always stronger than spillover e4ects between populations.

This gives a per period pro1t of

�i(x1; x2) = p(x1 + x2) − ci(x1; x2):

The pro1t of a 1rm which stays out of the market (i.e. chooses the outside option) is
modeled as a stochastic variable. Outside pro1t of 1rm f in population i at time t is
uif; t with expected value Ui. Outside pro1ts are independent across individual 1rms in a
population and time. We write uif; t =Ui + �

i
f; t , where the density of �if; t is independent

of f and t, has full support R and is unimodal and symmetric with respect to 0. The
distribution function of �if; t is denoted by �i.

In each period t=0; : : : ;∞ every 1rm decides whether to enter or to exit the market. 2

We take an evolutionary approach here and assume that the 1rm due to the complexity
of the environment and a lack of information cannot act as a maximizer of the future
discounted pro1t stream who has perfect foresight. 3 Rather, it is assumed that 1rms
show imitative behavior based on information about pro1tability of the di4erent options
they can collect in their own population. 4 The collection of information is modeled
in the simplest possible way: every period every 1rm is able to observe the action

2 As indicated above, this can alternatively be interpreted as the decision of an investor in the population
to invest in this market by founding a production 1rm or to withdraw capital, respectively.

3 Hopenhayn (1992) provides an analysis of long run equilibrium behavior in a similar exit/entry model—
in the absence of externalities though—where 1rms have perfect foresight and maximize expected discounted
pro1ts.

4 Collecting information from the other population might, on one hand, be more diPcult if it is assumed
that these 1rms are situated in di4erent regions, and, on the other hand, less informative since the size of
the spillover e4ects, in general, vary signi1cantly between the populations.
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and pro1t of one other 1rm in the previous period where every other 1rm in the
population is sampled with an identical probability. If a 1rm samples another 1rm
which has chosen a di4erent action in the previous period, it switches (i.e. exits or
enters) whenever the pro1t of the other 1rm has been larger than its own pro1t. When
making this decision the 1rm ignores information it might have collected in previous
periods because the relative pro1tability of production in the market depends crucially
on the number of 1rms which are currently in the market. Past observations which
might correspond to very di4erent market conditions, therefore, have little signi1cance
for an estimation of the current relative pro1tability of the two options. The sampling
procedure is assumed to be stochastically independent from the outside pro1t uif; t and
this implies that the probability that an arbitrary 1rm in population i which is now in
the market exits after period t is

piout(x1; x2) = (1 − xi)P(�i(x1; x2)¡Ui + �if; t)

= (1 − xi)(1 −�i(�i(x1; x2) − Ui)):

On the other hand, a 1rm currently outside the market enters the market with probability

piin(x1; x2) = xiP(�i(x1; x2)¿Ui + �if; t)

= xi�i(�i(x1; x2) − Ui):

The expected fraction of population i 1rms (i = 1; 2) in the market is therefore

xi; t+1 = xi; t + (1 − xi; t)piin(x1; t ; x2; t) − xi; tpiout(x1; tx2; t)

= xi; t + xi; t(1 − xi; t)(�i(�i(x1; t ; x2; t) − Ui)
− (1 −�(�i(x1; t ; x2; t) − Ui))

= xi; t + xi; t(1 − xi; t)Gi(�i(x1; t ; x2; t) − Ui); (1)

where Gi(x) := 2�i(x)−1. The evolution of the fractions x1 and x2 are hence described
by a nonlinear deterministic system in discrete time. Word of mouth dynamics similar to
this one have been analyzed by Ellison and Fudenberg (1993, 1995) and Dawid (1999).
It is obvious that the shape of the function Gi depends on the distribution function �i.
However, from the fact that �i is a distribution function and the properties of the
corresponding density (unimodality and symmetry), it is easy to derive the following
statements for i = 1; 2:

Gi(0) = 0; lim
x→∞Gi(x) = 1; lim

x→−∞Gi(x) = −1:

Furthermore, Gi(x) is symmetric with respect to 0, convex on (−∞; 0] and concave
on [0;∞). The slope of Gi at 0 is twice the altitude of the hump of the unimodal
density. It will turn out that the qualitative properties of the long run behavior of the
dynamics in many cases crucially depend on the ‘speed’ of the Eow towards the action
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with the higher expected pro1t. Hence, we will use G′
i (0) as a measure of this speed

and denote it by �i. 5

Studying the nonlinear two-dimensional dynamical system (1) allows us to derive
qualitative features of the evolution of the fraction of 1rms of the two populations
which are in the considered market. In particular, we are interested in the question
of how initial market shares of 1rms of the two populations, x1;0 and x2;0, and dif-
ferences in (internal and external) spillovers inEuence the convergence properties of
the evolutionary process to some long run equilibrium (the agglomeration pattern). To
answer this question, we will provide an extensive analysis of the equilibria and their
basins of attraction. However, before we proceed we need to be more speci1c about
the functions involved.

We will assume that the demand curve is linear:

p(x1 + x2) = P0 − B(x1 + x2):

Furthermore, we use the following rational expression for the unit costs of a 1rm in
population i:

ci(x1; x2) =
Ci

1 + �ixi + �ixj
; i; j∈{1; 2}; i �= j:

The parameter �i incorporates the e4ect of internal spillovers, whereas �i characterizes
in how far spillovers occur externally between the two populations. As explained in
the introduction, the qualitative properties of the cost function are inspired by existing
theoretical and empirical works. To take account of the fact that internal spillovers are
stronger than those between populations (see Ellison and Glaeser, 1997; Head et al.,
1995), we assume that �i¿ �i. The pro1t of a 1rm in population i which is in the
market is then given by

�i(x1; x2) = P0 − B(x1 + x2) − Ci
1 + �ixi + �ixj

; i; j = 1; 2; i �= j: (2)

We will always assume that if all 1rms from both populations are in the market,
the payo4 for 1rms in the market is smaller than the expected outside pro1t. This
assumption rules out the rather unrealistic and uninteresting case where spillover e4ects
are so large and the market is so much more attractive than the outside option that all
1rms from both populations want to enter or stay under all circumstances. Hence, we
assume that �i6 �i ¡ T�i where

P0 − 2B− Ci
1 + 2 T�i

= Ui; i = 1; 2: (3)

On the other hand, the pro1t of the 1rm 1rst entering the market should be larger than
the expected outside pro1t. This condition is represented by

P0 − Ci ¿Ui; i = 1; 2: (4)

5 For many classes of distribution functions, like the normal distribution, a large slope of Gi at zero
corresponds to a small variance of the outside pro1t; for example, for the normal distribution �i is inversely
proportional to �.
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Additionally, we make the more technical assumption that, if there were no spillovers,
the expected pro1t of the outside option would be higher than the pro1t in the market
if half of the 1rms are in the market

P0 − B− Ci ¡Ui; i = 1; 2: (5)

By making this assumption we avoid the discussion of several cases. However, it would
be straightforward to extend the analysis to cases where this assumption does not hold.

Finally, we assume that if a 1rm enters the market, the marginal negative price e4ect
always outweighs the marginal positive e4ects from external spillovers for 1rms in the
competing cluster. This is ensured by

B¿�Ci; i = 1; 2: (6)

Using the expressions given above, we obtain the following evolutionary model which
describes the dynamics of the fraction of 1rms from both populations in the market:

x1; t+1 = x1; t + x1; t(1 − x1; t)G1

(
A1 − B(x1; t + x2; t) − C1

1 + �1x1 + �1x2

)
;

x2; t+1 = x2; t + x2; t(1 − x2; t)G2

(
A2 − B(x1; t + x2; t) − C2

1 + �2x2 + �2x1

)
; (7)

where Ai := P0 − Ui. We de1ne T : [0; 1]2 �→ [0; 1]2 as the right-hand side of (7) and
using this notation the system reads xt+1 = T (xt).

In general terms, we have derived a two-population evolutionary model with non-
linear payo4 functions and inter- and intra-population interaction. Obviously, the state
space S := [0; 1] × [0; 1] is invariant under the dynamics (7). As has to be ex-
pected for a nonlinear system like this, we will show that for di4erent parameter
constellations there exist several coexisting 1xed points x∗. We call the set BT (x∗) =
{x | limt→∞ T t(x)=x∗} the basin of attraction of the 1xed point x∗ for the mapping T .
For an isolated 1xed point x∗ the basin of attraction is of positive measure if and only
if the point is locally asymptotically stable. Standard arguments used in the evolution-
ary games literature (see e.g. Weibull, 1995) establish that every equilibrium of the
market game is a 1xed point of the map T . Additionally, the map T may have 1xed
points in [0; 1]2 which are no equilibria. However, none of these can be locally asymp-
totically stable. This means that every 1xed point x∗ of T where BT (x∗) has positive
measure has to be an equilibrium of the underlying economic system. In the following
two sections we will characterize how the set of equilibria changes as the ratios of the
spillover parameters of the two populations change. Furthermore, we will also describe
the transition of the basins of attraction of the coexisting equilibria. Hence, we will
provide a rather complete description of the relationship of initial and long run cluster
sizes which allows us to address the research questions given in the introduction.

To keep our exposition as clear and simple as possible and in order to focus on the
role of spillovers, we assume that the constant unit costs of a single 1rm from either
population are identical: C1=C2=C. In other words, the pro1t a single 1rm can achieve
when entering an empty market is independent of the population the 1rm belongs to.
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Furthermore, we assume that the distribution of the outside pro1t is identical in both
populations, i.e. �1 = �2, which in particular implies G1 = G2 := G and U1 = U2.
Therefore, we have A1 =A2 =A. The populations might di4er, however, with regard to
their infrastructure facilitating spillovers and cost externalities between their members
(i.e. with respect to �i and �i).

3. Asymmetric spillovers and their long run e�ects

In this section we will analyze the long run properties of the system under the
assumption that the market exit and entry behavior of 1rms is so slow that qualitatively
the system behaves like the corresponding continuous time system. In particular, let us
assume that the map T is invertible (it is easy to see that T is invertible on [0; 1]2 for
suPciently small �1 = �2 := �) and no local overshooting occurs. This corresponds to
a situation where the variance of the outside pro1t is large. In the following section
we will then discuss how far these 1ndings change if we allow for larger step sizes
and overshooting e4ects.

The implications of asymmetries in internal spillover e4ects in the absence of external
spillovers have been studied in detail in Bischi et al. (2002). Here we will concentrate
on the e4ects of asymmetries in the ability to transfer knowledge from outside into a
1rm cluster. In particular, we will also compare advantages in this respect to asymme-
tries in internal spillover e4ects. The assumption of asymmetric external spillovers is
motivated by empirical evidence. Mans1eld (1988) found in his study that countries
di4er with regard to their ability to adopt and use foreign technology. Whereas US
and Japanese 1rms were comparable in exploiting internally developed technologies,
the empirical evidence revealed a big di4erence in the use of externally based tech-
nologies. Japanese 1rms pursue foreign technology more aggressively and ePciently
than their rivals. Accordingly, there is evidence for an asymmetry in spillovers. Several
sources of external spillovers can be named, including transfers of knowledge between
two countries (due to, e.g., an exchange of engineers, managers and workers) and direct
foreign investment. See Chuang and Lin (1999), who identify foreign direct investment
as the major channel of technology transfer from multinational enterprises to domestic
1rms.

To analyze the system we de1ne the curves Fi; i = 1; 2, as the set of all points
(x1; x2) where the pro1t in the market equals the expected outside pro1t for a 1rm of
population i, i.e.

Fi = {(x1; x2)∈ [0; 1]2|�i(x1; x2) = Ui}: (8)

Interior equilibria exist at all intersections of the curves F1 and F2. Fixed points at the
boundary occur either at the intersection of F1 with x2 = 0 or 1, or at the intersection
of F2 with x1 = 0 or 1. Note, however, that 1xed points on the boundary might
not correspond to Nash equilibria of the model. The only 1xed points of the system
which do not lie on one of these curves are the vertices. We denote the vertices by
0 = (0; 0); VI = (1; 0); VII = (1; 1) and VIII = (0; 1). It is easy to see that under our
assumptions 0 and VII are unstable and therefore of limited interest. The remaining
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Fig. 1. Illustration of the properties of the equal pro1t curves F1 and F2.

vertices VI and VIII correspond to states where the market has been taken over by one
cluster which has reached its maximal possible size. Stability of these vertices depends
on the parameter constellation. The following lemma summarizes several properties of
the equal pro1t curves Fi which will be useful in the analysis.

Lemma 1. Under our assumptions the equal pro't curves have the following
properties:

(a) Let x̃ be an arbitrary point on F1 [on F2]. Then for every point x with x1 + x2 =
x̃1 + x̃2, we have (x1 − x̃1)(T1(x) − x1)¿ 0 [(x2 − x̃2)(T2(x) − x2)¿ 0].

(b) For x1 ∈ [0; 1] [x2 ∈ [0; 1]] the correspondence f2(x1) := {x2|(x1; x2)∈F1} [f1(x2)
:= {x1|(x1; x2)∈F2}] is either single-valued or empty. Where f1 [f2] is nonempty
we have (@=@�1)f2(x1)¿ 0; (@=@�1)f2(x1)¿ 0 [(@=@�2)f1(x2)¿ 0; (@=@�2)f1(x2)
¿0].

(c) The curves F1 and F2 are hyperbolae. The correspondences f1(x2) and f2(x1)
are concave functions on the range where they are nonempty.

(d) The curves F1 and F2 have at most one intersection in [0; 1]2. If there is an
intersection, this 'xed point of T is either a saddle or a repelling node.

(e) For �1 = �1 = 0 [�2 = �2 = 0], F1[F2] has exactly one intersection with the line
{0} × [0; 1] [[0; 1] × {0}].

The lemma is illustrated in Fig. 1 where we depict a typical pair of equal pro1t curves
F1; F2.

We can study the attractors and basins of attraction of our dynamic model by ana-
lyzing the changes in F1 and F2 as �i and �i change. We start with a scenario where
both internal and external spillover e4ects are weak and symmetric between the two
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populations and describe the transition as the 1rm cluster in population one is able
to gain advantages either in the internal or the external spillover parameters. All our
statements are formulated for the curve F1 but symmetric results hold for F2. It can
be easily seen (see Bischi et al., 2002) that for

�1¡�̂ :=
C

A− B − 1¿ 0;

the curve F1 has an intersection with the line segment [0; 1] × {0}. We call this point
PI = (pI1; 0). For symmetric internal spillovers �2 = �1 we also have an intersection
PIV = (0; pIV2) between F2 and {0} × [0; 1] where pIV2 = pI1. Point (a) of Lemma 1
shows that if we draw a straight line with slope-1 through an arbitrary point of F1

(F2), this line cannot have a second intersection with the curve F1 (F2). In particular,
this implies that F1 has to intersect {0}× [0; 1] between 0 and PIV (F2 has to intersect
[0; 1] × {0} between 0 and PI) regardless of �1 and �2. Hence, as long as we have
symmetric internal spillovers with �1 = �2¡�̂ the model always has three equilibria,
namely the interior 1xed point S, PI and PIV. PI and PIV are the only locally stable
1xed points of T , whereas the interior equilibrium S is a saddle point and its stable
manifold separates the basins of attraction of PI and PIV. Note that in the equilibrium
PI only 1rms from population 1 are in the market, whereas in PIV only 1rms from
population 2 are in the market. This implies that for small symmetric internal spillovers,
always one of the two clusters disappears in the long run. However, the decline of the
exiting cluster does not have to be immediate or monotonic. The trajectories of the
system 1rst approach the unstable manifold of the interior saddle point S and then
follow this manifold to one of the equilibria PI or PIV. Hence, if both clusters are
initially small they will both grow for some time until the market becomes tight, and
1rms where cost reductions due to spillovers are comparably small, start exiting the
market bringing down the ‘weaker’ cluster. If external spillovers are symmetric as well,
clearly the basins of attraction of the two stable 1xed points are separated by the main
diagonal of the unit square, which means that the cluster which is initially larger is able
to eventually drive the competing cluster out of the market. If the cluster in population
1 is able to improve its infrastructure in such a way that �1¿�2, the interior 1xed
point S and also its stable manifold moves up in the unit square which means that the
set of initial cluster sizes which will lead to market domination of cluster 1 increases.
Let us point out that the e4ect of advantages in external spillover e4ects are continuous
and coexistence of clusters can never occur as long as � is small. We illustrate this
scenario in Fig. 2 6 and move on to cases where spillover e4ects are more pronounced.
We will see that this allows for di4erent and more interesting long run patterns.

As � becomes larger than �̂ (note that �̂¡ T�), the two equilibria PI and PIV wander
through the vertices VI and VIII and disappear. The two stable equilibria are VI and
VIII then, which means that the cluster which takes over the market will grow to its
maximal possible size. The curve F1 has no intersection with [0; 1] × {0} anymore

6 In the numerical illustrations we always use the speci1cation G(x) = (2=�) arctan((��=2)x), where � =
�1 = �2. This function satis1es all the assumptions for the switching function G and � = G′(0).
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Fig. 2. Scenario with small internal and external spillovers: the two co-existing stable equilibria PI and
PIV with their basins of attraction and a trajectory converging to PI (P0 = 300; B = 100; C = 190;
U = 32; � = 0:1; �1 = 0:03; �2 = 0).

but this intersection point has moved to {1} × [0; 1]. We will take such a situation
with symmetric internal and external spillovers and two coexisting stable equilibria VI

and VIII as a starting point to compare the e4ects of unilateral increases of �i and �i.
We know from Lemma 1 (b) that the curve F1 moves upwards whenever either �1

or �1 is increased. Eventually, this might lead to a collision of F1 with [0; 1] × {1}
and to the creation of additional 1xed points of the dynamical system. If this collision
occurs to the left of the intersection of F2 with [0; 1]×{1}, a new stable equilibrium is
created and the long run properties of the process change signi1cantly. In the following
proposition we show that the implications of an increase in �1 and �1 are, however,
slightly di4erent:

Proposition 2. Consider a scenario with symmetric internal and external spillover
e;ects �1 =�2 =�I¿�̂; �1 = �2 = �I6 �I where no 'xed points other than the vertices
and S exist.

(a) There exists a value �∗1 (�I)¡�I such that when �1 is increased and crosses �∗(�I),
either a pair of 'xed points QIII = (qIII1; 1); PIII = (pIII1; 1); pIII1¿qIII1 is created
on [0; 1] × {1} or a 'xed point PIII enters this line from the vertex VIII. Either
PIII is a locally asymptotically stable equilibrium and QIII is a saddle point (if it
exists) or PIII is a saddle point and QIII a repelling node.

(b) If there exists a value �∗1 (�I)¡ T� such that a pair of 'xed points PIII and QIII

with properties like in (a) are created when �1 crosses �∗1 (�I), then we always
have �∗(�I) − �I¡�∗(�I) − �I.
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(c) Whenever a unilateral increase of �1 beyond �∗1 (�I) creates a locally asymptoti-
cally stable equilibrium PIII ∈ [0; 1]×{1}, a unilateral increase of �1 beyond �∗1 (�I)
creates a locally asymptotically stable equilibrium as well (but not vice versa).

Mathematically speaking, the crossing of F1 with [0; 1] × {1} triggers a tangent
bifurcation (see Lorenz, 1993). If the new equilibrium PIII is stable it has a basin of
attraction of positive size as soon as it appears. This basin is bounded by the stable
manifolds of the two saddle points QIII and S. Thus, in economic terms a unilateral
increase of either �1 or �1 initially has continuous e4ects in the sense that the sets
of initial cluster sizes which lead to market dominance of cluster 1 1rst increases
continuously. However, as soon as one of the thresholds �∗1 or �∗1 are crossed we get an
abrupt qualitative change of the long run properties. For all initial cluster sizes between
the stable manifolds of S and QIII, now the cluster in population 1 is able to survive in
the long run although the cluster in population 2 is always larger. This means that if the
advantages of population 1 with respect to spillover e4ect becomes larger than a certain
threshold, this population suddenly is able to survive in the market even if the cluster
in the other population has a rather large advantage in market share. Interestingly, in
his paper, Krugman (1991) mentions that such e4ects are of empirical relevance. He
writes, after describing the e4ects of transportation costs and increasing returns on the
geographical concentration: “This not entirely imaginary history suggests that small
changes in the parameters of the economy may have large e4ects on its qualitative
behavior. That is, when some index [...] crosses a critical threshold, population will
start to concentrate and regions to diverge; once started, this process will feed on
itself.” (p. 487).

Comparing the e4ects of increases in �1 and �1 we can clearly see that increasing
�1 is more e4ective. Whenever an increase in �1 can create a new equilibrium where
cluster 1 is able to stay in the market as the smaller cluster, such an equilibrium can
also be created by an increase in �1, and the increase in �1 needed is always smaller
than that needed in �1. To get a better economic interpretation of this fact we observe
that

�1 = −C1c1x2 (x1; x2; �1; �1)
c1(x1; x2; �1; �1)2 ; �1 = −C1c1x1 (x1; x2; �1; �1)

c1(x1; x2; �1; �1)2 :

Using this, it can be easily derived that �∗1 − �1¡�∗1 − �1, implies that

c1x2 (x1; x2; �1; �1)
c1(x1; x2; �1; �1)

− c1x2 (x1; x2; �1; �∗1)
c1(x1; x2; �1; �∗1)

¡
c1x1 (x1; x2; �1; �1)
c1(x1; x2; �1; �1)

− c1x1 (x1; x2; �∗1 ; �1)
c1(x1; x2; �∗1 ; �1)

holds for x1 =x2. Note that c1x2 (x1; x2; �1; �1)=c1(x1; x2; �1�1) gives the relative marginal
cost e4ect for cluster 1 1rms of an increase of cluster 2, whereas c1x1 (x1; x2; �1; �1)=c1(x1;
x2; �1; �1) gives the relative marginal cost e4ect for cluster 1 1rms of an increase of
cluster 1. Our result says that in order to create the equilibrium QIII, the required in-
crease in the marginal cost e4ect of one additional 1rm in the market is smaller if
it is targeted at foreign 1rms rather than domestic ones. Of course, it is still debat-
able whether such an increase is equally feasible if external rather internal spillovers
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Fig. 3. E4ects of advantages in the size of external spillovers with slow dynamics: (a) �1 = 0:076; (b)
�1 = 0:077; (c) � = 1:2 (P0 = 300; B = 100; C = 190; U = 32; � = 1; �2 = 0).

are involved, and clearly our model is far too abstract to address this question. Note
also that (b) does not say that an increase of �1 within the admissible range [0; T�]
always leads to the creation of additional equilibria. On the other hand, an increase of
�1 within the admissible range always leads to the creation of additional 1xed points
(they might be unstable however).

In cases where no saddle point QIII exists on (0; 1) × {1} (because either PIII wan-
dered through VIII at �1 = �∗ or QIII wandered through VIII as �1 was increased further)
all initial conditions left of the stable manifold are attracted by PIII. Hence, if �1 is suf-
1ciently increased that such a scenario is reached, the cluster in population 1 survives
regardless of the initial ratio of cluster sizes.

In Fig. 3 we illustrate a transition of the type described above. Fig. 3a shows the
basins of the two stable equilibria VI and VIII for symmetric values of � and slightly
asymmetric external spillovers. Fig. 3b shows the basins of attraction, after �1 has
been increased above �∗1 and the pair of equilibria PIII and QIII has been created. A
similar picture could have been produced by increasing �1 but the necessary increases
would have been larger. If the value of �1 is further increased, the saddle point QIII

moves through the vertex VIII and the vertex becomes unstable (due to a transcritical
bifurcation, where a change of stability occurs). After this bifurcation there are only
two stable equilibria namely PIII and VI. In other words, regardless of the initial market
shares, 1rms from population 1 are never completely driven out of the market. This
situation is illustrated in Fig. 3c. It is interesting to note that if �1 were increased
instead of �1, there would always be a set of initial cluster sizes where the cluster
in population 1 vanishes. This is easy to see, since the intersection point of F1 with
{0} × [0; 1] does not change for increasing �1 and therefore always stays below VIII.
This shows that population 1 has to create suPciently large external spillover e4ects,
in order to guarantee the survival of a 1rm cluster regardless of the initial relative
size.

A further increase of �1 1nally leads to a collision of the interior 1xed point S with
the boundary 1xed point PIII (with a corresponding exchange of stability) and after
that the only stable 1xed point is VI. Thus, population 1 takes over the entire market
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regardless of the initial market conditions. Note that, again, we have an instantaneous
change of the long run behavior of the system. If �1 is only slightly smaller than the
bifurcation value, there is still a set of initial market constellations with positive and
often signi1cant measure which lead to long run market participation of all population 2
1rms. As soon as �1 crosses this value and is slightly larger, all 1rms from population 2
leave the market and choose the outside option for all those initial states. For di4erent
parameter settings these two transitions might occur in reversed order, however, with
the same 1nal result.

Symmetry arguments show that a similar transition along the border line x1=1 occurs
if external spillovers from population 1 to population 2 are increased. Hence, there are
four coexisting locally stable 1xed points if external spillovers in both populations are
identical and suPciently large. In contrast to the case where only internal spillovers
exist, a further increase of �1 =�2 leads to the disappearance of the two stable equilibria
on the vertices. Therefore, only two stable equilibria are left, one in the interior of the
upper edge of the unit square and one in the interior of the right edge of the unit square.
Accordingly, our analysis yields a very intuitive result: large transfers of knowledge
between the two populations (due to large external spillovers) result in the long run
participation of 1rms from both populations in the market.

This concludes our discussion of the e4ects that comparative advantages in internal
and external spillovers have on the long run evolution of the cluster in population 1
under the assumption that exit and entry behaviors of 1rms in both populations is slow
and the system evolves in small step sizes. The Eexibility of 1rms and the speed of
exit and entry, however, di4ers signi1cantly between industries. In particular, for the
study of branches of the ‘new economy’ it should be analyzed whether the qualitative
insights obtained in this analysis can be upheld if fast dynamics are considered.

4. Fast dynamics and basin bifurcations

In the description of the e4ects of an increase of �1, so far we have considered slow
dynamics. In particular, in our discussion we have implicitly assumed that the stable
manifolds of the saddle points separating the basins of attraction are never overshot by
the dynamics which means that they are forward and backward invariant. Hence, we
were dealing with connected basins of attraction of all equilibria. In Fig. 4 we show the
basins of attraction of the stable equilibria for increasing �1, however this time for fast
switching behavior of the agents (i.e. a large value of �; recall that this corresponds to
a small variance of the outside option). We start with the symmetric case where the
only stable equilibria are VI and VIII and unilaterally increase �1. Fig. 4a shows the
situation where �1 is slightly smaller than �∗(�I). Again we can see that this increase
had a continuous e4ect by slightly enlarging the basin of VI. After �1 crosses �∗ the
situation becomes, however, much more complex (see Fig. 4b). The pair of new 1xed
points PIII; QIII emerges—as discussed in the previous section—where PIII is locally
asymptotically stable. But the basin of attraction of PIII has quite a complex structure
since it is intermingled with the basin of VIII. Quite obviously the prediction of long
run outcomes based on the initial cluster sizes is very diPcult and sensitive to small
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Fig. 4. Transition of the basins of attraction of the locally stable equilibria for fast dynamics, symmet-
ric internal spillovers and increasing positive external spillovers from population 2 to population 1 1rms:
(a) �1 = 0:076; (b) �1 = 0:077; (c) �1 = 0:08; (d) �1 = 0:1 (P0 = 300; B = 100; C = 190; U = 32;
� = 1; �2 = 0; � = 7:6=�). The white region in (d) represents the basin of a 4-cycle along the line x2 = 1.

changes in the initial conditions. For a given number of 1rms in population 1 in the
market, an increase in the initial number of 1rms from population 2 in the market
does not necessarily imply a higher long run market share for this population. On the
contrary, a higher initial fraction of 1rms in the market may lead to a long run market
share of zero whereas a lower initial fraction leads to the convergence to PIII and the
long run survival of a 1rm cluster from population 2 in the market.

If we compare Fig. 4b to Fig. 3b (all parameters but � are identical in these two
1gures) we realize that the faster dynamics in Fig. 4b reduces the advantages popu-
lation 1 can gain from the higher external spillover e4ects directed towards 1rms in
this cluster. The set of initial conditions where the population survives in the market
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is substantially smaller in the fast dynamics scenario. Note, however, that the constel-
lation of 1xed points and their local stability properties are identical in both 1gures.
Accordingly, and this is important to realize, local analysis cannot be used to explain
this change in the long run properties of the process.

In order to understand the occurrence of such a global bifurcation from a mathemat-
ical point of view we can employ the theory of critical curves (see e.g. Mira et al.,
1996). We believe that this theory is a very useful tool to analyze the global proper-
ties of evolutionary and more general dynamic economic models which otherwise, in
general, have to be examined by simulation methods. Therefore, we provide a (very)
brief sketch of the argument here in order to outline their use. For general de1nitions
and more extensive explanations we refer to Mira et al. (1996) or Abraham et al.
(1997). For a more extensive analysis along these lines in a version of this model
without external spillover e4ects the reader should consult Bischi et al. (2002). Criti-
cal curves separate areas where the number of (rank-1) preimages of points coincide.
Whenever points have di4erent numbers of (rank-1) preimages, there has to be at least
one critical curve between these points. If we denote the set of all points where the
determinant of the Jacobian of the map T vanishes by LC−1, then the critical curve LC
can be determined by applying the map T to all points of this set, i.e. LC = T (LC−1).
Whereas in this model there are no critical curves in [0; 1]2 for small � (which means
that the map T is invertible on the unit square), for increasing � a closed critical curve
surrounding the interior 1xed point S appears and expands. The region outside LC is
the region Z1 of points with only one rank-1 preimage, and inside LC there are points
with three rank-1 preimages, which we call Z3. Let us now consider the transition from
Fig. 3b to Fig. 4b. If the speed of the dynamics increases from the level in Fig. 3b,
eventually a closed critical curve around S appears. Initially, the region Z3 inside this
curve is entirely included in the basins of PIII and VI, but as � is further increased,
the critical curve LC and the region Z3 expands. Due to this expansion, LC even-
tually contacts the stable set of the 1xed point QIII, which constitutes the boundary
between the basins of PIII and VIII (in fact, numerical evidence reveals that the 1rst
contact of LC and the boundary which separates the basins occurs along the boundary
x2 = 1). After this contact occurred, a small portion of Z3 enters the basin of VIII.
This means that suddenly a small portion of the basin of VIII has a larger number of
preimages, namely three instead of one. The two new rank-1 preimages of this por-
tion merge along LC−1. Since they are inside Z3 these preimages again have three
(rank-1) preimages (which are rank-2 preimages of the small region which have been
created when LC crossed the basin boundary). This leads to an arborescent sequence of
preimages. All these preimages belong to the basin of attraction of VIII, since they are
mapped into the immediate basin of VIII after a 1nite number of iterations, and hence
we get the islands of the basin of VIII within the basin of PIII which are observable in
Fig. 4b.

We do not regard these 1ndings as mathematical artifacts of our dynamic model,
but there is a clear economic mechanism at work, namely the interaction of price
Euctuations on the market (which corresponds to Euctuations in the size of cluster 1)
and large externalities in population 1. In the absence of externalities the exit and entry
dynamics around PIII, which is driven by price Euctuations, would result in dampening
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Fig. 5. Evolution of the size of the cluster in population 1 for initial conditions x1;0 = 0:4; x2;0 = 0:6.
(P0 = 300; B = 100; C = 190; U = 32; � = 1; �1 = 0:8; �2 = 0; � = 7:6=�).

oscillations and eventual convergence to PIII. However, in our scenario a massive exit
of 1rms of cluster 1 in a period might lead to such a strong increase in the production
costs in the cluster (due to the reduced spillover e4ects) that the increase of the market
price is not suPcient to make it pro1table to produce for the market. In such a case,
cluster 1 is of no viable size anymore and quickly disappears. Basin bifurcations similar
to this which lead to intermingled basins of attraction have been observed before in
dynamic economic models (e.g. Bischi et al., 2000b; Bischi and Kopel, 2001).

If �1 is further increased and the dynamics is suPciently fast, the 1xed point PIII

becomes unstable along the invariant line x2 = 1 and bifurcates into cyclical attrac-
tors of increasing period situated between QIII and VII. These attractors expand until
the cyclical or chaotic attractor collides with QIII. After such a collision all trajecto-
ries oscillating around PIII are eventually mapped into the area left of QIII and end
up in VIII. Consequently, the only attractors of the adaptation dynamics generated by
the map T on the unit square are again VI and VIII (Fig. 4c). Interestingly, we get a
counterintuitive result stating that the further increase of �1 has weakened the position
of population 1. The mixed equilibrium has disappeared, and the situation is some-
how reminiscent of the scenario before any basin bifurcation has occurred; compare
Figs. 4a and c.

Note, however, that although the basins in (a) and (c) look similar, the transient
behavior of a trajectory (x1; x2)t for these two parameter settings in general di4ers
signi1cantly. In particular, in case (c) trajectories close to the line x2 = 1 in general
oscillate for some time before converging to VIII. In Fig. 5 we show the sizes of
the cluster in population 1 along such a trajectory. The cluster initially grows, but
soon shrinks and is able to survive for a substantial period of time showing persistent
oscillations of size before it suddenly disappears.



2188 G.-I. Bischi et al. / Journal of Economic Dynamics & Control 27 (2003) 2171–2193

On the other hand, for low �1 the 1rms in population 1 start leaving the cluster
when the market gets tight and after that period, the cluster in population 1 shrinks
continuously until it vanishes. So, if we just look at the transient behavior, increasing
external spillovers from population 2 to population 1 have the e4ect of keeping 1rms
from population 1 in the market for a longer period of time, although in both cases they
eventually leave the market. This transient e4ect of a viable population 1 cluster only
becomes a long term e4ect if �1 is further increased and scenario (d) is obtained. The
1xed point QIII moves towards VIII as �1 is increased and eventually crosses the critical
curve LC again and wanders from the region Z3 back to the region Z1. After this has
happened, the stable manifold of the saddle point is again forwards and backwards
invariant and no trajectory with initial conditions to the right of this boundary can
converge to VIII. All the trajectories between the stable manifold of QIII and the stable
manifold of the interior equilibrium S converge to some attractor on [0; 1] × {1} (see
Fig. 4d). This attractor might be either cyclical or chaotic, but now the advantages in
the spillover size are so large that these oscillations never lead to a shrinking of the
cluster below the size it needs for survival.

This example of a transition with fast dynamics shows that not all 1ndings in the pre-
vious section obtained using slow dynamics do necessarily hold if switching behavior
is fast. Increasing the size of external spillover e4ects facilitates persistent oscillations
of the cluster size if the exit and entry behavior is very Eexible. These oscillations
bear the danger that the cluster becomes so small that entering is unattractive in spite
of the large inEux of knowledge from outside (remember that we always assume that
spillovers within the cluster are larger than between the clusters). We have seen that
due to this e4ect the implications of an increase in �1 can be negative in some cases.

The basin bifurcations in this model always imply that the basin of a vertex in-
vades that of an equilibrium on the boundary. Accordingly, the subsequent change of
the structure of the basins always increases the size of the basin of the vertices and
strengthens the position of the population with the larger initial market share compared
to that with the higher ability to utilize spillover e4ects. This yields the interesting
result that in Eexible industries with low exit and entry barriers the e4ect of initial
advantages in cluster size for the long run survival and size of a cluster is larger than
in industries with slower exit and entry behavior. In these inert industries di4erences in
the ability of the clusters to create external and internal spillover e4ects are of higher
importance.

These observations might raise the question whether our results from the last section
about the comparison of advantages in �1 and �1 change qualitatively if fast dynamics
are considered. Of course, the fact that the additional equilibrium PIII appears ‘earlier’
if �1 rather than �1 is increased is independent of the speed of the dynamics. Also, it is
easy to see that the equilibrium QIII is further left on [0; 1]×{1} for parameters (�I; �1)
compared to (�1; �I) where �1−�I=�1−�I. This suggests that not only advantages in ex-
ternal spillover e4ects needed to create the market sharing equilibrium PIII are smaller
but that the expansion of the critical curve needed to create a basin bifurcation—
which hurts the population with the spillover advantages—is larger than that for iden-
tical advantages in �1. Strictly speaking, we have to take into account the di4erences
in the critical curves as well, so this is no rigorous formal argument. However, the
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intuition behind this has been backed up in all the scenarios we have numerically ex-
amined. In all cases, advantages in �1 yielded a vastly larger set of initial cluster sizes
leading to long run survival of the cluster from population 1 than identical advantages
in �1.

5. Conclusions

This study shows that gaining advantages in the size of inter-cluster spillovers are
more ePcient in gaining long run market presence or market dominance than gain-
ing advantages of comparable size for intra-cluster spillovers. Furthermore, it has been
shown that in cases where market exit and entry behavior of 1rms is fast there is a
region of initial cluster sizes where a prediction of the long run size of the clusters
is virtually impossible (although we do not take any stochastic outside inEuences into
account). In such situations a policy increasing advantages in external spillovers might
have a detrimental e4ect on the long run size of a cluster. The reason of such un-
predictability is not complex long run behavior of the system but the interaction of
overshooting at the split market equilibrium with externalities. In very liquid markets,
like stock markets, the importance of such overshooting phenomena is well known
and with the lowering of entry barriers in new technology industries, like the software
industry, the implications of fast switching we have identi1ed here should be of high
relevance for the understanding of the e4ects of industrial policies.
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Appendix A.

A.1. Proof of Lemma 1

(a) Note that along any straight line in [0; 1]2 with slope-1 the overall number of
1rms in the market and, therefore, also the market price stays constant. Since we
assume �i¿ �i, the pro1t di4erence �i(x1; x2) − Ui increases along any such line. In
particular, this means that if we draw a straight line L with slope-1 through an arbitrary
point (x1; x2) of F1, we have �1(x̃1; x̃2)¿U1 for every point (x̃1; x̃2)∈L, such that
x̃1¿x1 and �1(x̃1; x̃2)¡U1 for every point (x̃1; x̃2)∈L, such that x̃1¡x1. The same
argument shows that if L is a straight line with slope-1 through a point (x1; x2) on F2

�2(x̃1; x̃2)¡U2 for every point (x̃1; x̃2)∈L, such that x̃1¿x1, and �2(x̃1; x̃2)¿U2 for
every point (x̃1; x̃2)∈L, such that x̃1¡x1.

(b) The curve of equal pro1t F1 is given by

B�1x2
1 + B(�1 + �1)x1x2 + B�1x2

2 + (B− A1�1)x1 + (B− A1�1)x2 + C1 − A1 = 0

(A.1)
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and the curve F2 satis1es

B�2x2
2 + B(�2 + �2)x1x2 + B�2x2

1 + (B− A2�2)x2 + (B− A2�2)x1 + C2 − A2 = 0:

(A.2)

Let us de1ne g(x2; x1) as the left-hand side of (A.1) for a given x1 ∈ [0; 1]. Clearly,
the set f2(x1) is given by the set of roots of this quadratic equation. The equation can
have two positive real roots only if the following two conditions hold:

g(0; x1) = B�1x2
1 + (B− A�1)x1 + C − A¿ 0;

g′(0; x1) = B(�1 + �1)x1 + B− A�1¡ 0:

From the 1rst of these inequalities we get using A¿C (see (4))

A¡Bx1 +
B
�
:

From the second we get using �¡�

A¿B
(

1 +
�
�

)
+
B
�
:

Clearly, these two inequities cannot be ful1lled simultaneously and accordingly g can
have either one or no positive real root. Assuming that f2(x1) is single-valued at x1,
total di4erentiation of

A− B(f2(x1) + x1) − C
1 + �1x1 + �1f2(x1)

= 0

yields

@
@�1

f2(x1) =
C

B(1 + �1x1 + �1f2(x1))2 − �1C
x2¿ 0;

@
@�1

f2(x1) =
C

B(1 + �1x1 + �1f2(x1))2 − �1C
x1¿ 0

due to (6).
(c) For �1 = �1 (�2 = �2), F1 (F2) is given by a pair of straight lines with slope -1.

From (A.1) and (A.2) we can see that for �i �= �i, these curves are given by hy-
perbolas with centers K1 = (−(B + A1�1)=B(�1 − �1)); (B + A1�1)=B(�1 − �1) for F1

and K2 = ((B + A2�2)=B(�2 − �2));−(B + A2�2)=B(�2 − �2) for F2. The slopes of the
asymptotes are −1 and −�1=�1¡− 1 for F1 and −1 and −�2=�2¿− 1 for F2. More-
over, for �1¿�1 the center of F1 is left of [0; 1]2, which implies that the curve f1 is
a concave function of x2. Analogously, due to symmetry, the curve f2 is a concave
function of x1.

(d) If we draw a line with slope-1 through an intersection point (x∗1 ; x
∗
2 ) of F1 and F2,

all points on F1 with x1¿x∗1 have to lie above this line, all points on F1 with x1¡x∗1
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have to lie below this line. On the other hand, every point on F2 with x2¿x∗2 has
to lie below the line and any point on F2 with x2¡x∗2 has to lie above this line.
Therefore, there cannot be a second point of intersection of F1 and F2. Since we know
that the dynamics along the straight line with slope-1 points away from the equilibrium,
obviously the interior equilibrium always has to have at least one unstable manifold.
Furthermore, it is easy to realize that a straight line between (0; 0) and the equilibrium
never intersects either F1 or F2. Given our assumptions about the direction of the
dynamics at (0; 0), it follows that the dynamics points towards the interior 1xed point
along this line. Accordingly, the interior 1xed point either has to be a saddle point
or a repelling node with one positive and one negative eigenvalue, where both have
absolute values larger than one.

(e) Using the notation of the proof of (b) we get for �1 =�1 =0: g(0; 0)=C−A¡ 0
(due to (4)) and g(1; 0) = B+C − A¿ 0 (due to (5)). Together with (c) this implies
point (e) of the Lemma.

Proof of Proposition 2. (a) For �1 = �I the curve F1 is a straight line with slope-1.
Since we know that it has an intersection with {1} × [0; 1] for �I¿�̂, this line has
to have an intersection with [0; 1]×{1} as well. Using the fact that F1 is a hyperbola
which is upward bending in [0; 1]2 and continuously moves upwards as �1 is increased
(Lemma 1) establishes that there has to be a value �∗(�I)¡�I such that either a pair
of intersection points QIII; PIII appear in the interior {1} × (0; 1) or F1 goes exactly
through VIII yielding a single intersection point PIII. Since F1 moves upwards, it is
clear that QIII moves left and PIII moves right as �1 is further increased. Further,
it is straightforward to see that QIII is repelling along the invariant manifold x2 = 1
whereas PIII is stable along this line. The stability in the transversal direction depends
on whether the point is left or right of the intersection of F2 with [0; 1] × {1}.

(b) Assume that there exists a �∗(�I) such that F1 touches [0; 1] × {1} for �1 = �∗.
Then at the tangent point (x̃1; 1) we have

0 = A− B(1 + x̃1) − C
1 + �Ix̃1 + �I + (�I − �∗)x̃1

¡A− B(1 + x̃1) − C
1 + �Ix̃1 + �I + (�I − �∗)

:

This implies that for �1 = �I; �1 = �I + (�∗ − �I), the curve F1 is above [0; 1] × {1}
at (x̃; 1). Since we know that the intersection of F1 with x1 = 1 is below VII there
has to be an intersection of F1 with [0; 1] × {1} at (x̃; 1) between (x̃1; 1) and VII for
these parameter values. Since F1 is continuously moving upwards for increasing �1,
this shows that �∗(�I)¡�I + �∗ − �I.

(c) Assume that there exists a �∗ such that a new pair of 1xed points emerges at
[0; 1] × {1}. The equilibrium PIII is stable if the pair of 1xed points QIII; PIII emerges
left of the intersection of F2 with [0; 1] × {1}—we call this intersection point (x̃1; 1).
This implies that as �1 is further increased the point PIII wanders through (x̃1; 1). Since
PIII is stable along x2 = 1 we always have @�1(pIII1; pIII2)=@x1¡ 0. In particular, this
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means that the pair of equilibria appears left of (x̃1; 1) if and only if

@�1(x̃1; 1)
@x1

= −B+
C�̃1

(1 + �I + �̃1x̃1)2
¡ 0; (A.3)

where

A− B(1 + x̃1) − C
1 + �I + �Ix̃1

= 0

and

�̃1x̃1 + �I = �I + �Ix̃1:

The same argument shows that the pair of equilibria created by increasing �1 appears
left of (x̃1; 1) if and only if

@�1(x̃1; 1)
@x1

= −B+
C�I

(1 + �̃1 + �Ix̃1)2 ¡ 0;

where x̃1 is de1ned as above and �̃1 by

�Ix̃1 + �̃1 = �I + �Ix̃1:

Assuming that (A.3) holds we get

@�1(x̃1; 1)
@x1

= −B+
C�I

(1 + �̃1 + �Ix̃1)2

= −B+
C�I

(1 + �I + �Ix̃1)2

¡−B+
C�̃1

(1 + �I + �̃1x̃1)2

¡ 0:

Hence, given that the equilibria created by increasing �1 are stable in the transversal
direction, also the equilibria created by increasing �1 have to be stable in the transversal
direction.
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