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Abstract

We propose a game-theoretic model in which each firm chooses the level of economic activity
on the basis of its own financial conditions and of the financial conditions of rival firms. The model
generates the laws of motion of firms’ net worth which may determine convergence to a symmetric
steady state or more complex dynamical behaviors, periodic or chaotic, depending on the values of
the parameters.
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1. Introduction

In the theoretical literature, financial fragility and instability have been associated with
models of (sometimes vicious) interaction between financial and goods markets. This litera-
ture has been pioneered by Minsky (seeMinsky, 1982) and recently revived in the new view
of the relationship between imperfect financial markets and the macroeconomy (Bernanke
et al., 1999; Greenwald and Stiglitz, 1993; Kiyotaki and Moore, 1997). In the presence
of asymmetric information, in fact, financing constraints are important in investment and
production decisions.

The more recent literature, however, is essentially concerned with the emergence of
financial fragility in a perfect competition setting. A remarkable example is the theoretical
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framework put forward by Greenwald and Stiglitz (GS hereafter; seeGreenwald and Stiglitz,
1993). They assume that each firm faces an infinitely elastic demand function subject to a
random idiosyncratic shock. Firms are unable to raise external finance on the Stock market
because of equity rationing (Greenwald et al., 1984; Myers and Majluf, 1984). Therefore,
they rely first and foremost on internal funds in order to finance production and resort to bank
credit if internal funds are insufficient. As a consequence, firms run the risk of bankruptcy.
By assumption the probability of bankruptcy is a decreasing function of net worth (or equity
base), which is a measure of financial robustness: the higher net worth (the lower financial
fragility), the lower the probability of bankruptcy will be. Therefore, if bankruptcy is costly
the scale of production is increasing with net worth.

Assuming perfect competition (price taking firms), GS rule out strategic interaction. In
this paper we follow a different route, allowing for imperfect competition and strategic
interaction among firms which take financial conditions into account when deciding their
scale of production. In our framework, each firm faces a negatively sloped demand function
subject to a random idiosyncratic shock. The selling price of the firm, however, depends
also on the quantity produced by the competitors. In an oligopolistic setting, we can show
that in (Nash) equilibrium the scale of production of each firm is a function not only of its
own net worth but also of the net worth of rival firms.

In principle a firm can be either financially constrained (incomplete collateralization
regime) or unconstrained (full collateralization). If internal funds are insufficient to pay
for the wage bill, the firm is financially constrained, goes into debt and incurs bankruptcy
costs. If net worth is more than enough to fund the wage bill, the firms is unconstrained and
benefits from a financial solidity bonus which plays a role symmetrical to that of bankruptcy
costs for the constrained firm.

Each firm accumulates its own equity base according to a law of motion which can
be conceived of as an accounting identity: the absolute change in net worth is equal to
(expected) retained profits. This law captures the simple idea according to which each
firm accumulates net worth in as much as it retains profits instead of distributing them to
shareholders as dividends.

The Nash equilibrium level of output of each firm is driven by endogenous fluctuations
in the equity bases of the firm itself and of its competitors. Therefore the game-theoretic
framework is ideal for the study of composition and cascade effects which are crucial in the
development of financially driven fluctuations.

It is worth noting that the endogenous dynamics implicit in our game-theoretic framework
are a consequence of the evolution over time of net worth. So far, endogenous dynamics in
a game-theoretic framework have been explored in the context of evolutionary game theory
where they depend on myopic learning processes, a controversial assumption in a context
of rationality and widespread information.

The paper is organized as follows. InSection 2, we discuss the background assump-
tions. We borrow some of them fromGreenwald and Stiglitz (1993), but we give up the
representative agent-perfect competition hypothesis on which their framework is based. In
our framework, firms operate in a simple oligopolistic set-up. The strategic variable is the
quantity produced (Cournot competition).

In Section 3, we examine the benchmark case in which constrained firms do not incur
bankruptcy costs and unconstrained firms do not benefit from the solidity bonus. In this case,
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the quantity produced in the Cournot–Nash equilibrium is the same for each oligopolist
(Symmetric Nash Equilibrium (SNE)) and is independent of the financial condition (i.e. the
level of the equity base) of the firm and of its rivals. As a consequence, the law of motion of
the equity base of each firm is independent of the accumulation of net worth on the part of
rival firms. In the benchmark case, therefore, there are two types ofirrelevanceof financial
conditions. First, financial conditions of the firms are irrelevant for the determination of
equilibrium output. Second, the accumulation of net worth on the part of rival firms does
not affect the accumulation of net worth on the part of the individual firm.

In the general case, when firms incur bankruptcy costs/solidity bonuses, these irrelevance
results do not hold true any more, as we show inSection 4. First, the quantity produced in
Nash equilibrium depends on the financial conditions (that is the equity bases) of the firm
and of its rivals. Second, the Nash equilibrium is not symmetric, i.e. the quantity is different
from one firm to the other. Third, it is only temporary, because the equity bases of the firms
are changing over time. Fourth, the accumulation of the equity base of each firm is affected
by the accumulation of net worth on the part of rival firms.

The evolution of the firms’ equity bases is represented by a discrete-time dynamical sys-
tem which can generate a wide range of dynamic patterns: convergence to a steady state,
periodic orbits or more complex evolutions, even chaotic. In other words, we obtain en-
dogenous fluctuations of the equity bases of the firms, which drive the dynamic pattern
of Cournot–Nash equilibrium. By analytical and numerical arguments we show that if the
retention ratios are not uniform across firms and “sufficiently low” the equity bases of the
firms will converge to the Symmetric Steady state Nash Equilibrium (SSNE), i.e. in the
long run firms become homogeneous as far as the equity ratio and the level of output are
concerned. Increasing the value of at least one retention ratio, the equity base of each firm
oscillates in a range which is different from one firm to the other. Further increases in at
least one of the retention ratios yield more complex, and consequently less predictable,
dynamics of the equity bases.

Section 5is devoted to the analysis of the impact of changes in the retention ratios on the
long run dynamical properties of the system by means of bifurcation diagrams.Section 6
concludes.

2. Background assumptions

We focus on the behavior of firms. The pricep̃i at which theith firm sells its good is
uncertain.1 Price uncertainty is captured by assuming thatp̃i differs from the general (aver-
age) price levelPbecause of a random idiosyncratic shockũi, with support (umin, umax) dis-
tributed according to a density functionf(ũi)with expected valueE(ũi) = ∫

ũif(ũi)dũi =
0. In symbols:

p̃i = ũi + P
Therefore, the expected value ofp̃i will be E(p̃i) = P .

1 Following a widely adopted convention, a tilde on a variable means that the variable is stochastic. For the sake
of notational simplicity, undated variables are referred to the current period (periodt).
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The average price level, in turn, is a function of total production:P = P (∑iqi
)
, where

qi is the quantity produced by theith firm andP(·) is a decreasing function. In the simplest
case in which the corporate sector consists only of two firms, assuming a linear functional
form, the inverse aggregate demand function is:

P = a− b(q1 + q2) (2.1)

wherea andb are positive parameters.
In order to simplify the argument, we assume that production is carried out by means of

one-to-one technology:qi = ni whereni is employment. Firms finance production costs,
i.e. the wage bill (wqi), at least partially by means of internally generated funds, which will
be referred to asnet worth or equity base(Ai). In the following we will keep the nominal
wage constant.

We can envisage two financial regimes according to the relative magnitude of the wage bill
and the equity base. The first regime—which we will labelincomplete collateralization—
occurs when net worth is not sufficient to pay the wage bill, i.e.Ai < wqi. In this case
the firm is financially constrained and has to resort to credit. The demand for loans is
Bi = wqi−Ai. The (gross) interest rateR = 1+ r is exogenous. At that interest rate, banks
extend credit on demand. Moreover, debt must be repaid completely in one period (there is
no accumulation of debt). In this case,RBi represent debt commitments for the firm and is
a cost component.

Bankruptcy occurs if the firm is unable to service its debt. In order to simplify the analysis,
in the following we will assume that the probability of bankruptcy is captured by the ratio
of debt to the wage bill:

PBi = Bi

wqi
= 1 − Ai

wqi
(2.2)

According to (2.2) the probability of bankruptcy is increasing with output and decreasing
with net worth. (2.2) is a very simple way of linking the probability of bankruptcy to a
measure of financial fragility of the firm.2

Finally, we assume that bankruptcy is costly and that bankruptcy costs are a quadratic
function of the scale of production:3

CBi = cq2
i (2.3)

2 Defining leverage as the debt to equity ratio, we get

li = Bi

Ai
= wqi
Ai

− 1 = PBi
1 − PBi

and rearranging

PBi = li

1 + li .

The probability of bankruptcy therefore is an increasing concave function of leverage such that limli→0 PBi = 0
and limli→+∞ PBi = 1 (as one would expect).

3 On bankruptcy cost, see (Altman, 1984; Gilson, 1990; Kaplan and Reishus, 1990).
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In this regime, the objective function of the firm is equal to expected profit less bankruptcy
cost in case of default:

Vi = E(Π̃i)− CBi · PBi (2.4)

The individual price being stochastic, also profit is a random variable:

Π̃i = p̃iqi − RBi = ũiqi + Pqi − R(wqi − Ai) = (ũi + P − Rw)qi + RAi (2.5)

Therefore, expected profit is:

E(Π̃i) = Pqi − RBi = Pqi − R(wqi − Ai) = (P − Rw)qi + RAi (2.6)

whereP is given by (2.1). Substituting (2.2), (2.3) and (2.6) into (2.4) we end up with:

Vi = (P − Rw)qi + RAi − cq2
i + cqi

Ai

w
(2.7)

The second regime, characterized byfull collateralization, occurs when net worth is more
than enough to fund the wage bill, i.e.Ai > wqi. In this case the firm has financial slack
Si = Ai − wqi which it can invest at the going interest rate and get a return ofRSi. This is
a revenue component.

The ratio of the financial slack to the wage bill captures the degree of financial robustness
of the firm FRi = (Ai − wqi)/wqi. We assume that in this regime the firm is granted a
solidity bonusequal tocq2

i times the degree of financial robustness:cq2
i FRi.

In this regime, the objective function of the firm is equal to expected profit plus the
solidity bonus:

Vi = E(Π̃i)+ cq2
i FRi (2.8)

Expected profit is

E(Π̃i) = Pqi + RSi = Pqi + R(Ai − wqi) = (P − Rw)qi + RAi

whereP is given by (2.1). Substituting this expression into (2.8) and taking into account
the definition of financial robustness we get:

Vi = (P − Rw)qi + RAi − cq2
i + cqi

Ai

w

which is identical to the objective function of the firm in the incomplete collateralization
case (see (2.7) above).

In the end, the firm has the same quadratic objective function regardless of the financial
regime it is experiencing. This conclusion greatly simplifies the analytic structure of the
model. Of course this is a consequence of the assumptions made above, in particular of the
introduction of a solidity bonus in the full collateralization regime. The rationale for the so-
lidity bonus is symmetrical to that of the bankruptcy cost in the incomplete collateralization
regime.

Besides the legal and administrative costs of bankruptcy, according toDavis (1992, p. 46)
there are indirect costs due to the fact that “imminent bankruptcy may change the firm’s
stream of cash flow, owing to various factors, such as the inability to obtain trade credit,
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inability to retain key employees, declining faith among the customers in the product,
etc.” and wider costs, such as the “loss of reputation” that managers of a bankrupt firm
face. Symmetrically, we assume that financial solidity makes the firm’s cash flow less
susceptible to sudden changes and boosts the reputation of the managers, showing up as a
revenue component in the objective function of the firm.

3. The benchmark case: c = 0

Let’s assume, as a convenient special case, the absence of bankruptcy costs for the
financially constrained firm and of solidity bonuses for the unconstrained firm (c = 0). In
this case, the objective function of theith firm is equal to the expected profit.

E(Π̃i) = Pqi − R(wqi − Ai) = (P − Rw)qi + RAi

whereP is given by (2.1).
The output level is decided according to the following optimization problem

max
qi
E(Π̃i) (3.1)

The first-order conditions are:

∂E(Π̃1)

∂q1
= a− 2bq1 − bq2 − Rw = 0

∂E(Π̃2)

∂q2
= a− 2bq2 − bq1 − Rw = 0.

(3.2)

TheEq. (3.2)represent the Best Reply Functions (BRF) of the two firms. They are both
linear and negatively sloped, and they only depend on the parametersa, b of the demand
function (2.1) and on the marginal costRw. These parameters are uniform across firms,
hence the players are symmetric.

From (3.2) we obtain a unique equilibriumE∗ = (q∗1, q∗2), whereq∗1 andq∗2 are given by:

q∗1 = q∗2 = 1

3b
(a− Rw) (3.3)

We will assume

a > Rw (3.4)

i.e. the maximum level of the average price is greater than the marginal cost in order to
assure thatq∗1 andq∗2 positive quantities. With such assumption (3.3) defines the Symmetric
Nash Equilibrium, at which the equilibrium level of output is identical for the two firms.

It is worth noting that the equilibrium level of output does not depend on the individ-
ual financial conditions. In principle, the two firms can differ in their degree of financial
fragility/robustness as captured by the individual net worth. This difference, however, plays
no role in the determination of the equilibrium level of output. In other words, the symmetry
between the players, which is evident from (3.2), leads to identical equilibrium levels of
output and makes the individual financial conditions “irrelevant” for output determination.
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The different degrees of financial robustness, however, play a role in the accumulation
of net worth. For each firm, in fact, the law of motion of net worth is described by the
difference equation:

Ai,t+1 = Ai,t + viE(Π̃i,t) i = 1,2 (3.5)

wherevi ∈ [0,1] is theretention ratio, and (expected) profitE(Π̃i,t) in periodt is given by
(2.6), i.e.

E(Π̃1,t) = (a− Rw)q1,t − bq2
1,t − bq1,tq2,t + RA1,t

and

E(Π̃2,t) = (a− Rw)q2,t − bq2
2,t − bq1,tq2,t + RA2,t

According to (3.5), the absolute change of net worth is equal to (expected) retained profits.
This captures the simple idea that each firm accumulates net worth in as much as it retains
profits instead of distributing them to shareholders as dividends.

At the Nash equilibriumE∗ = (q∗1, q∗2) with q∗1 andq∗2 given by (3.3), we have

E(Π̃i) = 1

9b
(a− Rw)2 + RAi (3.6)

For each firm, profit “today” (and therefore net worth “tomorrow”, (see (3.5))) depends on
the individual net worth (the productRAi is a scale factor for the level of profit).

Assuming that both producers instantaneously move to the Nash equilibrium (3.3) in
each time period, so that (expected) profits are given by (3.6), the equation that governs the
evolution of the equity base of each firm becomes:

Ai,t+1 = vi

9b
(a− Rw)2 + (1 + viR)Ai,t (3.7)

Therefore, the law of motion of the equity base of theith firm is independent of the accu-
mulation of its rivals’ net worth, and is expressed by a linear first-order difference equation
whose dynamical behavior is trivial. In fact, the graph of (3.7) on the (Ai,t, Ai,t+1) plane
is a straight line with intercept(vi/9b)(a − Rw)2 > 0 and slope(1 + viR) > 1, so that
the time evolution of each net worthAi, i = 1,2, is always characterized by an increasing
sequence{Ai,t , t ≥ 0}. Notice that, according to (3.5), the conditionAi,t+1 = Ai,t , which
characterizes the steady states, is equivalent to the conditionE(Π̃i) = 0, that is, the steady
states are points of zero expected profit for each firm. From (3.7), however, it is clear that
this cannot happen at the Nash equilibrium. In other words, at the Nash equilibrium each
firm accumulates net worth at a pace equal to:

Ai,t+1 − Ai,t = vi

9b
(a− Rw)2 + viRAi,t

The rate of net worth accumulation is:

gAi := Ai,t+1 − Ai,t
Ai,t

= vi

9bAi,t
(a− Rw)2 + viR
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The “long run” rate of net worth accumulation therefore is:

ĝAi := lim
Ai,t→∞

Ai,t+1 − Ai,t
Ai,t

= viR

Notice that the expected profit of each firm is always positive. The long run rate of equity
accumulation is increasing with the individual retention ratio and the interest rate.

4. The general case: c �= 0

4.1. Nash equilibrium

If there are bankruptcy costs and solidity bonuses, the objective function of theith firm is:

Vi = (P − Rw)qi + RAi − cq2
i + cqi

Ai

w
(4.1)

whereP is given by (2.1).
The output level is decided according to the following optimization problem:

max
qi
Vi (4.2)

The first-order conditions are:
∂V1

∂q1
= a− 2bq1 − bq2 − Rw− 2cq1 + cA1

w
= 0 (4.3)

∂V2

∂q2
= a− 2bq2 − bq1 − Rw− 2cq2 + cA2

w
= 0 (4.4)

These equations represent the Best Reply Functions of the two firms. They are linear and
negatively sloped, as in the case analyzed in the previous section. However, now the BRF
of each player does not depend only on the parameters of the demand function (2.1) and
on the marginal costRw, which are uniform across firms, but also on the equity base of the
player. In as much as the equity bases are different, the symmetry between players which
characterized the benchmark case is lost. In fact, the optimal level of output of each firm
is an increasing function of its own equity base in both regimes. In the incomplete collat-
eralization regime, the higher is net worth, the lower the probability of bankruptcy and the
associated cost for the firm and the higher the volume of output. In the full collateralization
regime, the higher is net worth, the higher the degree of financial robustness and the solidity
bonus for the firm and the higher the volume of output.

Solving (4.3) and (4.4) we obtain a unique Cournot–Nash equilibriumE∗ = (q∗1, q
∗
2).

whereq∗1 andq∗2 are given by the following linear functions of the equity basesA1 andA2:

q∗1 = 1

3b+ 2c

[
a− Rw+ 2c(b+ c)

(b+ 2c)w
A1 − bc

(b+ 2c)w
A2

]
(4.5)

q∗2 = 1

3b+ 2c

[
a− Rw− bc

(b+ 2c)w
A1 + 2c(b+ c)

(b+ 2c)w
A2

]
.
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For each firm, the Nash equilibrium level of output is an increasing function of its own
equity base and a decreasing function of the equity base of the rival. This result is an obvious
consequence of thestrategic substitutabilityimplicit in Cournot competition: the higher the
net worth of the second firm, the higher its output, the lower the average price level and the
output of the first firm.

As expected, other things being equal, the firm with lower equity base (thesmaller firm,
for short) produces less, at the equilibrium, than the firm with higher equity base (thebigger
firm). Therefore the Nash equilibrium (4.5) is not symmetric, unlessA1 = A2 by a fluke.

As in the benchmark case, we assume that both firms reach the Nash equilibrium (4.5)
at each time period. In other words, we assume that the payoffs are known with certainty
and they are common knowledge. This is tantamount to assuming that in each time pe-
riod both players know the parameters characterizing the demand function, the bankruptcy
cost/solidity bonus, the marginal cost and the equity bases. We rule out, therefore, the
learning process typical of evolutionary games.

Notice, however, that the equity base of each player is changing over time—as we will see
in the following section—so that (4.5) is temporary, i.e. bound to change with the passing of
time. Summing up,the Nash equilibrium(4.5) is (generally) non-symmetric, instantaneous
and temporary.

4.2. The equity base motion

For each firm, the accumulation of net worth is described by (3.5) and the expected profit
E(Π̃i) in periodt is given by (2.6) as in the previous section.

At the Nash equilibriumE∗ = (q∗1, q∗2), the expected profit of each firm is:

E(Π̃i) = (a− bQ∗ − Rw)q∗1 + RAi (4.6)

whereQ∗ = q∗1 + q∗2. Substitutingq∗1 andq∗2 given by (4.5) into (4.6) we can specify the
expected profit function of the two firms as follows:

E(Π̃1) = h0 + h1A1 + h2A2 + h3A
2
1 + h4A

2
2 + h5A1A2 (4.7)

where

h0 = 2c + b
(3b+ 2c)2

(a− Rw)2 (4.8)

h1 = R+ c(2c + b)
(3b+ 2c)2w

(a− Rw) (4.9)

h2 = − 2bc

(3b+ 2c)2w
(a− Rw) (4.10)

h3 = − 2bc2(b+ c)
(b+ 2c)(3b+ 2c)2w2

(4.11)

h4 = b2c2

(b+ 2c)(3b+ 2c)2w2
(4.12)
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h5 = h3 + h4 = − bc2

(3b+ 2c)2w2
(4.13)

and

E(Π̃2) = h0 + h1A2 + h2A1 + h4A
2
1 + h3A

2
2 + h5A1A2 (4.14)

h0 andh4 are positive parameters, whereash3 andh5 are negative. Furthermore, if (3.4)
holds, thenh1 > 0 andh2 < 0.

Therefore, the expected profit of each firm depends in a complicated way on its own
equity base and on the equity base of the rival firm.

For instance, an increase in the equity base of firm 1 may increase or decrease its own
expected profit because:

sign

(
∂E(Π̃1)

∂A1

)
= sign(h1 + 2h3A1 + h5A2) (4.15)

is undecided. More precisely,

∂E(Π̃1)

∂A1
> 0 if h1 > −(2h3A1 + h5A2) (4.16)

In this case, we have a positive feedback of an increase in the equity base of the firm on the ac-
cumulation of the equity base, which is consistent with our intuition. If (4.16) is not satisfied,
on the contrary, an increase of the equity base of the firm will have a negative feedback on
the accumulation of the equity base, which is a counterintuitive but perfectly possible result.

Analogously, an increase in the equity base of firm 2 may increase or decrease the expected
profit of firm 1, because:

sign

(
∂E(Π̃1)

∂A2

)
= sign(h2 + 2h4A2 + h5A1) (4.17)

is undecided. More precisely,

∂E(Π̃1)

∂A2
< 0 if h2 + 2h4A2 < −h5A1 (4.18)

In this case, we have a negative feedback of an increase in the equity base of firm 2 on
the accumulation of equity base of firm 1. If (4.18) is violated, however, an increase of the
equity base of firm 2 will have a positive feedback on the accumulation of the equity base
of firm 1.

Assuming that the change in the equity base is equal to expected profit time the retention
ratio, the evolution of the equity bases of the two firms, governed byEq. (3.5), can be
obtained by the iteration of a two-dimensional mapT : (A1,t , A2,t) → (A1,t+1, A2,t+1)

given by

T :

{
A′

1 = v1h0 + (1 + v1h1)A1 + v1h2A2 + v1h3A
2
1 + v1h4A

2
2 + v1h5A1A2

A′
2 = v2h0 + (1 + v2h1)A2 + v2h2A1 + v2h3A

2
2 + v2h4A

2
1 + v2h5A1A2

(4.19)
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where′ denotes the unit-time advancement operator. Starting from a given initial condition

A0 = (A1,0, A2,0) ∈ R
2
+ (4.20)

the iteration of map (4.19) generates a trajectory

τ(A0) = {(A1,t , A2,t) = T t(A1,0, A2,0), t ≥ 0}
which may converge to a fixed point or to a periodic cycle or to a more complex attracting
set, such as a strange (or chaotic) attractor, as we shall see in the following. Endogenous
fluctuations of the equity basesA1(t) andA2(t) can occur. Therefore also the Cournot–Nash
equilibriumE∗ fluctuates. In fact, the dynamic behavior ofA1 andA2 determines, through
(4.5), a sequence of Cournot–Nash equilibria. As we have emphasized above, each equilib-
rium pointE∗ can be thought of as a temporary equilibrium, i.e. an equilibrium point whose
position is driven by the dynamical behavior of net worth according to the law of motion
(4.19).

4.3. Characterization of the state space

Each point of the state space—i.e. the positive orthant of the (A1, A2) plane—can be
characterized according to the financial regime of the firms. The first firm is incompletely
collateralized ifA1 < wq1. Recalling that

q∗1 = 1

3b+ 2c

[
a− Rw+ 2c(b+ c)

(b+ 2c)w
A1 − bc

(b+ 2c)w
A2

]

(see (4.5)) the first firm is in the regime of incomplete collateralization ifA1 < h6 − h7A2
where

h6 = (b+ 2c)w

3b(b+ 2c)+ 2c2
(a− Rw), h7 = bc

3b(b+ 2c)+ 2c2

MeasuringA1 on the horizontal axis andA2 on the vertical axis, if the point (A1, A2) in the
space of equity bases is below (above) the negatively sloped line of equation

A1 + h7A2 = h6 (4.21)

the first firm is incompletely (fully) collateralized. Following a symmetrical reasoning, if
the point (A1, A2) lies below (above) the straight line of equation

h7A1 + A2 = h6 (4.22)

the second firm is incompletely (fully) collateralized.
In the end, tracing the two straight lines (4.21) and (4.22) we can partition the space of

equity bases in four regions (seeFig. 1). When the equity base is “small” (“large”) for both
firms—i.e. when the point of the state space lies below (above) both lines—both firms are
incompletely (fully) collateralized. In these two cases the firms happen to be in the same
financial regime. The two “mixed” cases where one firm is financially constrained and the
other is not can be derived straightforwardly.
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Fig. 1. The two straight lines (4.21) and (4.22) divide the space of equity bases (A1, A2) into four regions, according
to the firm(s) which are incompletely or fully collaterized. This figure is obtained with parameters’ valuesa = 20,
b = 0.2,R = 1.05,w = 1, c = 1.

Each point on the state space can be characterized also by the total quantity produced in
the economyQ = q1 +q2 and consequently by the price levelP = a−bQ. The price level

is non-negative ifQ ≤ Q̂ whereQ̂ ≡ a/b is the maximum amount which can be absorbed
by market demand. In the Nash equilibrium, total quantity is

Q∗ = q∗1 + q∗2 = 1

3b+ 2c

[
2(a− Rw)+ c(b+ 2c)

(b+ 2C)w
(A1 + A2)

]
(4.23)

If, given A1 andA2, the amount the two firms jointly produce according to (4.23) happens
to be greater than̂Q, we assume that they will be forced to pay an extra-wage equal to
θ(Q∗ − Q̂), whereθ is a positive constant. We can think ofQ̂ as potential output, i.e. the
amount producible in full employment at the going working schedule (working hours per
day). If firms want to produce more thanQ̂, they have to pay an extra-wage to induce people
to work extra-hours.

We can distinguish two regimes. In the underemployment regime,Q∗ < Q̂, the nominal
wage is constant atw and the price level isa − bQ∗ > 0. In the full employment regime
Q∗ ≥ Q̂, the nominal wage isw+θ(Q∗ − Q̂), the firms produceQ∗ but they will be able to
sell onlyQ̂ at the pricea− bQ̂ = 0. In other words, the nominal wage obeys the following
schedule:

wage=
{
w if Q∗ < Q̂
w+ θ(Q∗ − Q̂) if Q∗ ≥ Q̂

which is reminiscent of a Philips curve in wage-output space.
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WhenQ∗ < Q̂ (underemployment regime), the expected profit of each firm, which
governs the evolution over time of the equity base, is (4.6). WhenQ∗ ≥ Q̂, (full employment
regime), the expected profit is:

E(Π̃i) = (a− bQ̂)q∗i − R{[w+ θ(Q∗ − Q̂)]q∗i − Ai} =
RAi − R[w+ θ(Q∗ − Q̂)]q∗i

If we make the technical assumption thatθ = b/R, the expression above becomes:

E(Π̃i) = (a− bQ̂)q∗i − Rwq∗
i − b(Q∗ − Q̂)q∗i + RAi = (a− bQ∗ − Rw)q∗i + RAi

which is identical to (4.6). In the end, in our model the firm has the same expected profit
function regardless of the employment regime it is experiencing. This conclusion greatly
simplifies the analytic structure of the model.

Given the characterization discussed above, the dynamics of the equity bases are governed
by the system (4.19) in all the points of the state space, regardless of the financial or
employment regime. The trajectories generated by (4.19), however, may cross areas of the
state space characterized by different financial or employment regimes.

4.4. General dynamical properties

The first step in the study of the properties of a dynamical system is the computation
of the steady states, i.e. the trajectories characterized byAi,t+1 = Ai,t , i = 1, 2, for
eacht. The steady states are the fixed points of mapT, i.e. the solutions of the algebraic
system obtained from (4.19) withA′

1 = A1 andA′
2 = A2. We recall that, according to

(3.5), the fixed points of (4.19) are points of zero expected profit for both firms. From
(4.7) and (4.14) it is straightforward to conclude that each equationE(Πi) = 0 represents
an hyperbola in the plane (A1, A2). The fixed points ofT therefore are located on the
intersections of the two hyperbolasE(Πi) = 0, i = 1, 2. The existence and the stability
properties of the fixed points are stated in the following proposition, which is proved in
Appendix A.

Proposition 1. The map T defined by(4.19)has two and only two fixed points, located on
the diagonal∆ of equationA1 = A2, given by

S = (s, s), with s = −(h1 + h2)−
√
(h1 + h2)2 − 8h0h5

4h5
> 0 (4.24)

and

N = (n, n), with n = −(h1 + h2)+
√
(h1 + h2)2 − 8h0h5

4h5
< 0 (4.25)

The negative fixed point N is a repelling node, with eigenvaluesλ2(n) > λ1(n) > 1; the
positive fixed point S is an attracting node for sufficiently low values ofv1 or v2, and it
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may lose stability through a period doubling(or flip) bifurcation4 at which S becomes a
saddle point, with λ1(s) < −1 < λ2(s) < 1, and a stable cycle of period2 is created
near S.

The coordinates of the fixed points are functions of theh-parameters which in turn are
polynomials of the parameters characterizing the aggregate demand function (2.1) (a and
b), the bankruptcy cost/solidity bonus (c) and the interest rate augmented nominal wage
(Rw). Notice that the coordinates of the fixed points are independent of the retention ratios.
In other words, the fact that the two firms can differ in terms of their dividend policy is
irrelevant for the determination of the steady state equity bases.

Of course, only the positive fixed pointS = (s, s) is economically meaningful. Since it
belongs to the bisector∆, in the steady state the financial conditions of the two firms, as
well as their equilibrium output levels, are identical. In fact, according to (4.5), at the steady
stateSwe have a Symmetric Steady state Nash Equilibrium (SSNE)E∗ = (q∗, q∗), with

q∗ = 1

3b+ 2c
(a− Rw+ cs) (4.26)

The steady stateSis stable if, starting from an initial configuration characterized by hetero-
geneous financial conditions, i.e.A1,0 �= A2,0, the endogenous dynamics lead to identical
equity bases and outputs (4.26), provided that the initial condition (4.20) belongs to the basin
of attractionB(S) of the stable fixed pointS. Thebasinof S is the set of initial conditions
that generate a trajectory converging toE∗:

B(S) = {(A1,A2)|(A1,t , A2,t) = T t(A1,0, A2,0)→ S as t → +∞}
In order to explore the dynamic behavior of the model we have to determine the domain,
in the parameters’ space, for which the steady stateS is locally stable. Moreover, for a set
of parameters for whichS is stable, we must detect the boundaries of the basinB(S) in the
phase (A1, A2).

Due to the high number of parameters of the model, and the complicated dependence of the
eigenvalues of the Jacobian matrix ((A.2) inAppendix A) on these parameters, a complete
study of the local stability ofSas the parameters are varied is not an easy task. Thus in the
following we run some numerical simulations, based on the local stability analysis given
in Appendix A, in order to explore the dynamic patterns of the model. A more complete
numerical exploration of the influence of the retention ratios on the dynamical behavior
of the equity bases (and consequently of the temporary Nash equilibrium) is performed in
Section 5.

Setting the parameter values ata = 10, b = 0.2, R = 1.05, w = 1, c = 1, v1 =
0.3, v2 = 0.6 we obtain the steady stateS = (64.82. . . ,64.82. . . ), which is repre-
sented inFig. 2aon the phase plane (A1, A2) together with a typical trajectory converging

4 A period doubling bifurcation occurs when, by varying a parameter, an eigenvalue of a fixed point crosses the
unit circle with valueλ = −1. At such bifurcation a cycle of period 2 is created near the fixed point. The bifurcation
is supercriticalif a stable two-cycle is created around the unstable fixed point,subcriticalif an unstable two-cycle
exists around the stable fixed point (seeLorenz, 1993, p. 111;Guckenheimer and Holmes, 1983, p. 158).
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Fig. 2. (a) For the parameters’ valuesa = 10, b = 0.2, R = 1.05,w = 1, c = 1, v1 = 0.3, v2 = 0.6, the tra-
jectory starting with the initial condition(A1,0, A2,0) = (20,120) is represented on the phase plane (A1, A2).
The white region represents the set of points which generate trajectories converging to the steady state
S = (64.82. . . ,64.82. . . ), i.e. the basinB(S), whereas the grey region represents the basin of infinityB(∞),
defined as the set of points that generate diverging trajectories. (b) The same trajectory represented inFig. 1ais
plotted vs. time. (c) For the same trajectory (A1(t), A2(t)) shown in figures (a) and (b) the time evolution of the
temporary Nash equilibrium (q∗1(t), q

∗
2(t)), driven by the corresponding evolution of the equity bases according to

(4.5), is represented.
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to it. For this set of parameters the fixed pointS is locally stable, with eigenvaluesλ1(s) =
−0.91. . . , λ2(s) = 0.98. . . . Its basinB(S) is represented by the white region, whereas the
grey region represents the basin of infinityB(∞), defined as the set of points that generate
diverging trajectories. Even if only points (A1, A2) with positive coordinates are meaning-
ful, in Fig. 2awe have also represented a portion of negative orthants in order to show that
the unstable (and negative) fixed pointN belongs to the boundary that separates the grey
basin of infinity from the white basin of bounded trajectories. The trajectory represented
in Fig. 2astarts from the initial condition(A1,0, A2,0) = (20,120) ∈ B(S) (the black dot
labelled by 0) and then converges to the steady stateS through oscillations of decreasing
amplitude (because−1 < λ1(s) < 0). This can be more easily seen inFig. 2b, where the
same trajectory is plotted versus time. Of course, the same kind of evolution holds for the
outputs of the two firms, computed according to (4.5). The time evolution of the temporary
Nash equilibrium (4.5), driven by the corresponding evolution of the equity bases, is shown
in Fig. 2c.

In the situation shown inFig. 2 even if the initial conditionsA1,0 and A2,0 are dif-
ferent (i.e. the two firms areheterogeneouswith respect to the equity bases), the system
spontaneously evolves towards a steady state characterized by long run homogeneity of
the equity base and output, provided the initial condition (A1,0, A2,0) is in the basin of
attraction ofS. This conclusion only applies whenS is stable. In fact if the parameters
are changed until the fixed pointS loses stability (via a period doubling bifurcation, ac-
cording toProposition 1) then the system tends to long run heterogeneity provided the
retention ratios are different,v1 �= v2. In order to see this, we consider the same set of
parametersa, b, R, w, c andv2 as inFig. 2, and we increase the retention ratiov1. For
this set of parameters the flip bifurcation at whichS loses stability occurs atv1 = v

f

1 =
0.34. . . , and forv1 slightly greater thanvf1 a stable cycle of period 2 occurs, sayC2 =
(α1,α2), with periodic pointsα1 andα2 very close toS. As v1 is further increased, the
cycle C2 moves far fromS: numerical simulations show that ifv1 < v2 (respectively:
v1 > v2) then C2 belongs to the region of the phase space below (above) the diago-
nal ∆, i.e. its periodic points are characterized byA1 > A2(A1 < A2); if v1 = v2
thenC2 belongs to∆, i.e. its periodic points are characterized byA1 = A2. For exam-
ple, Fig. 3a is obtained withv1 = 0.4 > v

f

1 , so S is a saddle point with eigenvalues
λ1(s) = −1.12. . . andλ2(s) = 0.98. . . , and the generic bounded trajectory,5 obtained
by an initial condition in the white region, converges to the stable cycle of period two
C2 = (α1,α2) � ((69.8,45.8), (82.7,58.6)). Beingv1 = 0.4 < v2 = 0.6, C2 is char-
acterized byA1 > A2. In other words, starting from a generic initial condition in the
basin of attractionB(C2) of the cycle of period 2 (the white region inFig. 3a), even with
an homogeneous initial situation, i.e.(A1,0, A2,0) = (A,A) ∈ ∆, the equity bases of
the two firms become heterogeneous “in the long run”. The same will be true, of course,
for the output levels. A typical trajectory is plotted against time inFig. 3b. It is worth
noting that even starting from an initial condition of equity bases uniform across firms
and very close to the steady state, namelyA1,0 = A2,0 = 64.82, in the long run the

5 By the term “generic” we mean the trajectories starting from almost all the points of the white region (i.e.
excluded a subset of zero measure). The zero-measure subset includes, for example, the unstable fixed pointS.
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Fig. 3. (a) For the same set of parametersa, b, R, w, c and v2 as in Fig. 1a and v1 = 0.4 a
generic trajectory starting from a point of the white region converges to the stable cycle of period 2
C2 = (α1,α2) � ((69.8,45.8), (82.7,58.6)). (b) A typical trajectory is plotted against time starting from the
homogeneous initial conditionA1,0 = A2,0 = 64.8.

equity base of the first firm oscillates in the range (69.8, 82.7) while that of the second
firm oscillates in the range (45.8, 58.6). Therefore, in the long run the first firm is bigger
(its average equity base is about 76) than the second firm (whose average equity base is
about 52).
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The situation is reversed if the stable cycleC2 occurs whenv1 > v2, due to the symmetric
form of map (4.19), that remains the same swapping both the parametersv1 with v2 and the
dynamic variablesA1 andA2. This implies that if we exchangev1 with v2 the trajectories
of the new dynamical system are simply obtained from the previous ones by exchanging
A1 with A2.

Numerical simulations show that if (at least) one of the retention ratios is increased,
the first period doubling bifurcation is followed by a sequence of other period doubling
bifurcations that create stable cycles of period 2k , k = 2,3, . . . (similar to the well known
Feigenbaum period doubling route to chaos occurring in one-dimensional maps). Such
a sequence of period doublings leads to chaotic attractors, i.e. invariant two-dimensional
sets inside which the trajectories of map (4.19) exhibit sensitive dependence on initial
conditions.Fig. 4ashows the attracting set obtained with the same parametersa, b, R,
c, andv2 as inFigs. 2 and 3, andv1 = 0.67. The dynamic behavior of a trajectory like
that of Fig. 4a, a part of which is plotted versus time inFig. 4b, appears to be rather
irregular, apparently chaotic. It can be noticed, however, that the attracting set consists
of two disjoint pieces. A trajectory moving on it cyclically visits these two pieces as
shown inFig. 4b, where it is evident that a sort of cyclicality of period 2 occurs in the
long run. Such an attractor is also calledtwo-cyclic chaotic attractor. We notice that
in this case the average value ofA2 is greater than the average value ofA1, because
v1 > v2.

If v1 is further increased the two pieces of the chaotic area expand until they merge into
a one-piece chaotic area, as shown inFig. 5, obtained withv1 = 0.75. This is a remarkable
global bifurcation,6 after which the generic bounded trajectory moves erratically along the
bigger chaotic area, so that no cyclic pattern can be detected. Another consequence of the
global bifurcation at which the two pieces form a one-piece chaotic area is that the boundary
of the chaotic area is more “fuzzy”, in the sense that “rare points” appear around a more
densely covered central part. In the versus time representation of the trajectory, the existence
of such rare points implies that some sudden jumps occur, which are of greater amplitude
with respect to the majority of the irregular oscillations. This kind of attracting set is called
mixed chaotic areain Mira et al. (1996).

In Fig. 5we also notice that the boundary which separates the basin of bounded trajectories
from the basin of infinity is rather complex. This kind of complexity is another sources of
unpredictability, related to the fact that small changes in the initial conditions may yield
a completely different asymptotic evolution if such changes cause a crossing of the basin
boundaries. In fact, if a point is very close to a basin boundary (and many points are in such
a situation in the presence of complex basin boundaries) a small perturbation has a high
probability to cause a crossing of the boundary.

If v1 is further increased, the chaotic area expands until it has a contact with the bound-
ary of the basin. This contact marks the occurrence of a global bifurcation, calledfinal
bifurcation in Mira et al. (1996)andAbraham et al. (1997), or boundary crisesin Grebogi
et al. (1983), which makes the chaotic area disappear. After this bifurcation, the chaotic

6 We call “global” the bifurcations which cannot be explained in terms of the linear approximation of the
dynamical system, as opposed to the local bifurcations, which are revealed through the study of the eigenvalues
of the Jacobian matrix (used to represent the linearization of the dynamical system).
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Fig. 4. With the same parametersa, b, R, w, c, andv2 as inFigs. 1 and 2, andv1 = 0.67, the generic bounded
trajectory converges to a two-cyclic chaotic attractor. In (a) such attracting set is represented by plotting a typical
trajectory in the plane (A1, A2), in (b) a part of the same trajectory is plotted vs. time.

attractor is transformed into a chaotic repellor, whose “skeleton” is formed by the dense
set of repelling periodic points which where inside the chaotic area that just disappeared
Grebogi et al. (1983), and the generic initial condition generates a trajectory which diverges
after a chaotic transient.
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Fig. 5. With the same parametersa, b, R, w, c, andv2 as inFigs. 1 and 2, andv1 = 0.75, the generic bounded
trajectory converges to a one-piece chaotic attractor.

5. Changes of retention ratios

In order to explore the effects of increasing retention ratios on the dynamics of the equity
bases of the two firms, we consider a fixed set of values of the parametersa, b, R, w, c,
andv1, namelya = 10, b = 0.2, R = 1.05,w = 1, c = 1 andv2 = 0.6 and vary the
retention ratiov1 in the range (0, 1). Due to the symmetry in the roles ofv1 andv2, we
would obtain analogous results with a fixed value ofv1 by varying the other retention ratio
v2. The impact on long run dynamics can be evaluated by means of a bifurcation diagram
in whichv1 is measured on the horizontal axis, and a given number of asymptotic values of
a dynamic variable are plotted on the vertical line. For example, the bifurcation diagram of
Fig. 6ais obtained as follows: for each value ofv1 in the range (0, 1) we generate a trajectory
starting with an initial condition nearS: we discard a transient of the early 300 iterations
and plot the subsequent 700 values ofA1 on the vertical line throughv1. In Fig. 6b we
adopt the same procedure to represent the asymptotic values ofA2. These two bifurcation
diagrams show that the steady stateS is stable for small values ofv1 and the values of
both equity bases are independent ofv1 (we recall that, inS, A1 = A2 = s, wheres is
given in (4.24)). Asv1 is increased, the steady stateS loses stability atv1 ∼= 0.4 via a
period doubling bifurcation at which a stable cycle of period 2 occurs. It can be noticed
that the amplitude of the oscillations increases withv1. Moreover, forv1 < v2 = 0.6 the
values ofA1 are greater than the values ofA2, and the opposite holds true forv1 > v2. The
sequence of period doubling bifurcations which occurs increasingv1 is clearly visible in
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Fig. 6. Bifurcation diagram obtained with increasing values of the parameterv1 and fixed values of the other
parameters:a = 10,b = 0.2,R = 1.05,w = 1, c = 1 andv2 = 0.6. (a) In the vertical axis the asymptotic values
of the equity baseA1 are reported. (b) In the vertical axis the asymptotic values of the equity baseA2 are reported.
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Fig. 7. Bifurcation diagram obtained with increasing values of the parameterv1 and fixed values of the other
parameters:a = 10,b = 0.2,R = 1.05,w = 1, c = 1 andv2 = 0.4. In the vertical axis the asymptotic values of
the equity baseA1 are reported.

Fig. 6. It is similar to the well known period doubling cascade that marks the route to chaos
in one-dimensional maps. A noticeable global bifurcation occurs atv1 = vh ∼= 0.8. Before
this bifurcation the attractor is two-cyclic, i.e. the periodic or chaotic attractors observed
for v1 < vh are located inside a trapping region formed by two disjoint portions, whereas
for v1 > vh the trajectories move inside a unique larger region (seeFigs. 4 and 5). Such
bifurcation increases the complexity in dynamic behavior of the equity bases and leads to
a loss of predictability, since no cyclicality can be revealed after it. Moreover, forv1 > vh
the attracting set is given by a mixed chaotic area (seeMira et al., 1996), i.e. the boundaries
of the region inside which the two-dimensional chaotic attractors are included are not well
defined, in the sense that a cloud of “rare points” surrounds the more dense part of the
chaotic area (see alsoFig. 5). At v1 � 0.9 thefinal bifurcationoccurs, due to a contact
between the chaotic attractor and the boundary of its basin, after which the chaotic attractor
disappears and the generic trajectory goes to infinity.

In the bifurcation diagram shown inFig. 7, obtained with the same values of the parameters
a, b, R,w, andc as inFig. 5aandv2 = 0.4 instead ofv2 = 0.6 we have no chaos whatever
the value ofv1 in the range (0, 1). For lower values ofv2 the fixed pointS remains stable
for eachv1 ∈ (0,1), i.e. complex dynamics are lost if at least one of the retention ratios is
sufficiently small.

On the basis of the analytical and numerical results of the present section and ofSection 4.4
we can sum up the discussion on the effects of changes in retention ratios on dynamics as
follows:
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1. If the retention ratios are “sufficiently low”, the positive fixed pointS is stable. Even if
the initial (financial) conditions and the dividend policy of the two firms are different
(i.e.A1,0 �= A2,0 andv1 �= v2), the equity bases of the two firms will converge to the
SSNE characterized byA1 = A2, provided that the initial conditions are inside the basin
of attraction ofS. In the steady state, the two firms become homogeneous as far as the
equity base and the level of output are concerned.

2. Increasing the value of at least one retention ratio, the fixed pointSbecomes unstable, the
long run dynamics is characterized by oscillations of period 2 such thatA1 > A2 (A1 <

A2) on average, as long asv1 < v2 (v1 > v2). In this case homogeneity is lost in the
long run, since the equity base oscillates in a range which is different from on firm to the
other.

3. Only if the retention ratio is uniform across firms, i.e.v1 = v2, the long run dynamics
is characterized by oscillations such thatA1 = A2, on average. In fact, if the reten-
tion ratios are uniform across firms the attractors are located on the 45◦ diagonal. In
this case, and only in this case, long run homogeneity is preserved also in the case
of dynamics which are more complex than the simple convergence to a stable steady
state.

4. An increase of the retention ratios yields more complex, and consequently less pre-
dictable, dynamics of the equity bases. Moreover, also the boundary that separates
the set of points that generate bounded trajectories from the basin of infinity becomes
more complex, thus generating a greater uncertainty also with respect to the choice
of initial conditions, or, equivalently, with respect to the possible effects of random
shocks.

Therefore, the firms are heterogeneous in the long run if the retention ratios are not
uniform across firms and not too small. Moreover, when heterogenous long run dynamics
occur, the firm with the higher retention ratio ends up with the lower equity base (on average).
This is broadly consistent with the stylized facts. In the real world, in fact, the corporate
sector is heterogeneous, the retention ratios are different from one class of firms to the other
and the average retention ratio is relatively high. Moreover, “small” firms usually retain
a higher proportion of their profits than “large” ones. For example, according toFazzari
et al. (1988, p. 147), on average the retention ratio of the US manufacturing firms in the
1970–1984 period has been 60%, with “small” firms retaining up to 80% of their profits
while the retention ratio of “big” firms was approximately 50%.

The standard theoretical explanation of this stylized fact is based onthe financing hier-
archy (or pecking order) assumption. When capital markets are affected by informational
imperfections such as asymmetric information, a financing hierarchy can be envisaged:
internal finance is the most preferred source of finance while credit has a cost advantage
over the issue of new equities as far as external sources of finance are concerned. Small
firms, which have limited access to the credit and equity markets, rely first and foremost on
retentions to fill their financing gap while large firms are less financially constrained and
therefore have a lower retention ratio.

The theoretical explanation of the same stylized fact in the present model is different.
Let’s start from a benchmark case in which both firms have the same retention ratio. The
equity bases of the two firms therefore converge to the SSNE or—if they are not too low—to



168 G.I. Bischi et al. / J. of Economic Behavior & Org. 53 (2004) 145–171

a uniform two-period cycle. Therefore they are homogeneous. Assume now that one of the
two firms increases its retention ratio. The direct effect of an increase of the retention ratio
on the accumulation of the firm’s net worth is necessarily positive. However, the more rapid
increase of the equity base may have a negative impact on the expected profit of the firm
and therefore may depress the accumulation of net worth (see the discussion inSection 4.2)
in the subsequent rounds of the time evolution of the equity base. If this is the case, the firm
which tries to accumulate more rapidly ends up with a lower level of the equity base in the
long run.

Increasing the retention ratios, the corporate sector remains heterogeneous (small and big
firms coexist), but the dynamics of the equity bases become complex, i.e. observationally
equivalent to the dynamics generated by random shocks.

6. Conclusions

In this paper we have explored the properties of a simple oligopolistic set-up in which
firms run the risk of bankruptcy or gain a solidity bonus according to their financial condi-
tions. We present, first of all, a benchmark case in which firms do not incur a bankruptcy
cost/solidity bonus. In this case the quantity produced in the Cournot–Nash equilibrium
would be the same for each and every oligopolist (Symmetric Nash Equilibrium) and would
be independent of the financial condition (i.e. the level of the equity base) of the firm and
of its rivals. Moreover, the accumulation of net worth by each firm would be independent
of the accumulation of net worth on the part of rival firms.

In the general case in which firms face a bankruptcy cost/solidity bonus, the scale of
production is affected by financial conditions. In this case, the quantity produced in the
Cournot–Nash equilibrium would be different from one firm to the other and would depend
on the net worth of the firm and of the competitors. Moreover, the motion over time of the
equity bases of the firms may follow a wide range of dynamic patterns: convergence to a
Symmetric Steady state Nash Equilibrium, periodic or non-periodic orbits, complex (even
chaotic) trajectories. Endogenous fluctuations of the equity bases of the oligopolists also
imply that the Cournot–Nash equilibrium fluctuates.

If the retention ratios are “sufficiently low”, in the long run firms become homogeneous
as far as the equity ratio and the output level are concerned. Increasing the value of at least
one retention ratio, the equity base of each firm oscillates in a range which is different from
one firm to the other.

In particular, the firm with the lower (higher) retention ratio ends up with the higher
(lower) equity base on average. In a sense we have here a “paradox of thrift” applied to the
corporate sector: if a firm tries to accumulate its equity base more rapidly by increasing
its retention ratio, it obtains the opposite result and becomes “poorer”. Further increases in
at least one of the retention ratios yield more complex, and consequently less predictable,
dynamics of the equity bases.

The present set-up represents a first modest step to model the generation of financially
driven endogenous fluctuations in a game-theoretic context. In order to maintain the pos-
sibility to get some insights concerning the dynamic properties of the model, we stick to
the simple analytic structure of a two-dimensional non-linear dynamical system by making
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a number of mainly technical assumptions in the characterization of the state space. An
obvious extension of the present model consists in relaxing at least some of these assump-
tions and modifying the model accordingly. For instance, we could give up the idea of a
solidity bonus in the full collateralization regime while keeping the bankruptcy cost in the
incomplete collateralization case. This relaxation, however, leads to a more cumbersome
dynamical system, defined by different analytic expressions in the different regions of the
state space (due to the multiplicity of financial regimes the firms are experiencing) and
makes the analysis much more complicated: as often occurs in dynamic modeling, there is
an obvious trade-off between realism of the hypotheses and mathematical manageability of
the dynamical system.

A different extension consists in framing the model in a different game-theoretic context.
In the present set-up the quantities produced by the two firms are strategic substitutes: a
higher volume of output by one firm makes the price go down—other things being equal—
and negatively affects the expected profit of the other firm via the market demand function.
We implicitly ignore the positive impact that an increase in the output of one firm can have on
the expected profit of the other firm via income effects. Taking these effects into account,
i.e. conceiving of the quantities produced as strategic complements instead of strategic
substitutes, can modify the results in interesting directions such as multiple Pareto-ranked
equilibria.
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Appendix A. Proof of Proposition 1

We first consider the existence of the fixed points, given by the solutions of the alge-
braic systemE(Πi) = 0, i = 1.2. with E(Πi) given by (4.7) and (4.14). This system
is symmetric, because it remains the same by exchangingA1 andA2: this means that the
hyperbolaE(Π2) = 0 is the symmetric of the hyperbolaE(Π1) = 0 with respect to the
diagonal∆ of equationA1 = A2. If Eqs. (4.7) and (4.14)are subtracted, then one either
hasA1 = A2 orA1 +A2 = (h2 −h1)/(h3 −h4). However, the latter condition leads to the
equation

(h3 + h4 − h5)A1

(
A1 + h1 − h2

h3 − h4

)
+ h0

h2 − h1

h3 − h4
(h2h3 − h1h4) = 0

which has no solutions in general, beingh3 + h4 − h5 = 0. Hence, the two symmetric
curvesE(Π1) = 0 andE(Π2) = 0 only cross at two points located on the diagonal∆,
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whose coordinates are given by the solutions of the equation

2h5x
2 + (h1 + h2)x+ h0 = 0.

Sinceh5 < 0 andh0 > 0 this equation always has two real solutions of opposite sign, say
s > 0 andn < 0. Hence the map (4.19) has two fixed points,S = (s, s) andN = (n, n),
both belonging the diagonal, with positive and negative coordinates, respectively, given by
(4.24) and (4.25).

The study of the local stability of these two fixed pointsSandN is performed through
the localization, on the complex plane, of the eigenvalues of the Jacobian matrix of (4.19)
computed inSor N, i.e. the solutions of the characteristic equation

P(λ) = λ2 − Tr(A)λ+ Det(A) = 0, (A.1)

where Tr(A) and Det(A) denote the trace and the determinant of the Jacobian matrix.

DT(A,A) =
[

1 + v1(h1 + A(3h3 + h4)) v1(h2 + A(3h4 + h3))

v2(h2 + A(3h4 + h3)) 1 + v2(h1 + A(3h3 + h4))

]
(A.2)

given by

Tr(A) = 2 + (v1 + v2)(h1 + A(3h3 + h4)) (A.3)

Det(A) = Tr(A)− 1 + v1v2H1(A)H2(A) (A.4)

with

H1(A) = h1 + h2 + 4A(h3 + h4); H2(A) = h1 − h2 + 2A(h3 − h4), (A.5)

whereA = s or n, respectively. Since Tr(A)2 − 4 Det(A) = (h1 + A(3h3 + h4))
2(v1 −

v2)
2 + 4v1v2(h2 +A(3h4 + h3))

2 > 0 the eigenvalues of the matrix (A.2) are always real
and can be written as

λ1(A) = 1
2

(
Tr(A)−

√
(Tr(A)− 2)2 − 4v1v2H1(A)H2(A)

)
(A.6)

λ2(A) = 1
2

(
Tr(A)+

√
(Tr(A)− 2)2 − 4v1v2H1(A)H2(A)

)
(A.7)

A sufficient condition for the stability of a fixed point is that both the eigenvalues belong
to the interval (−1, 1) whereas if at least one of them is greater than 1 or less that−1 the
fixed point is unstable.

Let us first consider the fixed pointN = (n, n). Beingn < 0, we have(Tr(n)− 2) > 0,
becauseh1 > 0 and 3h3 + h4 < 0. Moreover we haveH1(n) > 0 andH2(n) > 0, because

the first of (A.5), withn given by (4.25), givesH1(n) =
√
(h1 + h2)2 − 8h0h5 > 0,

and from the second of (A.5) easily followsH2(n) > 0 beingh1 − h2 = R + (c(a −
Rw)/(3b+ 2c)) > 0 (a > Rw thanks to (3.4)) andh3 −h4 = −bc2/((b+ 2c)(3b+ 2c)) <
0. These arguments imply that the conditionλ1(n) > 1 is equivalent to Tr(n) − 2 >√
(Tr(n)− 2)2 − 4v1v2H1(n)H2(n) which is evidently true.
Instead, for the pointS = (s, s) we haveλ2(s) ≤ 1 if and only ifh1 + s(3h3 + h4) < 0

and v1v2H1(s)H2(s) ≥ 0. Henceλ2(s) = 1 if v1 = 0 or v2 = 0, whereas we have
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λ1(s) < λ2(s) < 1 for eachv1 > 0 andv2 > 0. Instead, the second stability condition,
λ1 > −1 is satisfied if and only if 4+2(v1+v2)(h1+ s(3h3+h4))+v1v2H1(s)H2(s) ≥ 0.

This condition is satisfied for small values ofv1 or v2, whereas it is not satisfied for large
values ofv1 andv2. this means that the fixed pointSmay have the eigenvaluesλ1(s) and
λ2(s) both inside the interval (−1, 1), thus giving local asymptotic stability ofS, at least
for sufficiently low values of the retention ratiosv1 or v2, and for increasing values of the
parametersv1 andv2 the smaller eigenvaluesλ1(s) can exit the interval (−1, 1) through
the valuesλ1(s) = −1, so that the positive fixed pointS loses stability via a flip (or period
doubling) bifurcation at whichSbecomes a saddle point and a stable cycle of period two
is created near it7 (see e.g.Lorenz, 1993, Chapter 3, orGuckenheimer and Holmes, 1983,
p. 158).
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