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Abstract

In this paper we study the boundaries which separate the hasins of auraction of
coexisting attractors for discrete dynamical systems represented by the iteration of
noninvertible maps. This problem is often met in dynamic models which describe
ceonomic and social systems, where the presence of several attractors raises questions
related to eguilibrium selection. For noninvertible maps the basing may have rather
complex topological structures, since they may be non connected or multiply con-
nected sets. The analysis, as well as the study of the glohal hifurcations which change
their qualitative properties, is carried out by the method of critical sels. As an ex-
ample, a Cournot duopoly game is proposed, where the profit-maximizing production
choices of the two players are taken over time according o non-monotonic Best Reply
functions. The players are supposed to show some kind of inertia, as their choices are
described by a partial adjustment to the Best Response. This duopaly game has multi-
ple stable Nash equilibria, which gives rise o strategic uncertainty among players, and
its time evolution is obtained by the iteration of a noninvertible map of the planc. The
structure of the basins of attraction of the emerging Mash cquilibria is analyzed, and by
employing the method of critical curves some global bifurcations are evidenced that
chanpe the topological structure of the basing from simple to complex.

1 Introduction

In the last two decades the literature on dynamic modelmg of economic and social systems
was mainly concerned with the study of the attracting sets and the bifurcations which lead
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to more and more complex asymptotic dynamics. When several coexisting attractors are
present — a situation often met in dynamic models of economic and social systems — another
route to complexity is related to more and more complex boundaries which separate the
basins of attraction. Generally, these rwo different routes to complexity are not correlated,
in the sense that simple attractors may have complex basins and complex attractors may
have simple basin boundaries.

The study of the complexity related to the structure of the basins has been rather ne-
glected in the cconomic literature, becanse it requires an analysis of the global propertics
of the dynamical systems (i.e. not based on the linear approximation) and the global bi-
furcations that change the qualitative structure ol the basins are generally detected through
geometric and numerical methods, This task may be particularly challenging in the case
ol discrete dynamical systems represented by the iteration of noninvertible maps. Indeed,
in this case the basins may have complicated topological structures, since they may be
multiply-connected scts or non-connected, often formed by the union of infinitely many
disjoint portions (see e.g. Mira et al. [26, 28], Abraham ct al. [1]).

Fecent results on basin bifurcations in noninvertible maps, mainly bascd on the method
of eritical sets (see Gumowski and Mira [21], Mira et al. [28]), allow now to obtain insights
into the structure of the basing and into the creation of complex basin boundaries, As
sorme parameter is varied, such changes in the structure can be characterized by global
bifurcations: they are the consequence of contact bifurcations, e due to contacts between
critical sets and invariant sets (such as as fixed points or cycles or their stable sets). For
two-dimensiomal maps, such kinds of bifurcations can be very rarely studied by analytical
methods, since the equations of such singularities are not known in general, Hence these
global bifurcations are mainly studied by geometrical and numerical methods,

In economic modeling, discrete dynarmical systems obtained by the iteration of nonin-
verlible maps are often met, and many of them are characterized by the presence of coexist-
ing attractors. For example, in models with leaming, attracting sels which represent rational
{or perfect foresight) intertemporal equilibria may coexist with attractors characterized by
bounded rationality (sce c.g. Barucci et al. [4]), and in models of strategic interaction
with boundedly rativnal competitors different Nash equilibria may be observed as the long
run oulcome depending on the initial condition (sce c.g. Agiza et al. [2] and Bischi and
Kopel | 10]). For other economic models where noninvertible maps emerge, see Rischi and
MNaimzada [6], Rischi et al. [8, 9].

The transition 0 a complicated struciure of the basin boundaries usually canses a loss
in the system’s predictability, in the sense that small changes in the initial condition may
give a completely different asymptotic evolution. In fact, if a point is far from the basin
boundaries, a slight permurbation has no cffect on the long mn behavior, On the other hand,
i a point is very close o a basin boundary (and many point are in the presence of com-
plex basin boundarics) a small perturbation has a high probability to causc a crossing of
the boundary and the long run evolution will be very different. The (rajectory may then
reach a completely different region of the phase space (it may even diverge, if infinity is an
attractor). It is important W note that this kind of unpredictability of the long-run behavior
as a consequence of small changes of the initial conditions is different from the sensitive
dependence on initial conditions which characlerizes a chaotic attractor: When we have a
chaotic artractor, even il two initially very close chaolic trajectorics fastly depart as time
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increases (at an exponential rate), such trajectories arc finally trapped inside the same com-
pact invariant set (the chaotic attractor).

In this paper, the problem characterized above is illustrated via a discrete-time two-
dimensional dynamical system which models the time evolution of a Coumot duopoly
game. The Cournot oligopoly model is one of the most widely used concepts in the in-
dustrial organization literature. Since the work of Counot [14] researchers have been inter-
ested in the stability properties of the resulting Cournot-Nash equilibria since - although it
seems unlikely that firms immediately coordinate on such an equilibrium - general intuition
suggesis that they would leam 1o play according to a Nash equilibrium profiles over time
(see Lucas [25]). For theoretical work on the stability properties of Cournot-Nash equalib-
ria, sec Theocharis [36], Okuguchi [29], and Szidarovszky and Yen [35]. In our example,
the players are assumed to be boundedly rational. They exhibit some kind of inertia and
adjust their production quantities only partially toward their profit-optimizing choices. The
Best Replies of the players are given by unimodal [unctions, and this gives rise to multi-
plicity of equilibria. When several coexisting stable equilibria are present, we focus on the
delimitation of their basins of artraction, We try to explain the origin of complex topologi-
cal structures of the basins by analyzing the global properties of noninvertible maps via the
method of critical curves.

The paper is organized as follows. In section 2 we recall some definitions and prop-
erties of noninvertihle maps. Tn section 3 we give a description ol the duopoly model and
the adjustment dynamic which characterizes the dynamic game. We give condilions for the
existence and local stability of the emerging Nash equilibria of the model. Furthermore,
we give results conceming the delimitation of the basins of attraction and the global bi-
furcations causing qualitative changes in their structure as some parameter is allowed to
vary. Throughout section 3 comparison is made between the cases of homogeneous and
heterogeneous players. We end the paper with a discussion in section 4.

2 Discrete Dynamical Systems, Noninvertible Maps and Critical
Curves
Amap TR — RE", defined by
p'=Tip) (1

transforms a point p € R into a unigue point p' € R". The point p' 1s the rank-/ image of
p, and a point p such that T(p) = p' is a rank-1 preimage of p'. A discrete-time dynamical
system is defined inductively by the difference equation

Frel — T{p)
with a given initial condition pg. So, if p € R” represents the state of a system, T can be
zeen as a “umt time advancement operator™

Toipy— g
Starting from an initial condition pg & R", the repeated application (iferation) of T gives

the time evolution of the system, represented by the trajeciony

tpo) = {pilpr = T'(po)ut =0,1,2,..},
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iZthe identi and 7" = T(7"").

wmgeﬁ?n;wmﬁc%itims. A set A © R" is rapping if it. is mapped into itself,
T(4) C 4, ie¥x €A T(x) €A A trapping set is imvariget if it is mapped onto itself:
T(A) = A, ic. all the points of A are images of points of 4. A closed imvariant set 4 is
an attractor if it is asymptotically stable, ie. if a neighborhood U of A exists such that
T(U) € U and T"(x) — A as n — +==forcach x £ U.

The Fasin of an attractor 4 is the set of all points that generate trajectorics converging
to A

B(A)={plT'(x) = A ast— +e}

Starting from the definition of stability, let 7{4) be a neighborhood of an attractor 4 whose
points comverge to 4. Of course I/{A) © #(4), but also the points of the phase space which
are mapped mside f after a finite number of werations belong to B(4). Hence, in general
the foral basin of A (or briefly the basin of 4) is given by

BlA) = U T4
=0

where T '(x) represents the set of the rank-1 preimages of x (i.e. the points mapped into x
by T}, and 7~"(x) represents the set of the rank-» preimages of x (i.c. the points mapped
into x after & applications of T').

If g1 # pz implies T(p) # T{pz) then T is an invertible map, because the inverse
mapping that gives p = 7' (p') is uniquely defined; otherwise T is a noninvertible map.
MNoninvertible m this sense means “many-to-one”, that is, distinct points py # pz may have
the same image, T{p;) = T{p2) = p. Hence, several rank-1 preimages may exist and the
inverse relation p— T ' { p) may be multivalued. Geometrically, the action of a noninvert-
ible map T can be expressed by saying that it “folds and pleats™ the plane, so thal the two
distinct points py and g are mapped into the same point p. This is equivalently stated by
saying thal several inverses are defined in p, and these inverses “unfold” the plane.

For a noninvertible map (1) B" can be subdivided into regions 7, & = 0, whose points
have & distinct rank- | preimages. Generally, as the point p’ varies in B", pairs of preimages
appear or disappear as this point crosses the boundaries separating different regions. Hence,
such boundaries are characterized by the presence of at least two coincident (merging)
preimages. This leads to the definition of the critical sets, one of the distinguishing features
of noninvertible maps. Following the notations of Gumewski and Mira [21] and Mira et al,
[27, 28], the critical set LC (from ihe French *“Ligne Critique”} is defined as the locus of
points having two, or more, coincident rank-1 preimages, located on a set (set of merging
preimages) called LC_ . LC is the two-dimensional generalization of the notion of critical
value (when it is a local minimum or maximum value) of a one-dimensional map®, LC_, is
the generalization of the notion of eritical point (when it is a local extremum point). Portions
of LC separale the regions &y charactenized by a different number of rank-| preimages.

The relation L8 = T{LC_ ) holds, and the points of L in which the map is differen-
tiable are necessarily points where the Jacobian determinant vanishes:

LC ;= {(x,y) € B?|detDT (x,) = 0} . 2

YThis terminology, and notation, originates from the notion of critical points as it is used in the classical
works of Julia and Faton,

MNonimvertible Maps and Complex Basin Boundaries in Dynamic Economic... 47

In fact in any neighborhood of a point of LC_; there are at least two distinct points which
are mapped by T in the same point. Accordingly, the map is not locally invertible in points
of LC_,. More generally, for a continuous map T the set LC ) is included in the set where
det DT (x,y) changes sign, since T is locally an orientation preserving map near points (x, )
such that det DT (x,¥) = (0 and orientation reversing if det DT (x,») < (. An intuitive visual-
ization in B? is given in Fig. 1, where the folding properties of two-dimensional noninvert-
ible maps 15 illustrated.

det OT=0)
{onentation
TevETSing}

det DT=0

[N
PEESETVING)

Figure 1: Folding action of the critical curves

In order to give a geometrical interpretation of the action of the multivalued inverse
relation 71, it is useful to consider a region 2, as the superposition of & sheets, cach one
associated with a different inverse. Such a representation is known as Riemann foliation of
the plane (see e.g. Mira et al. [27, 28]). Different sheets are connected by folds joining rwo
sheets, and the projections of such folds on the phase plane are arcs of L. This is shown in
the qualitative sketch of Fig. 2, where the case of a £y — 3 noninvertible map is considered.

Figure 2: Riemann foliation to represent the unfolding action of the inverses ina £ — &>
noninvertible map

The backward iteration of a noninvertible map repeatedly wnfolds the phase space, and
this implies that the basins may be non-connected, ie. formed by several disjoint portions:
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B(4) = | J T7"(Bo(4))

r=0

where By(A) is the immediate basin. The immediate basin is defined as the widest con-
nected component of the basin which contains A.

The global bifurcations which give rise to complex topological structures of the basins
like those formed by non connected sets, can be explained in terms of contacts of basins
boundaries and critical sets. In fact, if a parameter varfation causes a crossing between a
basin boundary and a critical set which separates different regions Zy so that a portion of a
basin enters a region where an higher number of inverses is defined, then new components
of the basin may suddenly appear at the contact. This is the basic mechanism which canses
the creation of more and more complex structures of the basins, as we shall see in the
example given n the following section,

3 A Nonlinear Duopoly Game with Multiple Nash Equilibria

As an cxample, we consider a Cournot duopoly game. This game describes a market where
qu:r firms | a:nd 2 in. cach time period ¢ produce the quantities g (r) and g2(r} respectively,
T'hey determine their production quantities for the next period such that their profits are
maximized,

qile+ 1) = argmaxTT; (gi,q)" (1 + 1)) 17 = 1,2, j#i (3)

(e} . .
where g (r + 1) represents the expectation of producer i about the production decision of
producer j. We assume that:
(i) the problem (3) has a unique solution, expressed as g,(t + 1) = r,-[qﬁf'\ 2+ 1))
(i1} the firms have naive (or Counot) expectations qj.?] {r+1)=gq;(t). Thatis, firm
expects that the quantity of irm j will remain the same as in the current period.
Under these assumptions the solution of (3) can be expressed as g;(f + 1) = ri(g; (¢}), where
r; are caller.l reaction functions or Best Replies, We further assume that the competitors do
not immediately adjust to the optimal quantity they computed on the basis of the profit
maximization problem, but that they exhibil some kind of inertia: they only adjust their
previous production gquantities in the direction of the Best Response:
gt £ 1) =gqi{t) + 2 (i (g2(r)) — qu (1))
(4)
g2t +1) = q2{t) +ha (r2(gqa (1)) — q2(1))

'.Thl;: parameter A; € [0, 1], i = 1,2, represent the speeds of adiustment. Such inertial ad-
justment dynamics can be duc to a lack of confidence of firms in their own forecasts of

rivals” behavior or due to a conservative attitude in the decision making of firms. Recent - -

experimental evidence suggests that such partial adjustment to the Best Response or inertial
selection dynarmics deseribes the behavior of real decision makers quite well {sce Rassenti
el al. [34], Huck et al. [22]).

In order to get a complete description of the dynamic adaptive system we have to specify
the reaction functions, In the onginal work of Cournet, as well as in many of the subsequent

papers, the reaction functions of the players are assumed to be decreasing functions that in-
tersect in a unique point of the positive quadrant, which is the unique Nash equilibrium.
In this case the equilibrium in the Cournot oligopoly model has very simple stability prop-
erties as the trajectories can either converge to the Nash equilibrium or diverge. Cournot
oligopolics where the reaction functions of the players are non-monotonic, have been stud-
ied to a far lesser extent. It is important to notice that the non-monetonicity of reaction
functions arises naturally due to nonlinearities or externalities in the cost functions (Furth
[16], Puhakka and Wissink [30]), when competitors regard their products as strategic com-
plements over a certain range of possible actions (Bulow et al. [11], Cooper and John [13]),
or just simply because the market can be described by a constant elasticity demand function
(Bulow et al. [12]). Mote that in the casc of non-monotonic reactions functions multiple
Mash equilibria may occur. In economic dynamics non-monotonic reaction functions have
heen introduced with several cconomic justifications, and it has been demonstrated that the
Cournot titonnement (or Best Response Dynamic) and mertial adjustment dynamics may
lead to nonconvergence with complicated, but bounded behaviors; see Rand [33], Puu, |31,
32], Kopel [23]. These authors have been mainly concerned with the question of local sta-
hility of the Nash equilibra and the creation of complex attractors when convergence to an
equilibrium failed.
In our example, we consider reaction functions in the form of logistic maps

rilgz) = mq2 (1 —q2) 5)
rlg) = ma (1—q)
proposed by Kopel [23], where it is shown that the functions given 11 {3) can be derived as
Best Responses. The parameters g.i = 1,2 are a measure of the intensity of the positive
externality the actions ol one player exert on the payoff of the other player.
By inserting (3) into (4), the time evolution of the game is obtained by the ileration of
the two-dimensional map T : {g,.g2) — (g}, 45) defined by

g ={1-Mlg +hpg(1—q)
r: . {6)
gy = (1 —da) g2 +hasma (1 —qu)

Of course, only non-negative trajectories are suitable to represent feasible ime evolutions
of the duopoly system.

The map (6) contains four parameters: g > 0, 1= 1,2, and 4, € [0.1], i=1,2. If
i€ [0,4], i= 1,2, as assumed in Kopel [23], then the region % = {[0, 1] x [0, 1]} is trapping
for cach value of A;, Le. any trajectory which starts inside % remains inside % for cach
¢ = 0. However, feasible irajectories of () can be obtained even if g =4 or gy > 4 provided
that the adjustment speeds &, and Az are sufficiently small.

3.1 Nash Equilibria and their Local Stability
The fixed points of the discrete dynamical system (4) are the solutions of the system

g1 =rilgz)
g2 =rqr) @
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Hence, they are independent of the parameters hy and Az, and are l.ocatf:d_ at the intersections
of the two reaction curves. If ry and ry are the reaction functions (5), |_t_15 casy to show that
the fixed points with positive coordinates coincide with the Nash equilibria of the i.:luop::ly
game (see Kopel [23]). So, in whal follows we will often use the terms fixed points and
Nash equilibrium interchangeably.

The algebraic systemn (7) has two or four real solutions: this can be seen by a graphical
representation of the two reaction curves or analytically, by the study of the fourth degree
algebraic system.

Besides the trivial fixed point € = {0,0), anather fixed point 5= (g7, 4% ) exists which
merges with 0 if g = 1 and has positive coordinates, g7 = 0, i = 1,2, provided that
gy = 1. Two further positive fixed points exist for sufficiently high values of g and g

In order to reduce the number of parameters in our model, we will assume that

M= =pe (8)

This means that the positive externality which the actions of each player exerts on the payoft
of the other player is equal. Under this symmetry assumption, the fixed points of (6) can be
expressed by simple analytical expressions. In fact, in this case the fixed point § belongs to
the diagonal A, or line of egual quantities

A={(g.9}.9 = R} (9)

1
S= (1 = )
T

For g = 1, § represents a symmetnic Nash equilibnium, since it is characterized by identical
quantitics produced by the two firms. Two further Mash equilibria, grven by

and is given by

E) = (.“'*.?..+..ﬁff.f_!ﬂf_ffl, L= ‘f':““j.jﬂ__ﬂ) (10)
2p 2
and —_—
2u ‘ 2 '

are created at w = 3, and for g = 3 they are located in symmetric positions with respect to the
diagonal A, Each of them represents a nonsymmetric Nash equilibrium, being characterized
by diflerenl guantitics of the two players. However, £, and E; represent two (locally)
oplimal situations which are symmetric in the following sense: in £ firm 1 produces more
than firm 2 {i.e. firm 1 dominates the market) in exactly the same way as finn 2 produces
maore than firm | in F7 (where firm 2 dominates the market).

In the presence of multiple Nash equilibria the problem of equilibrium selection arises
{see Van Huyck and Battalio [39]), and this naturally leads to the question of stability (see
Van Huyek et al. [37, 38]). We recall that a fixed point g is locally asymptotically stable
if for every neighborhood 7 of p there exists a neighborhood F of p such that 7'(17) © U
for each ¢ == ), and each initial condition in } generales a trajectory converging to p. The
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local stability of a Nash equilibrium of our duopoly game means in other words: provided
that the initially chosen quantities of the duopolisis are not too far from the equilibrium
point, even if the players are boundedly rational and behave adaptively, then the repeated
applications of the adjustment dynamic leads to a situation where no player can gam by
umilateral deviation from the prescribed equilibrium quantity. It is worth noticing that no
Mash equilibrium can be globally attracting because diverging trajectorics can always be
obtained by starting from sufficiently high quantities g, and g7 (see Appendix A). In other
words, an attracting set at infinite distance always exists, and we call basin of infinity B(=)
the open set of points that gencrate diverging trajectories,

B(=) = {{g1,q2)] ||T"(gr.q2)]| = =ast— +ea} . (12)

The analysis of the local stability of a fixed point is obtained through the localization of the
cigenvalues of the Jacobian matrix in the complex plane, where the Tacobian

- Ao (1-2
DT{r;:,qﬂ=[;:%j‘fl_zm ]”";,L':I ‘”:'] (13)

computed at the corresponding fixed point has to be considered. We limit our analysis 1o
the case (8). Under this assumption, from the analysis of the eigenvalues given in Appendix
B, we can derive a complete characterization of the regions of existence and stability of the
Mash equilibria in the three-dimensional parameters space (,A1,4z). However, we shall
first consider the duopoly model under the assumptions (8) and

as a benchmark case, in order to highlight the effects of heterogeneous behavior of the two
firms, i.e., when the speeds of adjustment differ, 4) # h;. A study of the map (6) with
A = hp = A in the particular case u; = g = 4 is given in Gardini et al. [17].

With the assumnption { 14) the map (6) has the [ollowing symmetry property: it remains
the same after an exchange of the state variables gy and g2. This means that the map
7" commutes with the operator P (g1,92) — (g2.41), which represents a reflection with
respect 1o the diagonal A, T{P{q),q2}) = P{T{g1,42}), and consequently the diagonal A s
a trapping submanifold for the map T, 1.e., T{A} € A For the economic model this means
that if two firms start with equal quantities g, (0] = gz(0) and behave identically, then their
choices will be the same for each future time period. The trajectorics, embedded into the
one-dimensional submanifold A, are governed by the restriction of the two-dimensional
map T to A, given by

g = flg) = (1 +A{u—1))g— hug’ (13)

which may be seen as the model of a “representative player” (sce Bischi etal. [5] or Kopel
et al. [24]). The map (15) is conjugated to the logistic map

?=ar(l - 2) (16)

through the linear transformation g = Hﬂﬂy—]z and the parameters are related by g =
1+ {a—1)/A The standard analysis of the local stability of the four fixed points in
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Figure 3: Stability regions in the two-dimensional space £, of the parameters u and A for
the case of homogeneous behavior

the case of homogeneous behavior can be summarized by the following pmpusiliun,.

which defines the stability regions for each Mash equilibrium in the parameters space
0= {[,u, MeBu=00=2<1 } (see also Fig. 3)

Proposition 1 (homogeneous behavior). Let (8) and (14) hold. Then

(i) The fixed point @ = (0,0} exists for each (g L) £ 2 and it is a stable node for
0= p< 1, for | = p<2/h— 1 itis asaddle poimi, with unsiable set along A and local
stable set which crosses through O perpendicular to &, and for g= 20— 1 i is an unstable
node;

(i) the equilibrivm § = {1~ 1/u, | — 1/ u} exists for each (pA) € $2 and it is a stable
node [ A) & LF (8], where

(S ={{pd) | 1< p< 3], {17

Jor3 < p 1+ 2/) it is a saddle point, with local stable set along A and unstable sef which
crosyes through § perpendicular to A, and for p= 1+ 2/\ it is an unstable node;

fiii} The fixed poimis £, i = 1,2, given in {10) and (11) are created at p = 3 through
a pitchfork hifurcation of S and are both locally asymptotically stable for (p.h) & 8F (E),
with

ff(E.-,'l—{(,u.l]Eil|;:;>ii,ﬂq‘lr;l*{p}—£- o -_,s-}; (18)

they are stable nodes for 3 < g < | + V3. stable foci for | ++5 < u< 1+ J‘i + i erred et
p=14 y 44+ ,f: they become unstable foci thriugh a Neimark-Hapf bifurcation.

T
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(v} in the subset of (¥ (F;) given by

@ (ELC) = {{p. W) € QEN A >y (1) = i—@é‘;—”} (9

the two stable equilibria E;. { — 1,2, coexist with the stable cycle of period two

CI_{{P]1PI::III:PIEP1.}}&£E {20}
o i O =T a _
with py = -'-l:ﬂ—l‘.'—i—uv':-!iﬂ 17— and p; = L 1]-2+21,-'l;-: (1) -4
The proof immediately follows from the analysis of the eigenvalues (see Appendix B).
In our analysis of the global dynamic properties we shall be mainly concerned with the set
of parameters in region £ (£;}, which gives coexistence of stable Nash equilibria,

We now turn o the case of heterogeneous behavior, e, we relax assumption (14).
Although the same Nash equilibria are obtained in this case since the fixed points of (6)
do not depend on the speeds of adjustment, the eigenvalues of the Jacobian matrix (13)
depend on both of the parameters Xy and A;. Furthermore, the diagonal A is no longer
trapping. The following proposition, whose proof immediately follows from the analysis of
the cigenvalues (sce Appendix B), defines the stability regions for cach Nash equilibrium
in the three-dimensional parameters space

;= {I:ﬂ,;'l.hl;r} ER3|I,L|'.'-'> 0,0<iy=1,0<k;= l}.

Proposition 2. Let (8) hold, Then

(i) for B < p < | the fixed point O = (0,0) is a stahle node , for 1< p< V 1+ %[%'-1&"—1""1
—
it is a saddle point, for y = 1|'|-"! + %}‘;ﬁ it is an unstable node,

{ii) the steady state § = (1= 1/ 1 = 1/u} is a stable node Sor (uhy ha) e L5 (5),
where

8 (5) = (A 2e) € |l < w3}, {21)
A-Zihy +ha]

4-2(hy+As}
1

Jord < pel k1|_,-"fl+
unstable node;

{iii) The fived poinis E;, 1= 1,2, given in (10) and (1]} respectively, are created at =3
through a pitchfork bifurcation of S, and are hoth stable for [y Az) € Q5 (E:) where

) =
Q;[Ef]={I:ﬂ'l!'lﬂ“h|3{y{1+E@}.—l}'; (22)

they are stable nodes for 3 < u =<1+ ‘.,-"I; + 4&: 2 stable foci for | + yV g + f‘ﬁ t Tlf,' =<

n

it is a saddle point, for p= 2+ Vv L4+ 50 it s an

u= 1+ \.‘fﬁh‘_z - ’.kl_. and af p=1+ v 4t t + fl they become unstable foci through a
Neimark-Hopf bifurcation.

This proposition gencralizes Proposition | in the sense that the bifurcation curves that
constitute the boundaries of the stability regions defined in Proposition 1 are the intersec-
tions of the bifurcation surfaces given in Proposition 2 with the plane &) = A;. The main
difference between the two propositions lies in the fact that if we do not deal with homo-
peneous players, i.e. (14) is nol assumed, then the local stable and unstable sets associaled
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with the fixed points O and § arc no longer along the diagonal A and orthogonal to it,
because a symmeiry property no longer holds. This has important consequences for the
structure of the basins, as we shall see in the following. From a comparison of the two
propositions given above, it appears that the influence of hetcrogeneous behavior on the
stability of the Nash equilibria is not too strong. However, in the case of coexisting stable
Nash equilibria, an important question concemns the delimitation of their basins of attrac-
tion, and we will demonstrate that heterogeneity plays an important role in this context.

3.2  Critical Curves and Structure of the Basins

The delimitation of the basins of arraction of coexisting Nash cquilibria requires a study of
the global properties of the dynamical system, i.e., a study which is not based on the linear
approximation of the map (6) around an equilibrium. In fact, if the initial quantities are not
taken in a small neighborhood of a Nash equilibrium, the nonlinear terms of the map may
have a strong influence on the time evolution of the repeated quantity choices. The process
may then converge to a stable Mash equilibrium, to a more complex bounded attractor or
diverge,

As arpued in section 2, the properties of the inverses of the map (6) become important
in order to understand the structure of the basins,

Given a point ¢ = (g}.,g%) € B2, its rank-1 preimages 71 (¢") can be computed by
solving the algebraic system (6) with respect to the quantitics gy and gz:

(1= X)gq +hmg(l - g2) =4
(23]

(1=22)g2 + Aapng (] —qu) = 43

This is a fourth degree algebraic system, which may have fiour, twno or no real solulions, so
the map (&) is a noninvertible map of Xy — #; — Z; type.

Being the map T continuously differentiable, LC | coincides with the set of points on
which det 0T — 0, which gives

1 I (1=} {1 - 23)
(0-3) (2-2) - " - e

This equation represents an cquilateral hyperbola, whose two branches are denoted by LCI‘_"E:'
and LC™ in Fig. 4a. It follows that also LC = T{LC ) is the union of two branches,
say Lol — T(M.":_‘Tj and LC®! = T{M-.'(_hl):l. The branch L6 separates the region Zp,
whose points have no preimages, from the region Za, whose points have rwo distinet rank-1
preimages. The other branch rctal separates the region £y from Zs, whose points have four
distinct preimages (see Fig. 4b). Notice that a point of Lc®) has two coincident rank-1
preimages which are located at a point of L(.‘l”1]. Furthermore, a point of LC') has two
coincident rank-1 preimages which arc located at a point ul'LC“’E plus two further distinet
rank-1 preimages, called extra preimages (see e.g. Mira et al. [28]).

In the case of homogeneous behavior, i.e., when the assumptions (8) and (14) hold, the
diagonal A is a trapping set and the point C_y at which LC':_EE intersects A comresponds to
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S

-0.4

Figure 4: (a) Critical curves of rank-0, LC . (b)Critical curves of rank-1, L0 = T{LC_, ).
{c) Riemann foliation of the plane for the 2y — 73 — &y map T.

the unigue critical point of rank-0 (local maximum point) of the restriction (15) of T 10 A
Formally,
ra ] , A 1)+ 1
LENA=C_y = (conyeoy) with g = %
In fact, in any point of LC_; at least one eigenvalue of DT vanishes, and in C_y the vigen-
value z; with eigendirection along A vanishes (see Appendix B). Of course

. Afu—1 .
LOMAA=C=(cc) with c= )= e D+I]
Er
that is, the point  at which L' interseets A corresponds 1o the unigue eritical point of
rank-! {maximum vale) of the restriction (15) of T to A
The other mtersection of LC_ | with A, given by

Aua-1)—1
2hu

does not correspond to a critical point of the restriction (15), because in Ky the eigenvalue
z,, with cigendirection perpendicular to A, vanishes (see Appendix B), As also the tangent

LCM A=K = (koy,k ) with k=
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1o LCl_'ﬂ] in K_) is perpendicular to A, the curve Lct) = T(L{,'Iﬂ]] has a cusp point (see e.g.
Arnold et al. [3]) given by

(u+1)—1) (hp+3(1-4))
Ahu

. 'y

K=LC"NA=(kk) with k= f{k .}z{ (25)

The Riemann [olistion associated with the map (6) is gualitatively represented in Fig.

4c. Tt can be noticed that the cusp point of LC is characterized by three merging preimages
at the junction of two folds.

3.2.1 Basin of Infinity

The first task in order to gain some insight into the robusmess of our model is the determi-
nation of the set of initial quantities the players can choose, such that bounded trajectories
are obtained. In other words, it is first of all necessary to determine the boundaries o (e}
of the basin ‘B [=). The puinis belonging to B (=) generate diverging trajectories, and the
points in the complementary set

B =R\ Beo)

form the basin of bounded trajectaries. Points of 3B (=) arc mapped into points of 35 (=),
and the interior points of % may converge to a Nash equilibrium or fo some other bounded
attracting set. The boundary %8 = 9'B(==) behaves as a repelling sl fior the points near it,
since it acts like a watershed for the trajectories of the map 7. Points belonging to dB are
mapped into 38 both under forward and backward iteration of T, that is, the boundary 1s
invariant both with regard to 7 and T~'. More exactly (sce Mira et al. [26], Mira et al.
[28])
T(3B) CoB, T (38) =95

This implies that if an unstable fixed point or cycle belongs to o8, then ¢'B must also contain
all of its preimages of any rank. Moreover, if a saddle-point, or a saddle-cyele, belongs o
2B, then 38 must also contain the whole stable set (see Gumowski and Mira [21], Mira et
al. [28]).

These properties allow us to obtain a delimitation of ¢ and to understand the influence
of the parameters on the extension and the structure of the basins. Let us first consider
the case of homogeneous behavior (14). According to Proposition 1, for g = 1 and 00 <
%< 2/ (u+ 1) the fixed point O is a saddle, with unstable set W () reaching 5 along the
diagonal A and local stable sct W7,_( () crossing through O perpendicular to A, The stable
set Wi () € @B. In fact, if we consider a neighborhood of O, Wi (0) is a separalrix
between the trajectories which converge to a bounded attractor (generated by the points
above W} (7)) and those which diverge to —e {pencrated by the points below W3 _(0]).
The whole boundary 78 is given by the whole stable st B*(0), obtained by taking the
preimages of any rank of B} (0)

9B =W (0) = | T (W,.(0)
k20

In the case of symmeiric players (14), the preimages of O can be analylically computed,
and their coordinates allow us to obtain a rough estimate of the extension of 3.
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W0 < &< 1/ (u+1) then O£ Zy (sex (25)), ie. it has two rank-1 preimages both
belonging to A. Onc is O itself (being O a fixed point) the other one is

{)“]: 1 }l[_,u—].} ]_+.'|"'l.{_,f.!—|:| .
‘ ha 1 hp
Maotice thal, since G[_lg £ A, its coordinates can be easily computed by using the restriction
(15).
If 2> 1/ (g+1) then © € Zs, i.e. it has four rank-1 preimages. Two of them, O and
D(_' ,] belong to A, and the other two, say {J'll,] and r}f_‘? are located In symmetric positions
with respect to A and belong to the line A_;, of equation

1
Ifl+fj'2=|+;(|—;;)- 27

In general, the preimages of any pomt of A arc located on Aoron A, as it can be seen by
setting ¢} = g5 in (23) and adding or subtracting the two symmetric equations. In particular,
with g} = g3 = 0 we get the solution

(26)

i 1l- |+1_.-"J.“_,¢.-14'-234:{T_':|:1"’+l'_‘_|+ ik

g = : — — (28)
- Mgt 13- 1 /A2l 1R a1} -6
Ty ) _l]

and the symmetric solution U[_}f 15 obtained from GI?: by swapping the two coordinates,
160 < &< 1/ {p+1), the stable sct W* {0} consists of two smooth arcs connecting € and
ij_'f. symmetric with respect o A 1f A = 1/ (p+ 1}, then W () has a similar shape, with
the symmetric arcs connecting O and O'_Lr which pass through the points Ou,] and O[_lz
The latter situation is shown in Fig, 5a, obtained for g = 2.8 and A = 0.5, and the former
situation is shown in Fig. 6, obtained for p=3.5 and 2 = 0.22. In these figures the dark
prey region represents the basin of diverging trajectorics B (o).

The knowledge of the coordinates of O and ¢! allows us to get an cstimate of the
“eize™ o @ and the influence of the parameters A and g on it In the case of homogeneous
behavior (14) the length of the scgment {)E]‘EE, given by

j00f) = yaLEMes1) (29)
Aot

is a decreasing function of both parameters boand g, and 1l goes o infinity as h—07,ie.

the basin of bounded trajectories tends to include the whole diagonal in such a limiting case.

It is also intercsling to note that in the other limiling case, h— 17, we gel U“%' » (1,1,

G[_zi — (1,0, (J"?'E »(0,1). Hence in the case of instantancous adjustment (A = 1), the

basin & becomes the square (0,1) = (0,1}, This result also holds for i 7 g, as proved in
Rischi et al. [7].

Many of the argumnents given above continue to hold n the case of heterogencous be-

havior, characterized by different speeds of adjustment Ay # Az, However, a simple analyt-

ical expression of the preimages of O cannot be obtained, since in this case they are given
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by the solution of the fourth degree nonsymmetric algebraic system (23). The diagonal Ais
no longer invariant, and even if the fixed points remain the same, the basins are no longer
symmetric with respect to A. Numerical explorations show that if player 1 exh:blts more
inertia than player 2, i.e. &) < Ay, then the extent of the basin B of bounded trajectorics 15
smaller in the g; direction and larger in the g; direction. In other words, the system is more
robust with respect 1o perturbations of the quantity of the player who adjusts [aster to the
Best Response (see Fig. 5h).

It is also important to notice that even after the bifurcation occurring at Ap+1)=12,
when 0 is ransformed from a saddle point into an unstable node with the simultaneous
creation of a saddle cyele O of period 2, the boundary &8 remains practically the same. In
[act, in this case 0B =F{t'gj, which continues to include € and its preimages of any rank.

A8 - @ LB g o N
Figure 5: The white regions represent the set B whose points generate bounded trajectorics
and the dark-grey regions represent the basin of infinity @ (=), (a) Case of homogeneous
behavior with g = 2.8 and L = 0.5. (b) Case of heterogeneous behavior with g = 2.8,
A =025and &y = 0.75.

To end this subsection we remark that in the figures we have also considered regions
of the plane which are out of the [easible region |2 Of course, from an economic point
of view such regions are not meaningful. However, in order to obtain a more complele
understanding of the whole basins structure from a mathematical point of view, we must
not exclude these regions from our analysis, In fact, as the hasins are obtained by backward
iteration of the map (6), it is natural that basins of positive attractors also include negative
points, whose (non feasible) trajectories enter the positive orthant ! after a finite number
of iterations. 1t is plain that only the feasible trajectories, Le. those which start in B2 and
remain inside B forever, are interesting for the economic model. However, in the following
we will continue to consider regions outside of B2 since this helps us to understand the
properties and the qualitative changes of the basins.
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3.2.2 Basins of Coexisting Bounded Attractors and their Global Bifarcations

As faras 1 < g < 3, the fixed point § £ A is the only stable Nash equilibrium, and the set
B coincides with the basin B (5). In this case the robustness of § with respect to exogenous
perturbations can be deduced from the knowledge of the boundary which separates B (5)
from B (==}. For g > 3, according to the stability analysis given in Propositions 1 and 2, §
is mo longer stable, and two coexisting stable Nash equilibria, or more complex altracting
sets, are present.

We now consider values of the parameter p just after the pitchfork bifurcation such
that the two Nash equilibria £ and F; are both stable. As mentioned before, in such a
situation the 1ssue of equilibrium selection anses. Mote that since both equilibna are stable,
the property of “stability” can not be used as a proper equilibrium refinement (see Cox and
Walker [15]). Hence, a delimitation of the basins of the two equilibria becomes erucial in
order to understand the long mn evolution of the adjustment dynamic. In the case where
only these two stable Nash equilibria coexist, the set ® is shared by the two basins #(E;)
and B (£;). The boundary ol each of these two basins is formed by an “outer portion”,
which scparates them from 48 (==), and an “inner portion”, separating B (£} and B (F3),
which contains the symmetric Mash equilibriam § (which is a saddle point just afier the
pitchfork bifurcation) as well as its whole stable set B*[5) (see Fig. 6). In fact, just after
the pitchfork bifurcation, occurring at g = 3, at which the two stable fixed points £y and £
are created, the symmetric Nash equilibrium § € A is a saddle, provided that 0 < & < le,
and the two branches of unstable set W(S) departing from it reach the two stable nodes £,
and £>. Hence the local stable set B _[5) belongs to the boundary that separates the two
basins, as well as its preimages of any rank:

WHS) = | T8 (W5,.(8)) = 9B (E)) NIB(£,) (30)

k=0

In order o study the shape ol B%(5) and the global bifurcalions which change its qualitative
structure, in the following we consider the symmetric case {14) ol homogeneous players and
the case of heterogeneous players scparately.

In the homogencous case, because of the symmetry property of the map (6), the local
stable set of § belongs to the invanant diagonal A, Indeed, as far as

g1y =] (31)
the whole stable set belongs to A and is given hy
0
wi(5) = 00"

where O] is given in (26) and 00" is the segment joining O with 0"}, In fact, if (31)
holds, the cusp point K of the critical curve O™ has nepative coordinates and, conse-

quently, the whole segment E}G[_IE belongs to the region Z5. This implies that the two

preimages ol any point of OO{_E;' belong to A, and can be computed by the restriction (15).

This proves thai the segment GG”E 15 backward imvariant, i.e., T (GD[_'D = GO”{
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Our arguments imply that if (31) holds, the structure of the hasins ':B[E,-], i'=_ 1,2, is
very simple: B{E;) is the portion of B below the diagonal A and B [Ea) is the portion of B
above it. This situation is shown in Fig. 6, where the numenically computed basins BE)
and ‘B (E;) are represented by light grey and intermediate grey respectively. T'.he Iim:.é.
is the only boundary between the two basins, hence any bounded lrajactngr starting -mth
g1(0) = g2(0) converges to the Nash equilibrium £ and any bounde? ta]c::lur_-,.-. starting
with ¢, {0) < gz(0) converges to the Nash equilibrium Ez. In economic terms lhl.s.!]l\_‘:ai?s
that an initial difference in the quantities uniquely determines which of the equilibna is
selected in the long run. 1f player | offers a larger quantity than player 2, then Ey is selected,
and vice versa. In general, if (31) holds, we can state that if g1(0) > g2(0) {1(0) < g2(0))
then g1t} = qa(t) (gu(t) < qa(0)) for any (. In other words, the ﬁ::"nwin.g. mumzﬂunicity
properly of the adjustment dynamic holds: any initial order of the quantities of the two
players is maintained during the whole time evolution of the duopoly game.

4 q 22
Figure 6: Case of homogeneous behavior with parameters = 3.5 and L =022 The dark-
grey region represents the basin B (==) of diverging trajectories, the lighl-grey region repre-
sents the basin 6 (£} of the Nash equilibrium £y, the mtermediate-grey region represents
the basin B { E2} of the Nash cquilibrium £z.

Both of the basins 8 (£} and B (E;) are simply connected sets if (31) holds. On the
other hand, their structure becomes a lot more complex for A{u+1) = 1. This is shown
in Fig. 7a, which is obtained with g = 3.5 as in Fig. 6, but A =04 = lf{u+1)=02
In order to understand the bifurcation occurring at A (g + 1) = |, we consider the crtical
curves of the map (6). In fact, at A{p+1) = 1 a conlact between L) and the fixed
puint (2 occurs, due to the merging berween ( and the cusp point K given in (25). For
A{u+1) = 1 the portion KO of the segment OO[_'f belongs to the region Zy where four
inverses of T exist. This implies that besides the two rank-1 preimages on A the points of
K have two further preimages located on the segment GLZ%'U[},] of the line A of equation
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(27). Since 00" = W} _(5) ¢ 3B(E,)"13B(E,), also all the preimages of this segment
belong to the boundary which separates ® (£ from ®(F2). Furthermore, also the segment
O{_Z;"U?r has rank-1 preimages, because portions of it are included in the regions 7 and Zy.
These are preimages of rank-2 of UGI_';“ and, consequently, belong o W ({3) according 10
{30). This repeated procedure, based on the iteration of the multvalued ioverse of T, leads
to the construction of the stable set W*(S) which is formed by the union of infinitely many
arcs which accumulate on the boundary 2. In fact the invariant set 98, being a repelling
set for the forward iteration of T, attracts the invariant manifolds under the eration of the
inverses of T,

The results given above can be summarized as follows:

Proposition 3. If gy = g = g, by = ha = hoand (p, L) € 5(F;), the bounded trajecto-
ries of (6) comverge o one of the stable Nash equilibria Ey or Ea, given by (10} and (11)
respectively, and the common boundary 0B (E,)Md B (Ey) which separates the basin B (E})
Jfrom the basin B (Ea) is given by the stable set W9(S) of the saddle point 5. I[f{u+ 1) < |
then W[5 = (J('Jl__lf. where (2 = (L0} and Uj:_lj' is given by (28}, and the two basins are
simply connected sets; ifR{u+ 1) = | then the rwo basing are non connected sets, formed
by infinitely mawy simply connected components.

W would like to emphasize that the biturcation cceurring at A {u+ 1) = | is a global -
furcation, i.e. it cannot be revealed by a study of the linear approximation of the dynamical
systermn. The occurrence of such a bifurcation has been characterized by a contact between
the stable set of 5 and a critical curve, This kind of bifurcation has been called conract (or
non cfassical) bifurcation in Mira et al, [28].

The occurrence of the bifurcation which transforms the basing from simply connected
to non connected causes a loss of predictability about the long-mn evolation of our Coumnot
game starling from given initial quanities of the two players. 1o fact, in contrast to what
happens in the case of simply comnected basins, when the basins are no longer simply
connected, the adjustment dynamic starting with g, (0) = g2(0) may lead to convergence o
either of the Nash equilibria. Furthermore, if the initial guantities are sufficiently far away
from a Nash equilibrium — for example near the boundary d® of B — then the prescnce
of the infinitely many components of both basing causes a sorl of unpredictability with
respeet to these initial conditions. Even a very small perturbation of the starting point of the
Cournot game may lead (o a crossing of the boundary which separates the two basins and,
comsequently, may result in the convergence to a different Nash equilibrium. The complex
structure of the basin boundaries in the region close to the boundary of B becomes quite
obvious in the enlargement shown in Fig, The

It is important to notice thal even afier the fAip bifurcation ocourring at A {p— 1) = 2 the
boundary that separates 8 (£,) from % (E5) remains practically the same. This bifurcation
transforms 5§ from a saddle point into an unstable node and a saddle cyele of period 2 is
created with stable set along A. The boundary of the basins is then given by the closure of
the stable set ol the 2-cycle, which continues o include 5 and its preimages of any rank.

We now tumn to the case of helerogencous behavior, in which the assumption (14) 15
relaxed. In this case, the common boundary d% (E;) M d®(E5) is still formed by the whole
stable set W¥(S), but if &; # A; the local stable set W2 (5 is not along the diagonal A,
because T is no longer symmetric and, consequently, A is no longer invariant, However, by
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. I o
04 EY q, L& A% b) q, 057

Figure 7: Case of homogeneous behavior wilh parameters g = 3.5 and A =04, {a) The
fixed point €} = (0,0} is a saddle, the fixed point § = [(0.71,0.71) is a saddle, the fixed
puints £, and £; are stable foci(b) Enlargement of a portion of fig.(a)

numerical and graphical investigations, guided by the knowledge of the critical curves, we
can analyze the structure of the basins of the two coexisting stable Nash equilibria and we
can characterize the bifurcations that cause their qualitative changes.

Proposition 2 shows that, as in the case of homogencous beliefs, there exists a rather
large sel of parameter values for which two stable equilibna exist. Maoreover, it 15 casy
to realize that slight differences between the two adjustment coefficients do not introduce
significant changes in the local stability properties, i.e. in the modulus of the eigenvalues.
However, as will be demonstrated below, even small heterogeneities between the players
may canse remarkable effects with regard to the structure of the basins. Indeed, many of
the arguments given in (he previous section for the study of the boundaries of the basins and
their global bifurcations continue to hold in the case of heterogencous beliefs. The main
difference is that the diagonal A is no longer invariant and, even if the fixed points remain
the same, the basing are no longer symimetric with respect 1o A,

First, it is still true that for g > 1 the preimages of the unstable fixed point O belong
to the boundary that separates the basin of infinity from the set of points which gencrate
bounded trajectories, bul a simple analytical expression of the preimages of O cannot be
obtained. However, they can be easily computed by standard numerical routines, as solu-
tions ol a fourth degree algrebraic equation.

Second, it is still true that for increasing values of g or A; the point O enters the
region Z, but the exact values of the parameters at which this occurs cannot be computed
analytically.

Third, the boundary which separatcs the basins 8 (E)) and % (£;) 15 still formed by
the whole stable set B*(S), but in the case Ay £ Az the local stable set W _(S) is not along
the diagonal A. The contact between F7(5) and LC™! which causes the transition from
simple to complex basins, does not oceur at the fixed point O (since now O ¢ W 57) and
no longer involves the cusp point of LOW Again, the parameter values al which such
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contact bifurcations occur cannol be computed analytically. However, the bifurcation is
always caused by a contact between LC and a basin boundary.

In what follows, we will demonstrate, however, that the occurrence of these bifurcations
can be detected by computer-assisted proofs, based on the knowledge of the properties of
the critical curves and their graphical representation (sce e.g, Mira et al. [28] for many
examples). This “modus operandi™ is typical in the study of the global bifurcations of
nonlinear two-dimensional maps.

In order to understand how complex basin structures are obtained, we start from a sit-
uation in which W7(5) has a simple shape, like the one shown in Fig. Ba. This figure has
been obtained for the same value of the parameter g = 3.5 as the previous figures, but dif-
ferent speeds of adjustment for the two players, &y = 0.6, k; = 0.8, The introduction of
an asymmetry in the adaptive behavior of the players has a negligible effect on the local
stability properties, since the eigenvalues of the two fixed points are exactly the same and
are very close to the ones obtained in the homogeneous case with the same value for 4 and
with b = (h; +A2) /2. On the other hand, it causes an evident asymmetry of the basins of
atiraction. As shown in Fig. 8a, when Ay = &y the extension of #(E;) is in general greater
than the extension of B(E;), and the complementary situation is obtained if A and A; are
swapped. Numerical simulations show that in general the Nash equilibrivm E; dominates
the other Nash equilibrium E; in terms of the extension of the basin if X, = X;. Furthermore,
even in situations characterized by a simple structure of the basins' boundaries, like the one
shown in Fig. 8a where both of the basins are connected sets, the statement that the mitial
order of the quantities is maintained along the whole trajectory is no longer true. In fact,
in the case of different speeds of adjustment, say A; = &y, the typical occurrence is that the
smaller basin B (E;} is surrounded by points of B (£;). Hence, the adjustment dynamic in
our Cournot game may lead to convergence to E; in the long ran, even if players start with
guantitics which are closer to £;. Thus, the initial order of the guantities would be reversed,

In the simple situation shown in Fig. 8a, the smaller basin ®(E, ] is a simply connected
sel. The basin B{E;) is a multiply connected sct, due to the presence of a big “hole”
{or “island™, following Mira ¢ al. [26]) nested inside il, whose points belong to B (F; ).
Furthermore, #(5), i.e. the boundary which separates the two basins, is entirely included
inside the regions Z; and Zy. However, the fact that in Fig. 8a a portion of W8] is close
to L.C suggests the occurrence of a global bifurcation. If the parameters are changed, so
that a contact between W[5} and LC occurs, this contact will mark a bifurcation which
causcs qualitative changes in the structure of the basins. 1Fa portion of BE) cnlers 4
after a contact with LC'™ | new rank-1 preimages of that portion will appear near L(,{_bf ,
and such preimages must belong to ®(E;). Indeed, this is the situation shown in Fig. 8b,
obiained after a small change of &y, The portion of B (£} inside Z; is denoted by Hy. Tt
has two rank-1 presmages, denoted by I!‘I‘]l] and Hm, which are located at opposite sides
with respect to LL‘”? and merge on it (in fact, by definition, the rank-1 preimages of the arc
af LT which bound Hy must merge along LC'M1]). The sct H_; = H“:’ ] HEE:" constilute
a non connected portion of 8 (£)). Morcover, since / ; belongs to the region Zy, it has
four rank-1 preimages, denoted by Hi‘;:', j=1,..,4 in Fig. &b, which constitute other
four “islands” of B (£;). Puints of these “islands™ are mapped into H in two iterations of
the map T Indeed, infinitely many higher rank preimages of Hy exist, thus giving infinitely
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many smaller and smaller disjoint “islands™ of B(E; ). Hence, at the contact between B (5
and [.C the basin B (£, ) is transformed from a simply connected into a non connected set,
constituted by infinitely many disjoint components. The larger connected component of
#(E,;) which contains £ is called immediate basin By (E)), and the whole basin is given
by the union of the infinitely many preimages of By (E1): B{E) = Uzo T4 (B (E)).

4

Figure 8: Case of heterogeneous behavior, (a) = 3.5, &) = 0.6, Az = 0.8 by w=13.5,
by =0.65, 4 =08

To sum up, also in the case of heterogeneous behavior, changes in the speeds of ad-
justment may cause global bifurcations, related to a contact belween basin boundaries and
critical curves. Such bifurcations change the qualitative structure of the basins, and give nise
1o a higher degree of uncertainty with respect to the possibility of forecasting the cllects of
small changes in the initial quantities on the long-run evolution of the duopoly game. How-
ever, note that due to the heterogeneous behavior of the two competing firms, the symmetry
property of the dynamical system which allowed us o obtain a simple analytical EXPICSEION
of the global bifurcation value no longer holds. Henge, the oceurrence of contact bifurca-
tions can only be revealed numerically. This happens frequently in nonlinear dynamical
systems of dimension greater than one, where the study global bifurcations is generally
obtained through an interplay between theoretical and numerical methods,

3.2.3 More Complex Attraclors

When the equilibria £ and £ lose stability through the Neimark-Hopt bifurcation nccur-
nng at g=1+ v-"rﬂf'l l,{I'Tj‘l two stable closed invariant curves are created around them,
on which the trajectory exhibit a quasi-periodic motion. In this case, even if a Cournot
tilonnement starts very close to a Nash equilibrium, the trajectories move around i, with-
oul converging to any equilibrium point. However, the results on the delunitation of the
basins, as well as the analysis of the contact bifurcations that change their strcture, also
hold in the presence of the more complex attractors which appear around the Nash equilibria

——
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E,; and E; when they lose their stability through the Neimark-Hopf bifurcation.

As the parameters move far from the bifurcation surface, in the region where no stable
Nash equilibria exist, the amplitude of the two stable closed orbils increases and then more
and more complex attractors appear, such as annular chaotic attractors (see Kopel [23]
Gardini ct al. [17]). ’

These changes in the shape and the properties of the attractors are independent of the
changes in the boundaries of the basins and their bifurcations. In fact, complex attractors
may exist with complex basins (see €.g. Gardini et al. [17]), but we may have simple
attractors, such as stable fixed points, with complex structures of the basins (as demon-
strated in the previous section), or complex altractors whose bazins have boundaries with
a simple structure.  For example, in the case of homogencous behaviors, we have sim-
ply connected and symmetric basins for g3 and A < |/ {g+1), and the Nash equi-

libria E;, i = 1,2, lose their stability at A= 2/ ({,H— 1)? —4}- Hence, for 4= 5 and

2/ ([,u— 1) —4) < % < If{u+ 1) we have coexisting attracting sets?, say A, and A,
which are more complex than fixed points, whose basins ®(4;) and B4, are simply
conneected sets scparated by the segment 0{}“: of the diagonal A, as stated in Proposition
3. This is the situation shown in Fig, 9, obtained with g = 52and h =016

0 x 13

Figure 9: Case ol homogeneous behavior with parameters g = 5.2 and A = (L16. The
Nash equilibria Ejand Fz are unstable foci, and two quasi-periodic attractors exist around
them, whose basins are simply connected sets represented by yellow and pale-blue regions
respectively.

The creation and the gualitative changes of the attractors in the symmctric case as the
parameters y and A are increased, have been extensively studied in the literature (see .2,
Kopel [23], and Gardini et al. [17] for the particular case g = 4).

INatice that 2_.1'{{;1— i]l1 —4:] < flp+ 1 forp=35
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b}

Figure 10: Casc of heterogeneous behavior with A =07 and dz =08 (2) p=_3.9. Two
chaotic attractors A, and Az exist around the Nash equilibria £, and E.g rf:s.plectwely. )
4= 3.95. A unique chaotic attractor 43 exist, to which all the bounded trajeclories converge,
which includes the Wash equilibrium Ez.

Here we are mainly interested in the eifects of helerogencous behavior on the pmpcﬂfes
of the attracting sets and, in particular, in situations where the asymmetry i!:] the basins
causcd by the heterogeneity induces asymmetrics n the structure of the a!nrammg SEls.

Consider, for example, the situation shown in Fig. 10a, obtained w1.r.h = = 3.9,
&, = 0.7 and A; = 0.8. In this casc, two chaolic attractors A-,Iand As exist around the two
Nash equilibria £ and E respectively. According to Proposition 2, E; and E; are unstable
foci with the same eigenvalues. Also the two chaotic attractors A, and A3 appear to be very
sirnilar, despite of the difference between the two speeds of adjusument. In other wuqis,
even if the two firms are heterogeneous in our madel, two trajectories T, and Tz starting
close 1o the Nash equilibria E; and £; respectively show similar evolutions in the SenSe
that they depart from the respective Nash equilibnia at the same ratc {dlue to th.:: identical
eigenvalues). They then move erratically, covering the almost symmetric chaotic areas. Ay
and As. However, Fig. 10a reveals an evident asymmetry in the structure of Lh:_ basins.
Indeed, B{4,) is non connected and the boundary of the in'unulia:{e ha;m By (A1) 1s Tather
close to the boundary of the chaotic area 4,. Starting from this situation, a.sm.ﬂ! change
of some parameter will cause the occurrence of a contact hemfo;n the chaotic a{tracmr..dl

and the boundary of its immediate basin. Such a contact mfurcation causes tt_::: destrizction
of the chaotic attractor {Gumowski & Mira [20, 21]). Such a hifurcation 1s c:a!l::q Sfinal
hifurcation in Mira et al. [28] and Abraham et al. [1] or bowndary crisis in (i-:'e.bug;L ::t.al.
[18]. In our case, the contact between ., and d8 (A7) occun-,..ﬁ::r example, I:rg.w mﬁr_a:_:mng
i As shown in Fig. 10b, obtained with the same values of :_"n-l and Az as in 1-1.g. 10a
and a slightly increased value of u, namely g = 3.95, after th1.5 contact bifurcation, t'r?c
chaotic attractor 4, disappears. More exactly, it becomes a chaotic n:p&i]nrland the generic
bounded trajectory comverges o the attractor Az, located around E;, which remains the
only bounded attracting set. This leads to a remarkable asymmetry in the structure of the
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attractors, since the trajectories starting close to the Nash equilibrium F5 remain around E;,
even if they exhibil an erratic motion, whereas the trajectories which start close to the other
MNash equilibrium £ reach, in the long run, the chaotic attractor A5 around £, Due 1o the
presence of the “ghost™ represented by the chaotic repellor, these trajectories converge to
A; only after a relatively long chaotic transient in the region which was occupied by A,

A symmetric reasoning applies if we consider the case with & > &y, In this case the
final bifurcation transforms the chaotic attractor 4» into a chaotic repellor, whereas the
attractor 4| survives and attracts the generic bounded trajectory.

4 Conclusions

In this paper we have considered the structure of the basins of attraction in noninvertible
maps and some global bifurcations which mark the route to more complex topological struc-
tures of the basins.

As an example, we have analyzed a Cournot Duopoly game in which the reaction func-
tions are non-monofonic and 1t has been assumed that players do not adjust their quantity
choices instantancously to the Best Response, but exhibit some kind of inertial behavior.
The assumption of non-monotonic reaction functions anses guite naturally in economic
contexts and give rise to multiple coexisting Nash equilibria. In such cases an equilibrium
selection problem arises and it becomes crucial Lo oblain some information on the stability
extent of enther of the equilibria. This information then enables us to assess the robustness of
the Mash equilibria with respect to exogenous perturbations, Stability arguments are often
used in ceonomics to select among multiple equilibria, but this approach fails when mul-
tiple equilibrium assignments coexist. The selected equilibrium is then path-dependent in
the sense that “the equilibrium predicted to emerge depends on the historical accident ofthe
initial condition, rather than on deductive concepts of efficiency.” {Van Huyck et al. [38],
p. 484). We somehow made more precise what it means that eventually selected equilibria
are “path-dependent”, and how this selection process depends on “historical aceidentis™.

Our study of the basins covers an aspect which is rather neglected m the economic
dynarmcs Iiterature, where the questions which traditionally are addressed are related to
the local stability propertics of equilibnia and the creation of complex attractors when the
steady states loose stability. In contrast to the existing work, we have shified the emphasis
to the stady of the plodal stability properties of the Nash equilibria and global bilurcations
that cause gualitative changes of the basins of altraction.

In fact, a study limited 1o the local stability analysis based on the linear approximation
of the sysiem, may be quite unsatisfactory. This is due to the fact that an analysis of local
stability properties only determincs the attractivity of a Mash equilibrivm for games starl-
ing i some region around the equilibrivm. However, such a region may be so small that
every practical meaning of the {(mathematical) concept ol stability is lost. In these cases the
study of the stability exieni, that 15 the determination of the boundaries of the basin of at-
traction, can give a clear idea of the robusiness of an equilibrium with respeet to exogenouns
perturbations, since it permils one o understand if a given shock of finite amplitude can
be recovered by the endogenous dynamics of the system, or if it will cause an irreversible
deparrure from the Mash equilibrium. This aspect has been ofien left out, as an analysis of
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the global properties of the dynamical system, L. an analysis not based on a linear approx-
imation, is required. Instead, this aspect may be important for understanding the long-run
behavior of any adjustment dynamic, since the convergence to one of scveral coexisting
Nash equilibria crucially depends on the initially chosen guantities of the players.

We have shown that despite the local stability of coexisting Mash equilibria, the situation
might become quite complicated as more and more complex basins with complicated topo-
logical structures (such as non connected sets formed by many disjoint porlions) emerge
as the adjustment speed (1.e. the cxtent of inertia of the players) changes. Such a route
to complexity leads to some kind of unpredictability with respect to slight changes of ini-
tial conditions, because in the presence of complex basin boundaries a small change in the
initial conditions may give a completely different long run evolution of the system if the
change causes a crossing of some basin boundary. The route to more and more complex
basin boundaries, as some parameter is varied, is characterized by global bifurcations, also
called contact bifurcations. Such bifurcations can be rarely studied by analytical methods,
since the analytical equations of such singularities are not known in general. Hence such an
analysis is mainly performed by geometrical and numencal methods, based on theoretical
resulis.

O the basis of the properties of noninvertible maps, we have explained why the basins
of attraction may have very complex structures. We have shown that the bifurcations can be
studied by using critical curves, a powerful tool for the investigation of the global behavior
of nuninvertible two-dimensional discrete dynamical systems. For the Cournot game with
an inertial adjustment, the main qualitative changes of the structure of 1he basins of the
equilibria can be explained through analytical and geometrical arguments, which are based
on the knowledge of the critical curves and of the stable sets of the saddle fixed points or
cycles.

In this paper we have only considered the case u = g, where the parameters ;1 =
1.2 measure the extent of the positive externality the actions of one player exert on the
payoff of the other player. That is, we somehow assumed that the game-theoretic situation
we analyze is symmetric. The only source of hetcrogeneity of the players arose from a
difference in the inertia of the players, ie. different adjustment speeds. An asymmelnic
situation, in which g, # g, under the Best Response dynamic, Ay = ky = 1 {instantancous
adjustment), has been analyzed in Bischi etal. {7}, where it is shown that such a dynamic
game is characterized by the coexistence of many periodic or chaotic attractors, with rather
intermingled basins.

Appendix A, The attractivity of infinity

In order ta prove that an attracting set of the map (&) exists at infinite distance, i.e. the fteration
of () may generate diverging sequences, we show that

Vie) = a0l = qu(e) + ga(t)®
is diverging il it is computed along the trajectories which start from {gu (00,2 (0)) with

(g (07, g2(00)] sufficiently large.
From {6} it follows that for any set of parameters ;= 0, A= 0,i=1,2, wehave gy < —M
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and gy < —M for a finite M = 0, provided that

1

4 o i 4
== 4, 1+ —(1- . e A S
g1 2[ \/ 11#2( lz}¢z+MJandquz{l+u/l+lml{l Mg+ M

Furthermore, from (6) it can be immediately scen thar if ¢ <2 0 and ¢; < 0 then also g'] < [ and
g < (1. Henee, the negative cone

N={(g1.92)l¢: < 0and g7 < 0}

is a trapping set for the map (&),
By using the expression of the map (&) we obtain that along the trajectonies of 1

Vit+1) =Vt =gl +d7 -1 — a3 =
2 2 8
Mgl +Kipdal —2 (M5dal +iidad) + (Mt -2+ d ) al + (22 (- 2) 4208 ) &2
2 (1= M) gz — 2ha (1 = Xa) segiqa + 2 (0 (1= M +ha (1= Ra) s} i 4
This expression is always positive if (g, g2) & N and (g, g2 is outside of the ellipse of cquation
st (g2 = 1)+ (g - 1) =2
Appendix B. Local stability analysis of the fixed points

Here we analyze the local stability of the fixed points of the map (6) with g, = @ = 1 Such
an analysis can be carried our by studying the localization of the eigenvalues of the Jacobian matrix
in the complex plane, i.e. the solutions of the characteristic equation

Plz) =2 —Tr-z+De =0, (37)
where T'r and [Jef arc the trace and the determinant of the Jacobian matrix {13) computed at the

fixed point, A sufficient condition for the stability of a fixed point is that both the eigenvalues are
inside the unit circle in the complex plane.

E.1. Homogeneous case

Urber the assumptions (8) and (14) the Jacobian matrix becomes

) 1—A Aul(l =2y
DT (x,¥) = { Ja(1 — 2x) ,ulgl_f}]l 1 (3%)

In the poins of the diagonal &, DT assumes the structure

DT (x,5) = [ . f } (34)

withd =1 — A and £ = Lp{1 — 2x). Such a matriz has real cigenvalues, given by

zy=A+8 with eigenvector ry = (1,1} along A
z, =A—F with eigenvector v) = (1, —1) perpendicular io A
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It is easy to see that the product of matrices with the structure (34) has the same structure. Hence
all the F;xed points and the cycles embedded in the invariant diagonal A have real eigenvalues with
eigenvectors along A and perpendicular to & respectively.

For the symmetric equilibrium § = (1 - 1/p,1— L)

2 (8) =14+ A(1—g) and z, () = 1 +A{u—3)

Being

—lez(S)<1fr0<h{p-1}<Z

ez, (§)=1for—2<hip -3) =<0

5 is a stable node in the region (17). N

At p=73,z, (8) =1, § loses stability in the direction transverse fo A through a supereritical
pitchtork hifurcation (see the remark below) at which the equilibria £y and £ are created for g >
7 and are stable just afler the bifurcation. After such bifurcation 5 becomes a saddle point with
unstable set in the direction transverse to A and local stable set along the invariant diagonal A, AL
A(g—1) = 2 a flip bifurcation along A occurs at which 5 becomes a repelling node a.r.ld .a saddle
cycle O of period 2, whose periodic points (20} can be easily computed from the restriction of T
to A, is created along the diagonal A, with stable set along A and unstable set ransverse w it. The
eigervalues of Cz are the eigenvatucs of the matrix DT {pr. ) - DT (g7, p2), given by

21(C2) = (1 = A+ Aa(1 = 2p)) (1=t Mga(1 = 2p)) = S =47 (u— 1)
and

2 (G} = (1 —A—Au(1=2p)) (1 - A—hu(1 - 2p2)) = (3+ 2u— )N =120+ 13

z . 6— 4/ Va—2)
We have — 1 < zy () < Lor 5g < A %,andﬂ <z (Ca) < l_l'crﬂ:: Ao %%_
T T

Yoqg Wehavez) (C2) =1 and

Motice that ﬂ"fl] =l forp< 146 AtA=2, (u) =-
; & ——
at h = Ay, it halds that %[l d = 2/ 12p{u-2) <D
S, (3 becames a stable node for & = A, and two saddle cycles ol period 2 arc created through
a suberitical pitchfork hifurcation (see the remark below).

In the fixed points £, and £7 the Jacobian matrix (33) is given by

A B;]

B: A B, A

DT (Ey) = [ 4B ] and DT (E;) = [
respectively, with B = -A[l - 1.‘.-"'[:;.: F1a—3)) and Bz = —A(1 + 4/ (a+ 1}{#—3}}.. I
is easy 1o see that £, and Fz have the same characteristic equation because l];:: twao mamc:,'ﬁ
DT (), i = 1,2, have the same trace and determinant. Being TP —4Det — 407 (4 + 2u— )
the eigenvalues are real for g = 1+ '3 and complex for u == | + 5. Tt is easy to verify that a.l
A [;}3 - 2u— 3) = 2 the cigenvalues exit the unit circle, so that the repion of stability of both equi-
libria £, § = 1,2, s (18). Furthermore, the two fixed points aretransformed from stable W unstable
foci through a supereritical Neimark-Hopt bifurcation al which two stable elosed orbits are created
arpund the rwo unstable Nash equilibria By and £,
Remark. A rigorous proof of the supercritical or suberitical nature of 2 MNeimark-Hopf, or
Pitchfork, bifurcation requires a center manifold reduction and the evaluation of higher order deriv-
atives, up to the third order (see e.g. Guckenheimer and Holmes [19]). This is rather tedious in
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a two-dimensional map, and we ¢laim numerical cvidence in order to ascertain the nature of such
bifurcations.

B.2. Non homogeneous case

Under assumption (8), the Jacobian matrix hecomes

_ 1-4  hp(l1-2y)
DTixy) = [ Aau(1 — 2x) I — s ] (35)

The system of inequalities (see e.g. Gumowski and Mira 1980, p.159)
Plly=1-Tr+Der =0; Pi—-1)=1+Tr+Der =0, 1—Der=0

gives necessary and sufficient conditions for the two eigenvalues to be inside the unit circle of the
complex plane,

ALS = (1= 1w 1 — 1/ ) we have

T2~ aDet = A + 33+ 140 Ay + A hap(w—4) = (A — h2) = 0, being p{— 4) = —4.
So the eigenvalues are always real at the fixed point 5, and the stability conditions reduce to

Pll)=hda(—pf+4u—3) =0 for | < p< 3

P(=1) = Mo — 4hidap+ SMda+ 2 (M +A2) —4 > Ofor < 24 14+ 2248l

Then, § is a stable node in the region (21).

An g = | a ranscritical bifurcation occurs &t which (2 and 5 exchange stability, andat g =3 2
pitchfork bifurcation of § ocours at which the fixed points £ and £7 are created.
Since
._ Y —h (1= VI 1) (u-3))
DriE)= /
A {1+t (- 3)) |- ha

and

T = (E W --l.(l+1fl[p+l][.u—3}) ]
¥ h[]-ﬂirﬂ)rﬁ—n) 1—hs

1 is easy 1o realize that £ and E5 have the same characteristic squation. The fixed points E; are
transformed from stable nodes into stable foci when

Tr —4Det = —4hdagf + 8+ 140 h:+ 23 +22 =0
- fo 4y N ; 11— % . .
ie.aty=1+4/5+ g +gf . Inthis case, since P(1) Apda(p+ D {p—3) =0 forp =3
and P{—1) =4 —Z(h) +22) + MAalp+ 1) (gr—3) = 0 for g = 3, the stabibity conditions for

£ 1= 1,2, reduce to

Der —1 = Jl.|}|.2l.u'2 —Ihap -3 - - =0
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which is satisfied in the region £5(E;) of the parameters space {35, The equation

—
— 14y Japith
#= ks

defines a bifurcation surface through which a Neimark-Hopl bifurcation occurs.
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ABSTRACT

Our goal was to extract information on communicative process evolution avoiding
simplification and classification. We analysed 50 motivational rescarch interview made
from students during their university course, The nature intrinsically interactive of the
dialogue concretises, shapes and evolves within time dimension. A reciprocal adaptation,
where each partner learns, step by step, to lead in the interlocutor’s reference frame,
without quitting its own, turns into a common system exceeding those of both fellow. Our
approach founds on analogies between conversation processes and chaatic systems: even
in conversation, time evolution shapes, defines and characterises the process. During the
interaction, the turm alterpation is fundamental, specially when the mutual definition of
the relationship involves the acknowledgement of different roles. Through word
counting, we estimated the * conversalion process phasc-pormait”. This procedure
allowed information extraction on the communication evelution: plots with anomalous
paths indicate situations where the communication has been troubled from external
references.

1. INTRODUCTION

The conversation is the most commaon interaction process in the daily life: we were born in
essentially dialogic and linguistic universe and our whele relationship history is, also, a
continuous learning of the art to cope with conversations in an effective way. Nevertheless,
this process is unconscious: our senses are used 1o live what is manifest without any question.
A reflection on an aspect usually regarded as obvious seems particularly interesting. What 1s
self-evident escapes from inquiry; however its characteristic measurcment, ils components
evaluation were the incentive and the aim of our work.

The theory of the communication process suggests some rules in the conduction of a
psychalogical interview: it underlines the tum importance, the need of giving space to the
interviewee, the weight of the usage of a uniform language. In practice, these rules are often



