International Journal of Bifurcation and Chaos, Vol. 9, No. 1 (1999) 119-153

(© World Scientific Publishing Company

PLANE MAPS WITH DENOMINATOR.
I. SOME GENERIC PROPERTIES

GIAN-ITALO BISCHI*
Istituto di Scienze Economiche, University of Urbino, Italy

LAURA GARDINTf
Istituto di Matematica “Levi”, University of Parma, Italy
and Istituto di Scienze Economiche, University of Urbino, Italy

CHRISTIAN MIRA?
Groupe d’Etudes des Systemes Non Linéaires et Applications,
INSA Complexe Scientifique de Rangueil, 31077 Toulose Cedex, France

Received April 16, 1998; Revised July 8, 1998

This paper is devoted to the study of some global dynamical properties and bifurcations of two-
dimensional maps related to the presence, in the map or in one of its inverses, of a vanishing
denominator. The new concepts of focal points and of prefocal curves are introduced in order
to characterize some new kinds of contact bifurcations specific to maps with denominator. The
occurrence of such bifurcations gives rise to new dynamic phenomena, and new structures of
basin boundaries and invariant sets, whose presence can only be observed if a map (or some of

its inverses) has a vanishing denominator.

1. Introduction

Maps of R?, defined by 2’ = F(z, y), ¥ = G(z, y),
with at least one of the components F' or G given
by a fractional rational function, are often met in
applications (see e.g. [Marimon & Sunder, 1994;
Billings & Curry, 1996, 1997; Bischi & Naimzada,
1995, 1997; Barucci et al., 1997]). If a denominator
can vanish, then the map is not defined in the whole
plane and some particular behaviors can be related
to this fact. In particular, if one of the components
of the map (or of its inverses) assumes the form 0/0
in a point of 2 , then some peculiar dynamic prop-
erties of the map can be evidenced, related to the
presence of such points.
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In this paper the new concepts of focal point and
prefocal curve are introduced, in order to character-
ize the particular geometric and dynamic proper-
ties, together with some new kinds of bifurcations,
peculiar of maps with denominator. Roughly speak-
ing, a prefocal curve is a set of points for which
at least one inverse exists which maps (or “focal-
izes”) the whole set into a single point, called focal
point. These concepts have been introduced for the
first time during the ECIT (European Conference
on Iteration Theory) held in Urbino in September
1996, by the authors of this paper (see [Mira, 1996;
Gardini & Bischi, 1996].! However, some obser-
vations on the role of the vanishing denominator
and of the points in which a map (or its inverses)

Tn [Mira, 1996, instead of “focal point” the term “focalization point” is used, whose definition is related to the structure of
the phase curves of the map 7. In [Gardini & Bischi, 1996] the term “set of focal values” is used instead of “prefocal curve”.
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assumes the form 0/0 were already present in a
paper by Mira [1981] (see also [Mira et al., 1996,
p. 25]).

In this paper we study some generic properties
of two-dimensional fractional rational maps that are
not defined in the whole plane, due to the pres-
ence, in at least one component of the map, of a
denominator that can vanish. The definitions of fo-
cal points and prefocal curves are given, and their
effects on the geometrical properties of a rational
map are described. Such effects are studied by con-
sidering the image, by a rational map, of a curve of
the plane crossing through the set of points in which
a denominator vanishes (called set of nondefinition)
and, in particular, the images of curves crossing
through the particular point of this set called focal
point. In the generic case a one-to-one correspon-
dence is obtained between the slopes of the arcs
through a focal point and the points in which their
images cross the corresponding prefocal curve. This
implies that the preimages of any curve crossing the
prefocal curve in two points are given by loops with
a kind of double point in the focal point. This prop-
erty may be very important in order to character-
ize some particular structures of the basins bound-
aries, as shown in some previous papers [Mira, 1996;
Bischi & Gardini, 1996, 1997] and in some examples
given in the present one.

The geometric effects of focal points and
prefocal curves, on the images and preimages of
a generic curve of the plane, become particularly
important for the properties of the iterated map
(i.e. from a dynamical point of view) if images and
preimages of phase curves are considered. Phase
curves are invariant curves for the map, such as the
boundaries of basins, stable sets and unstable sets of
cycles.

New kinds of bifurcations, peculiar of maps
with denominator, are explained by contacts be-
tween basin boundaries and prefocal curves. These
bifurcations cause the creation of particular struc-
tures of the basin boundaries, denoted as lobes and
crescents, giving rise to fans of such figures cen-
tered at the focal points, and belonging to the sta-
ble sets that constitute the boundaries of the basins.
Such particular structures have been recently ob-
served in [Bischi & Gardini, 1996, 1997; Mira, 1996;
Billings & Curry, 1996; Billings et al., 1997; Brock
& Hommes, 1997].

A contact between the unstable set of a saddle
fixed point (or a saddle cycle) and the set of non-
definition, locus of points in which a denominator

vanishes, generally causes the sudden creation of
unbounded branches of the unstable set, thus giv-
ing a new mechanism for the occurrence of homo-
clinic bifurcations, specific to maps with a vanishing
denominator.

The bifurcations due to tangential contacts be-
tween arcs of phase curves (like those that form the
basin boundaries, or the unstable sets of saddles)
and a prefocal curve or a set of nondefinition, are
denoted as bifurcations of first class. Other impor-
tant bifurcations (for example due to the merging
of focal points, or to the merging of focal points
and fixed points, or to contacts between prefocal
curves and critical curves) shall be denoted as bi-
furcations of second class, and are not considered in
the present paper (these will be studied in a second
paper, in preparation). In the present paper the
situations related to bifurcations of second class are
considered nongeneric.

The theory of focal points and prefocal curves
is also useful to understand some properties of maps
without denominator, having at least one inverse
map with vanishing denominator. Such maps may
have the property that among the points at which
the Jacobian vanishes there exists a curve C which
is mapped into one single point P. Such property,
that was already observed in the study of some
polynomial maps [Cathala & Barugola, 1996; Mira
et al., 1996, p. 197, p. 228] is related to the fact
that the curve C is a prefocal curve of at least
one inverse, the point P being the related focal
point.

Another noticeable property of these maps is
that a curve § at which the denominator of some
inverse vanishes may separate regions of the phase
plane characterized by a different number of preim-
ages, even if it is not a critical curve of rank-1 (a
critical curve of rank-1 is defined as a set of points
having at least two merging rank-1 preimages, see
[Gumowski & Mira, 1980; Mira et al., 1996]. We
show that at least one inverse is not defined on these
noncritical boundary curves, due to the vanishing
of some denominator. The role of such a curve is
the analogue, in a two-dimensional map, of an hor-
izontal asymptote in a one-dimensional map, that
can separate the range into intervals with different
numbers of rank-1 preimages.

The existence of focal points of an inverse map
can also cause the creation of particular attracting
sets because, as we shall see in one of the examples
shown in Sec. 3, a focal point of the inverse map
may behave like a “knot” where infinitely many



invariant curves of an attracting set shrink into a
single point.

The plan of the paper is the following. In Sec. 2
definitions and geometric properties, together with
the general description of some contact bifurcations
of the first class, are illustrated by several exam-
ples. In Sec. 3 some polynomial maps are consid-
ered whose inverses have focal points. Some of these
maps have already been studied in the literature,
but here they are reconsidered at the light of the
new methods and concepts on rational maps pro-
posed in the present paper. In Sec. 4 a general for-
mulation of the problems and the concepts exposed
in this paper is given by using an implicit form for
maps of the plane, from which at least one explicit
map with denominator is obtained.

2. Rational Maps with Focal Points
and Prefocal Curves

2.1. Definitions and basic properties

In this section we give some definitions and
some generic properties related to maps (z, y) —
(', y') =T(z, y) of the form

T:{ﬂ?’ZF(w,y)
y,:G(i‘, y)

(1)
where x and y are real variables and at least one of
the components has the form of a fractional rational
function, i.e.

e = e
and /or Glz, y) = gzg Z; 2)

Some concepts and properties given in this sec-
tion will also be reconsidered, in a more general
framework, in Sec. 4.

In order to simplify the exposition, in the fol-
lowing we assume that only one of the two func-
tions F' and G has a denominator that can vanish,
for example G(z, y) = N(z, y)/D(z, y), so that the
map (1) becomes

T: N(z, y) (3)
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where, without loss of generality, we assume that
the functions F(z, y), N(z, y) and D(z, y) are de-
fined in the whole plane 2. For the maps consid-
ered in this paper the set of nondefinition d5 coin-
cides with the locus of points in which at least one
denominator vanishes. For the map (3) it is given
by

ds = {(2, y) € R*|D(x, y) = 0}. (4)

In the following we assume that §, is a smooth curve
of the plane. The two-dimensional recurrence ob-
tained by the iteration of T is well defined provided
that the initial condition belongs to the set F given
by

E =% G T7%(8,). (5)
k=0

In fact, the points of the singular set, as well as all
their preimages of any rank, which constitute a set
of zero lebergue measure, must be excluded from
the set of initial conditions that generate well de-
fined sequences by the iteration of the map T, so
that T: F — E.

In order to define the concepts of focal point
and prefocal curve we consider a smooth simple arc
~ transverse to ds and we study how it is trans-
formed by the application of the map 7T, i.e. what
is the shape of its rank-1 image T'(y). On taking
the image T'(y), we assume that the arc v is de-
prived of the point in which it intersects ds. Let
(x0, Yyo) be this point and assume that in a neighbor-
hood of (xg, yo) v is represented by the parametric
equations

T#0.
(6)

The portion of 7y in such a neighborhood can be seen
as the union of two disjoint pieces, say v = y_ U4,
where v_ and 7, denote the portions of v located
on opposite sides with respect to the singular curve
s, obtained from (6) with 7 < 0 and 7 > 0 re-
spectively. The closure 7(7) is such that v_(0) =
v+(0) = (xo, yo) (Fig. 1). As (xo, yo) € ds we have,
according to the definition (4) of d5, D(xo, yo) =0,
but in general N(xo, yo) 7# 0. Hence

lim T'(v(7)) = (£ (2o, yo), o0) (7)

z(1) =20 + &7 + L% + -+
Y(T) )
y(7) = yo+m7 + 17" +

where co means either +00 or —oo. This means
that the image 7T'(y) is made up of two disjoint
unbounded arcs asymptotic to the line of equation
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Figure 1.

x = F(xo, yo) (see Fig. 1). If the denominator
D(z, y) changes sign as the point (z, y) crosses Js,
moving along the arc 7, then the two unbounded
branches of T'(7y) are asymptotic to the line x
F(zo, yo) as in Fig. 1(a), otherwise one of the situ-
ations shown in Fig. 1(b) is obtained.

A different situation may occur if the point
(zo, yo) € Js is such that not only the denomina-
tor but also the numerator of (3) vanishes in it,

i.e. D(zo, yo) = N(xo, yo) = 0. In this case, in
the limit (7) the second component assumes the
form of zero over zero. This implies that, in con-
trast with (7), the limit may give a finite value,
so that the image T'(y) is a bounded arc crossing
the line z = F(xg, yo) in the point (F(zo, v0), v),
where

y = lim G(z(1), y(7)) .

7—0

(8)



Of course, the value y of the limit (8) depends on
the arc 7. Furthermore it may have a finite value
along some arcs and be infinite along other ones.
This leads us to the following definition:

Definition 1. Consider the map (1). A point
Q = (w0, yo) is a focal point if at least one com-
ponent of the map 7T takes the form 0/0 in @ and
there exist smooth simple arcs v(7), with v(0) = Q,
such that lim, ,oT(y(7)) is finite. The set of all
such finite values, obtained by taking different arcs
v(7) through @, is the prefocal set dq.

The reasons for the choice of the terms focal
and prefocal will become clear when the behavior of
the inverse (or the inverses) of T" will be analyzed.
It is plain that in the particular case analyzed in

yﬂ
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this section, in which the map 7" has the form (3),
the prefocal set dg belongs to the line of equation
z = F(Q) (Fig. 2).

In this paper we shall only consider simple fo-
cal points, defined as focal points which are simple
roots of the algebraic system

(9)

i.e. a focal point Q = (zo, yo) is simple if
N,D,—N,D, #0 (10)

where N, = ON/0z(zo, yo) and analogously for the
other partial derivatives. Focal points which are not
simple can only occur in the cases of bifurcations of

T(Y o)

/e

T(y3)

F(x,.y,) Q)

(b)

v

Fi(xy,y) x'

Figure 2.
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class two, that, as explained in the introduction, are
not considered in the present paper.

We show now that in the case of a simple fo-
cal point a one-to-one correspondence between the
point (F(Q), y), in which T'(y) crosses dg and the
slope m = n; /&1 of 7 in @ can be obtained. Indeed,
let us consider an arc v, with parametric represen-
tation (6), through a focal point @ = (xg, yo), and
assume that the numerator N (z, y) and the denom-
inator D(z, y) of the second component G(z, y) of
T are smooth functions. Since both these functions
vanish in () they can be expressed as

N(z, y) = Ny(x — z0) + Ny(y — vo) + O2
D(z, y) = Dy(z — ) + Dy(y — yo) + Of

where Oy, O} represent terms of higher order. If Q
is a simple focal point then

lim G(y(r)) = DeStE Ny gy
70 D& + Dym
Notice that the denominator in (11) is different from
zero provided that the slope m = n;/&; of the arc
7 in Q is different from the slope of the curve d;
in the same point, given by —D, /D, . This condi-
tion is sufficient to ensure that y, given by (8), is
finite. However a finite value of the limit (8) can
also be obtained if the arc <y is tangent to J,; in Q
and also the numerator of (11) becomes zero. We do
not consider here all such possibilities, since in this
paper we are only interested in the generic case in
which finite values of y are obtained by (11). Such
a generic occurrence allows to define a one-to-one
correspondence between the slope m = n;/&; of the
arc v in @ and the point (F(Q), y) in which the
image T'(v) crosses the prefocal curve dg, as stated

by the following Proposition which summarizes the
arguments given above:

Proposition 1. Let T be a fractional rational map
in the form (3) and let Q be a simple focal point
related to the prefocal curve 6g. Then a one-to-one
relation between the slope m of an arc v through Q
not tangent to ds, and the point (F(Q), y) in which
T(y) crosses ¢ exists, defined by

N, N,
with y(m) = 2=t MYy (12)
T mby
and
(F(Q), y) = m(y)
D,y — N,
Ny — Dyy

From this proposition we deduce that different arcs
7vj, passing through a focal point ) with differ-
ent slopes m;, are mapped by T' into bounded arcs
T (y;) crossing d¢ in different points (F(Q), y(m;)),
as qualitatively shown in Fig. 3. Interesting proper-
ties are obtained if the inverse of T (or the inverses,
if T' is a noninvertible map) is (are) applied to a
curve that crosses a prefocal curve.

Case of an invertible map

Let us first consider the case of an invertible map,
and let 5(’;2 be a prefocal curve whose correspond-
ing focal point is Q. Being T an invertible map,
each point sufficiently close to 5&2 has its rank-1

y(m,) /T(Y:)-
7
—_—
T(y2)

)
2

Figure 3.
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preimage in a neighborhood of the focal point Q°. If
T~ is continuous along 5& then all the points of 5&
are mapped by 7! in the focal point Q°. Roughly
speaking,? we can say that the prefocal curve (522 is
“focalized” by T~! in the focal point Q°, or, more
concisely, that 7! (5(’52) = @Q'. We remark that the

map T is not defined in Q?, thus 7! is not to be
strictly considered as an inverse of 7" in the points
of (522, even if 77! is defined in 5&.

From (13) we deduce that the preimages of dif-
ferent arcs crossing the prefocal curve 56 in the

same point are given by arcs through Q! all with
the same slope m;(y) in Q°. In fact, let us con-
sider different arcs w,, crossing (VQ in the same

point (F(Q?), y) with different slopes. These arcs
are mapped by the inverse map 7! into different
arcs T~1(wy,) through Q°, all with the same tangent
of slope m;(y), according to (13), as qualitatively
shown in Fig. 4.

Regarding the geometric behavior of the inverse
map 71, this property of a prefocal curve recalls
the properties of a curve in which the Jacobian van-
ishes (see [Julia, 1929; Gumowski & Mira, 1980;
Mira et al., 1996]). Indeed, from the definition
of the prefocal curve, it follows that the Jacobian
det(DT ') must necessarily vanish in the points of
522. In fact, if the map T~ is defined in 5@2 then all
the points of the line 6@2 are mapped by 7! into the
focal point Q. This means that 7! is not locally
invertible in the points of 5&, being it a many-to-
one map, and this implies that its Jacobian cannot
be different from zero in the points of 5&.

2The rigorous treatment of this point of view is given in Sec. 4.

Case of a noninvertible map

In the case of a noninvertible map 7T, i.e. a map
for which £ > 1 inverses may exist in some re-
gions of the (z, y) plane, several focal points Q%7
7=1,..., k, with k > 2, are associated with a pre-
focal curve (5&, each with its own one-to-one corre-
spondence between slopes and point, as that defined
by (12) and (13). We recall that the phase space of
a noninvertible map is subdivided into open regions
(or zones) Zj, whose points have k distinct rank-1
preimages, obtained by the application of k distinct
inverse maps. In other words, if (z, y) € Zj then
k distinct points (z;, y;) are mapped into (z, y),
ie. T(xj, y;) = (z,y) for j =1,..., k, or, equiva-
lently, k£ distinct inverse maps Tj_1 exist such that
Tj_l(w, y) = (zj,y;), j = 1,..., k. A specific
feature of noninvertible maps is the existence of
the critical set LC (from “Lignes Critique”, see
[Gumowski & Mira, 1980; Mira et al., 1996]) de-
fined as the locus of points having at least two coin-
cident rank-1 preimages, located on the set of merg-
ing preimages denoted by LC_;. Segments of LC
are boundaries that separate different regions Zy,
but the converse is not generally true, that is, also in
the two-dimensional case, as in the one-dimensional
one, boundaries of regions Z;, which are not portions
of LC may exist.

We recall that LC' = T'(LC_;), and in the case
of a smooth map LC"_; belongs to the set of points
in which the Jacobian of T" vanishes:

LC_1 C Jy = {(=, y) € R*|det DT = 0}
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because in any neighborhood of a point of LC_;
there are at least two distinct points mapped by T’
into the same point, so that the map 7' is not locally
invertible in the points of LC_;.

If we consider a noninvertible map with denom-
inator, in order to avoid bifurcation cases of the
second class we shall only consider focal points
not belonging to LC_1. In this case the following
proposition holds.

Proposition 2. If a noninvertible map with de-
nominator has focal points not belonging to LC_4
then for each prefocal curve d¢y we have LCNdg, = 0.

The proof is straightforward by reasoning
ab absurdo. In fact, if LC intersects a prefocal curve
5&2 in a point P, iie. P € {LC' N (%}, then, ac-
cording to the definition of LC', at least two preim-
ages of P should merge in a focal point Q%7/ =
171(5(?;2) belonging to LC_;, which contradicts the
assumption.

In noninvertible maps, in the generic case in
which the focal points do not belong to LC_1, the
boundaries that separate regions whose points have
a different number of preimages are either formed
by points of the critical manifold LC' or, as we shall
see in Sec. 3, by points in which the denominator of
some inverse vanishes. Hence, under the assump-
tions of Proposition 2, together with the further as-
sumption that all the inverses are continuous along
(522, we can state the following.

Proposition 3. If a noninvertible map with de-
nominator has focal points not belonging to LC_4

and all the inverses are continuous along a prefocal
curve dgy then ¢, belongs to a region Zj, in which k

imnverse maps Tj_l, j=1,..., k, are defined.

It is clear that for each (522 at least one in-
verse is defined that “focalizes” it into a focal Q.
However, according to Proposition 3, other inverses
(at most k) may exist that “focalize” it into dis-
tinct focal points, all associated with the prefocal
curve 5&2. These focal points will be denoted as

QI = 771(5};2), j=1,...,n, with n < k. For
each focal point Q%7 the same results given above
can be obtained with 7! replaced by 171, so that
for each Q%7 a one-to-one correspondence m; ;(y)
in the form (13) is defined. Following arguments
similar to those given above, it is easy to see that
an arc w crossing 5(’;2 in the point (F(Q%7), y) is
mapped by each Tfl into an arc nyl(w), through
the corresponding Q%7, with slope m; ;(y); if dif-
ferent arcs are considered, crossing (VQ in the same
point, then these are mapped by each inverse Tfl
into different arcs through Q%7, all with the same
tangent, as qualitatively shown in Fig. 5 in the case
n=2.

From the discussion above, a different method
to find the prefocal curves and the corresponding
focal points can be followed, provided that the in-
verse(s) of the map T is (are) explicitly known. For
each inverse T;l the locus of points Jj at which
det(DTj*l) vanishes is found, and the images by
Tj_1 of the points of J} are computed. If Jj in-
cludes a curve ¢ such that Tj_l(d) is a single point

Figure 5.



@, then that curve is a prefocal curve for the map
T and (@ is one of the corresponding focal points.
This procedure is at the basis of the definition of
prefocal curve given in [Mira, 1996] and also makes
clear the choice of the terminology: each curve 5(’;2

is “focalized” into the focal point Q%7 by the action
of the inverse map 171.

We now show that from the property
det(DTj*l(é(ig)) = 0 a different method can be ob-
tained to find the correspondence (13) between the
slope of arcs through @ and the points of dg. This
method is based on the following classical property
of mathematical analysis.

Property. Let M (z,y) — (2, y) be
a map of the plane, defined by (2',y") =
M(z, y) = (Mi(z, y), Ma(z, y)), such that its Ja-
cobian det(DM (z, y)) vanishes along a curve Jy of
the plane, and let A be a point of Jy. Let Ay and Ay
be the eigenvalues of DM (A), given by Ao = 0 and
A =Tr(DM(A)) = M, (A) 4+ May(A), and let v
and vy be the corresponding eigenvectors. If Ay # 0
then all the smooth curve segments passing through
A, with slope different from that of vo, are mapped
by M into smooth arcs that have all the same tan-
gent in B = M(A), parallel to the eigenvector vy.
If DM = [Jj], i, 5 = 1,2, then the eigenvector
v1, corresponding to the eigenvalue Ay = Ji11 + Jog,
s proportional to one of the two column vectors of
DM, so its slope is given by

_

e
Mo = J11

- 14
ml J12 ( )

This property implies that for any curve segment
w that crosses a prefocal curve dg in a point A =

(z, y), the slope of a preimage v = ijl(w) in the
point Q"7 only depends on the point A, and is in-
dependent of the slope of w in A.

In order to obtain the relation (13) by this dif-
ferent method, let us consider a map in the form
(3), and let Q"7 be a focal point, with correspond-
ing prefocal line ¢, of equation z = F(Q"’). Let
Tfl : (2, y') = (z,y) be the inverse that “fo-
calizes” (522 into Q%7, i.e. Tj_l(a:', y') = QbI for
cach (z',y) = (F(Q"7),y) € &, and consider
a smooth curve segment w(r) that crosses dg, in
a point w(0) = A = (F(Q%7), y). Let us con-
sider its preimage v;(7) = nyl(w(T)) that crosses
ds through Q%7 = ijl(w(O)). We know that the
Jacobian is such that as 7 — Odet(ijl(w(T))) —
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det(Tj_l(A)) = 0. From the theorem on the deriva-
tive of the inverse function we have

DT M/, o) = [DT (22, o), y(=', y)] "

; (15)

The Jacobian matrix of (3) is

F, F,
N,D—-ND, N,D—ND,
D2 D2

DT($, y) =

hence, from (15), we have

D]vjfl(mla y/)
N,D — ND,
1 D?
~ det(DT) | N,D - ND,
-

— Fy
Fy

where all the functions in the right hand side
are computed in the point (z(z’, ¢'), y(«/, ¢')) =

~1 _ .
T; (w(r)) = (7). As 7 — 0 one of the eigenval-

ues vanishes in the limit, thus the two rows of DT[l
tend to become proportional. According to (14) the
slope of the eigenvector corresponding to the other
(nonvanishing) eigenvalue tends to

N
Jn  N.D-ND, Ne=pDe
Ju N, D-ND, N_
11 Y Y Ny o EDy
In the limit 7 — 0 this slope becomes
N
. oJar Ng — BD‘” N, —yD,
hn%) 7= hn%)— N = o 5
T— T— —
11 Ny _ EDy y y y
(16)

where the overbar means “computed in the focal
point”. The last equality in (16) follows from the
fact that

i M@, y), y(@', ¥)

C)
™0 D(z(z/, v'), y(', ¥'))

=0 D(y(r) "’

whichever is the arc y(7) = nyl(w(T)), preimage of
w passing through () with slope m,,, along which
the limit is computed (recall that w(7) is such that

w(0) = (F(Q"7), v)).
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2.2. Some geometric properties of

focal points and prefocal curves

For a map (2/, y') = T(x, y) which is not defined
in the whole plane, due to the presence of a vanish-
ing denominator, the existence of the singular set
ds and of the prefocal curves (5(7352, defined in the pre-
vious section, may have important effects on the
geometrical and dynamical properties of T. On the
basis of the results of Sec. 2.1, we now study how a
contact between a curve segment v and the set J
causes noticeable qualitative changes in the shape of
the image T'(y), and how a contact of v with a pre-
focal curve dg causes important qualitative changes
in the shape of the preimages Tj_l('y).

These contacts may be particularly important
when the segments of curves considered are por-
tions of phase curves of the map T, such as invari-
ant closed curves as well as stable or unstable sets of
saddle fixed points or saddle cycles. In these cases
the contacts with J, or dg can cause the occurrence
of new types of global bifurcations that change the
structure of the attracting sets or of their basins
of attraction, as shown in [Mira, 1996; Bischi &
Gardini, 1996, 1997], as well as in the new exam-
ples proposed in this paper.

To understand the geometric and dynamical
properties of fractional rational maps, and their
particular global bifurcations, we assume that
and dg are made up of branches of simple curves
of the plane, and we describe what happens to the
image (preimages) of a small curve segment y when
it has a tangential contact with d; (dg) and subse-
quently crosses it in two points. In order to make
the exposition clearer we assume, as in Sec. 2.1, that
the map T has the form (3).

Consider first a bounded curve segment ~ that
lies entirely in a region in which no denominator
of the rational map T vanishes, so that the map
is continuous in all the points of 7. Since v is a
compact subset of 2, also its image T'(y) is com-
pact [Fig. 6(a)]. We now imagine to move 7y to-
wards ds, until it becomes tangent to it in a point
Ay = (z0, yo) which is not a focal point. This im-
plies that the image T'(y) is given by the union of
two disjoint and unbounded branches, both asymp-
totic to the line o of equation z = F(zo, yo) [see
Fig. 6(b)]. In fact, T'(y) = T(v4) U T (), where v,
and v, are the two portions of v separated by the
point Ag =y Nds. In Ag the map T is not defined
and the limit of T'(z, y) assumes the form (7) as
(z, y) — Ao along v,, as well as along 7. In such

a situation any image of v of rank k£ > 1, given by
T*(7), includes two disjoint unbounded branches,
asymptotic to the rank-k image of the line o, T%(o).

As v continues to move so that it crosses ds in
two pOintS’ say Al = (wla yl) and A2 = (wQa y2)7
both nonfocal points, then the asymptote o splits
into two disjoint asymptotes o1 and o9 of equations
x = F(x1, y1) and = = F(x9, ya) respectively, and
the image T'(7) is given by the union of three dis-
joint unbounded branches, T'(y) = T(v,) U T'(7.) U
T'(~p), where 7,, 7, and 7. are the three portions of
~ separated by the two points A; and Ay at which
the denominator vanishes. In Fig. 6(c) some differ-
ent possible shapes of T'(vy) are qualitatively shown,
according to the sign of the denominator D(z, y)
along the curve v (i.e. whether D(z, y) changes the
sign or not, or whether F'(4;) and F(As) have the
same sign or not). Of course, also the image of ~
of rank k > 1, T¥(y), includes three disjoint un-
bounded arcs, asymptotic to the curves T%(o;) and
T*(03), rank-k images of oy and o9 respectively.

The qualitative change of T'(vy), due to a contact
between v and ds, as described above, may repre-
sent an important contact bifurcation of a fractional
map T when + is, for example, the local unstable
manifold W* of a saddle point or saddle cycle. In
fact the creation of a new unbounded branch of W*,
due to a contact with J,, can cause the creation of
homoclinic points, due to new transverse intersec-
tions between the stable and unstable sets, W* and
W, of the same saddle point (or cycle), that do
not come from a tangential contact between W
and W?#. This implies that, in a map with denom-
inator, homoclinic points can be created without a
homoclinic tangency between W and W?*, due to
the sudden creation of unbounded branches of W*
when it crosses d;. We shall see such a situation in
the example of Sec. 2.3.3.

In the case of a noninvertible map, another im-
portant property, due to the presence of the curve
ds, is expressed by the following proposition, which
is a straightforward consequence of the arguments
given above:

Proposition 4. Let T be a noninvertible map
of the form (3) and let LC_1 be the curve of
merging preimages. If LC'_1 has n transverse in-
tersections with the set 65 in the points P, =
(3, ¥i), i = 1,..., n nonfocal, then the critical set
LC = T(LC_;) includes n + 1 disjoint unbounded
branches, separated by the n asymptotes o; of equa-
tion x = F(x;, y;),1=1,..., n.
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We now examine the action of the inverse maps
on a smooth curve segment w that moves towards
a prefocal curve 56 until it crosses 56. Let us first
consider the case of an invertible map, so that only a
focal point Q° T_l((%) is associated with (5(7352. We
assume, as in the situation considered in Sec. 2.1,
that 5& belongs to the line of equation x = F(Q"),
and the one-to-one correspondence defined by (12)
and (13) holds.

As w moves toward d¢, its preimage w_; =
T~1(w) moves towards @Q° [see the qualitative sketch

Plane Maps. I. Generic Properties 129

ty)

a)

\Ty

) c
ﬁ b) W Tiry)
6, o, 6,=0,
Ttyp) T(yb)yj
T(yp)
Ty o)
Tty 4)
Tty c)

(©)

Figure 6.

in Fig. 7(a)]. If w becomes tangent to (522 in a point
C = (F(Q"), y.) then w_1 has a cusp point at Q°
[Fig. 7(b)]. The slope of the common tangent to the
two arcs that join in Q' is given by m;(y.), accord-
ing to (13).

If the curve segment w moves further, so
that it crosses 5(’;2 in two points (F(Q%), y1) and
(F(QY), y2), then w_; forms a loop with double
point at the focal point Q*. In fact the two portions
of w that intersect 56 are both mapped by 7! into

arcs through @, and the tangents to these two arcs
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of w_7 issuing from the focal point have different
slopes, m;(y1) and m;(y2) respectively, according
to (13).

In the case of a noninvertible map, k& > 1 dis-
tinct focal points Q%7, j = 1,..., k may be asso-
ciated with a prefocal curve 5};2. In this case, each
inverse 1}71, j =1,..., k, gives a distinct preim-
age w’ | = Tj_l(w) that has a cusp point in Q%7,
j=1,..., k, when the arc w is tangent to (5&, and
each preimage w’ ; has a loop in Q%7 when the arc
w intersects 5@2 in two points (see the qualitative
picture of Fig. 8, that illustrates the case k = 2).

These qualitative changes of the shape of the
preimages ijl(w) of an arc w, due to a tangential
contact of w with the prefocal curve, can be particu-
larly important for the global dynamical properties

of the map T if w is a portion of a basin boundary
F (we shall see examples in which F is formed by
the stable set of a saddle fixed point, or a saddle
cycle, or by a repelling closed invariant curve gen-
erated by a subcritical Neimark—Hopf bifurcation).
The boundary F of a basin is backward invariant,
i.e. T71(F) = F, where here T~! represents the set
of all the inverses of T'. Hence, if w is a portion of F,
then all its preimages of any rank must belong to F.
This implies that if a portion w of F has a contact
with a prefocal curve 66 then necessarily at least k

cusp points, located in the focal points Q%7, are in-
cluded in the boundary F. Furthermore, if the focal
points Q%7 have preimages, then also these belong
to F, so that further cusps exist on F, with tips at
each of such preimages. From these arguments we
can state that if the basin boundary F was smooth
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before the contact with the prefocal curve dg, the
occurrence of such contact causes the appearance
of points of nonsmoothness, that may be infinitely
many if some focal point Q»7 has preimages of any
rank.

After the contact, if a portion of the boundary
F crosses (522 in two points, then the boundary F
must contain at least k loops with double points
in Q7. Also in this case, if some focal point Q%
has preimages, other loops appear (even infinitely
many) with double points in the preimages of any
rank of Q7. j=1,..., n.

These arguments can be summarized by the fol-
lowing proposition:

Proposition 5. A contact of a basin boundary with
a prefocal curve marks the occurrence of a new type
of basin bifurcation that causes the creation of cusp
points and, after the crossing, of loops, along the
basin boundary.

After the first crossing between F and a pre-
focal curve 5&2, that causes the creation of loops of
F issuing from the focal point ) and its preimages
(if any), other similar contact bifurcations may oc-
cur that create new lobes issuing from the same fo-
cal point. For example in [Bischi & Gardini, 1996,
1997] some examples are shown in which the first
loop of F, created by a contact between F and a
prefocal curve 622, grows up until it reaches (5(7352, SO
that another loop is created issuing from each focal
point Q%7 and so on. This process may continue un-
til infinitely many loops, issuing from each Q»7, are
created, thus giving a very particular fractalization
of the basin boundary.

It is worth noting that bifurcations of nonin-
vertible maps, due to contacts of LC' with a basin
boundary, associated with the properties of maps
with denominator, may give rise to new basin struc-
tures, such as those illustrated in Fig. 9. They shall
be called crescents, obtained from the merging of
lobes.
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Remark. The creation of “crescents”, as the result
of merging of lobes, is a peculiarity of noninvertible
maps with denominator since it requires a contact
of the boundary with a prefocal curve (located in
a region with more than one inverse), at which the
lobes are created, followed by a contact with a crit-
ical curve, causing the merging of the lobes. At the
contact the lobes are not tangent to LC_1.

2.3. Examples

2.3.1. A Zy— Zy noninvertible map

with one prefocal line
Let us consider the map
=y

T: ar? +yx (17)
'=y— Ao+ ——
sy y—p

not defined in the points of the line §; of equation

y=0. (18)
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We recall that the iteration of (17) is not defined in
the preimages of J; as well. The map (17) is a non-
invertible map of Zy — Zs type, i.e. a point (2, y)
can have two or no preimages whose coordinates are
obtained by solving the algebraic system (17) with
respect to the unknowns x and y. Such system is
equivalent to

{aw2 +(v =A@ = B))z + (2" = P)(a" —y) =0
y =2
(19)

for y # (3, hence we have two real and distinct so-
lutions if

A, ') = (M@ = B) —)?
—da(z - B)(@ —y') >0 (20)

and no solutions if the reverse inequality holds.
The two regions Zy and Zs, defined as Zy =
{(z, )| Az, y) < 0} and Z5 = {(z, YAz, y) >
0}, are separated by the critical curve LC, locus
of points having merging preimages, defined by the
equation A(z, y) = 0, which can be expressed as

Y24 (8- z)(daz + 29X — X2 (z — B))
v 1a(B — @) ‘
For each point (2/, y') € Z3 the two rank-1 preim-

ages are computed by the two inverse maps (ob-
tained by solving (19))

(21)

o= 50 (A=) =7 — A, v))

Tt
y=2a
BNSEETS (A =B) =7+ /A@. ) )
2
y=2a

The map (17) has two focal points
@' =(-15) and
a

related to the prefocal curve g (the upper index i is
not necessary in this case because only one prefocal
curve exists), given by the line of equation

x=0. (24)

For each focal point Q?, i = 1, 2, the one-to-one cor-
respondence m;(y) between slopes and points can

Q*=(0,5) (23)

be easily obtained from (13):

_ ay
CaB-y)— My

v

and ma(y) = "
(25

mi(y)

)

for the focal points Q' and Q? respectively.
It is easy to verify that the prefocal line d¢
is entirely included inside Z5 and that Tj_l(éQ) =

Q’, j = 1,2. The critical set LC is formed by
two branches with the prefocal curve as a verti-
cal asymptote (so that LC does not intersect it,
as stated in Proposition 2). The merging preimages
of the points belonging to LC are located on the
line of equation

y= 27(%3: + } + 6 (26)
which constitutes the curve LC_; of merging preim-
ages. In this example the locus LC'_; can also be ob-
tained from the condition det(DT'(z, y)) = 0, where
DT denotes the Jacobian matrix of the map T. It
is worth noticing that, according to Proposition 4,
LC is made up of two disjoint unbounded branches
(asymptotic to the line x = ) because LC_ inter-
sects the line 5 in a point which is not focal.

The map (17) has two fixed points:

_ _ (At )\5+’7)
O = (0, 0) and P_<)\—a’ o )

(27)
For the parameter values a = 0.499, v = 0.5,
B =2, A\ = —0.75, the fixed point P is a stable
focus and the fixed point O is a saddle. In Fig. 10
the basin of attraction B(P) of the attracting fixed
point is represented by the red region, whereas the
grey region represents the basin of infinity, i.e. the
set of points that generate diverging trajectories.
In Fig. 10 also the critical curve LC and the curve
LC_; of merging preimages are represented.

For the set of parameters of Fig. 10 the basin
B(P) is a simply connected region with a smooth
boundary OB(P). This boundary is formed by
the stable set W#*(O) of the saddle point O. If
we denote by Wy  the arc B_1B of the sta-
ble manifold of O, where By € LC_1, B €
LC and O belongs to the arc B_1B, then we
have W*(0) = 0B(P) = U;_, T~*(W;.), where
T-Y() = T7() U Ty 1), In fact, the rank-1
preimage of the saddle O, different from O, de-
noted by O_; in Fig. 10, belongs to the region

Zs, and its two rank-1 preimages, denoted by 0_1%

and O(_Q%, are both located in the region Zj, so
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that no preimages of O of rank greater than 2 exist.
This completes the smooth boundary, as shown in
Fig. 10.

We now describe how the boundary 0B(P) of
the basin of the stable fixed point P changes as
the parameter )\ varies. If A decreases, a por-
tion of OB(P) approaches the prefocal line dg,
and consequently two other portions of 0B(P) ap-
proach the two focal points Q' and Q?. At A =
—0.81... OB(P) has a contact with dg, and con-
sequently two cusp points are created on 9B(P),
with vertexes in Q' and @Q? (Fig. 11). Hence
the contact between 9B(P) and the prefocal curve
causes a bifurcation at which the basin boundary is
changed from smooth to nonsmooth, according to
Proposition 5.

As X is further decreased, OB(P) crosses the
prefocal line in two points (Fig. 12). This implies
that the two preimages of this portion are two loops
with double points in the focal points, according to
the arguments given in Sec. 2.2. These two loops
of W*(0O) bound two lobes of the red basin issuing
from the focal points, clearly visible in Fig. 12.

We remark that this is a new bifurcation of the
basin boundary, due to the presence of the prefocal
curve. After the bifurcation, the basin B(P) ought
to be called “nonconnected” since the focal points
do not belong to the domain of the map T. How-
ever we believe that it is more convenient to call
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such a basin connected through focal points due to
the fact that its closure B(P) is connected.

Just after the bifurcation the two lobes issuing
from Q' and Q? are disjoint, being the two dis-
tinct preimages of the portion of B(P) located on
the right of dg. As A is further decreased, that
portion moves towards LC' and at A = A., with
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Ae ~ —0.87763, OB(P) has a contact with the criti-
cal curve LC in a point V. At this contact the two
lobes merge, i.e. they have a common point V_; lo-
cated on LC_; (Fig. 13). This point is given by the
merging preimages of the contact point V between
LC and 0B(P). This is a well known contact bifur-
cation of noninvertible maps [Mira et al., 1994; Mira
et al., 1996]. We remark that at the bifurcation the
contact between the two lobes in the point V_; of
LC_; is not smooth, i.e. the common tangent does
not exist (see [Mira et al., 1996]).

After this bifurcation the two lobes issuing from
Q! and Q? merge and form a unique crescent con-
necting the two focal points (Fig. 14), as explained
at the end of Sec. 2.2. We remark again that the
creation of a crescent is due both to the presence of
the focal points and to the presence of LC, i.e. to
the existence of a prefocal curve together with the
noninvertibility of the map. It represents here a
new basin bifurcation that marks the transition of
B(P) from a simply connected set to a multiply con-
nected one, or, equivalently, the transition of the
basin of infinity from connected to nonconnected,
due to the creation of the disjoint “island” nested
inside B(P). After the bifurcation B(P) has an an-
nular structure, made up of two parts joined by the
focal points, as in Fig. 14, obtained for A = —1. It is
worth to note that the portion of the basin of infin-
ity nested inside B(P) is made up of two bounded

Figure 14.

regions, located at opposite sides with respect to
ds, given by the preimages of the two unbounded
portions of the basin of infinity, belonging to the
region Zs, located between LC and d¢ (these por-
tions, and their bounded preimages, are represented
by the hatchured regions in Fig. 14). The fact that
the preimages of unbounded regions are bounded
is due to the particular properties of the prefocal
curve.

Another interesting situation is obtained for the
parameter values A = —0.8, v = —0.18, 3 = /2
and a = 0.54. For this set of parameters the fixed
point P is a repelling focus and a chaotic attractor
exists around it [represented by the black points
in Fig. 15(a)]. The basin of bounded iterated se-
quences (which includes this attractor), represented
by the red region in Fig. 15(a), is separated from
the basin of infinity by the stable set of the saddle
fixed point O. It can be noticed that the portion
Hj of the basin of infinity, indicated by the arrow
in Fig. 15(a), has crossed LC entering the region
Zy [see also the enlargement in Fig. 15(b)]. The
two preimages of this portion constitute a “hole” of
the basin of infinity (or “lake”, following the ter-
minology introduced in [Mira et al., 1994]) nested
inside the red basin. This is a well known contact
bifurcation, typical of noninvertible maps (see [Mira
et al., 1994; Mira et al., 1996, Chap. 5; Abraham
et al., 1997, Chap. 5]). The “main hole”, denoted by
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H_; in Fig. 15(a), is entirely included in the region
Zs, hence it has two rank-one preimages, denoted
by H', and H?, in Fig. 15(a). One of these, H,,
belongs to Zp , whereas the other one is partially
included inside the region Z, and crosses both d¢
and LC. Its preimages form a grey “crescent” and
two lobes issuing form the focal points, more clearly
visible in the enlargement shown in Fig. 15(c). The
basin structure shown in Fig. 15(a) is specific to a
noninvertible map with denominator.

Figure 16, which corresponds to the parame-
ters a = 0.537, B = V2, vy = —0.18 and X\ = —0.8,
gives an interesting situation. The first homo-
clinic bifurcation of the saddle fixed point O is
near to occur. The chaotic attractor (represented
in black) is near its basin boundary, and the homo-
clinic bifurcation is due to a contact of the bound-
ary of the chaotic area with the boundary of its
basin of attraction, leading to the destruction of the
chaotic attractor [Gumowski & Mira, 1978, 1980],
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a situation called final bifurcation in [Mira et al.,
1996; Abraham et al., 1997] or boundary crisis in
[Grebogi et al., 1983].

The contact bifurcation occurs at a ~ 0.53648,
the other parameters being the same as above. This

bifurcation gives rise to a fractal structure of the
basin B of bounded orbits, given by the red re-
gion of Fig. 17, obtained for a = 0.53. At this
parameter value infinitely many lakes, arborescent
sequence of the increasing rank preimages of Hy, ex-
ist, and infinitely many of them cross through the
prefocal curve, thus creating infinitely many lobes
of lakes crossing through the two focal points. It
can be noticed that at this stage the basin B of
bounded iterated sequences contains a period three
stable cycle of focus type, represented by black dots
in Fig. 17, and other coexisting attractors may ex-
ist. The boundary 9B includes a strange repeller:
the fractal set of the unstable cycles of the former
chaotic attractor, as well as their stable sets and all
their limit points.

2.3.2. A Zy— Zy noninvertible map

with two prefocal lines

Let us consider the map

/

=y

T: az? + vz (28)
I: _)\
YT T - B

not defined in the points of the set d; = 1 U &2,
where 6} and 62 are the lines of equation

y = P2 (29)

y =/ and

respectively. The map T is a noninvertible map of
Zy — Zy type. In fact, the preimages of a point
(«', y') are the real solutions of the second degree
algebraic system

{04002 +(r = A" = B))z + (2" = P)(=' —¢) =0
y=41

(30)

equivalent to the system (28) for y # (1 and y # J.
Hence a point (2/, /) has two distinct preimages
if

Az, y)
= (Ma' = B1)(z’ — B2) =)
—da(z’ - B1)(' = B2) (2’ —y) >0  (31)

and no preimages if the reverse inequality holds.
If the point (2/, ') € Z2 then the two rank-
1 preimages are computed by the two inverse



maps
v = s\ = B — Bo)
T R INCT)
T (32)
. z = oMz = Bi)(a’ — f2)
T -7+ VA, Y))
y=2a'

The critical curve LC, defined by the equation
A(z,y) = 0, can be expressed as

y = 2oz@=B)(@ = 5) = Me =)@ = F) = )?
da(z — 1) (z — B2) ’
(33)
The map (28) has two focal points

Y
Q= (-La) @t-wm @
related to the prefocal line 5b of equation

x =0 (35)

and
@' = (-La) @-wm @

related to the prefocal line 55 of equation

z=0. (37)

Both the prefocal lines are entirely included in-
side the region Zs, and it is easy to verify that
T; ' (6h) = @4, i = 1,2, j = 1,2. The curve
LC_; of merging preimages is given by the parabola
of equation

pm - BB -] (39)

deprived of its intersections with 6! and 2. Ac-
cording to Proposition 4, the critical set LC is
made up of three disjoint unbounded branches, be-
cause LC_1 crosses the set dg in two points which
are not focal, belonging to 6. and 62 respectively
(see Fig. 18).

For each focal point Q%7, 4, j = 1, 2, the one-
to-one correspondence m; j(y) between slopes and
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points can be easily obtained from (13)

m1,1(y) = o ;
(B1 — B2)(aBr + Ny — ay)
m,2(0) = (B — 52?(1/ - B1)
ay (39)
ma,1(y) = (B2 — B1)(afB2 + Ay — ay);
vy

m2 2(Y) = .
) (B2 = B1)(y — B2)
The origin O = (0, 0) is a fixed point of (28) and
other fixed points, say F and P, exist if the follow-
ing second degree algebraic system

{y o (40)
Az — ((B1 + B2) A+ @)z + A3 —y =0

has real solutions.

We consider the parameter values a = 0.5, 1
=10.2, o = —v/2.5, v = 0.5 and A = 1. The fixed
point O is an unstable focus, and the second fixed
point P is a saddle. The red region shown in Fig. 19
is the basin of bounded iterated sequences, and con-
tains a chaotic area, represented by the black points,
around the saddle point P. For this set of parame-
ters three focal points are in the Z5 regions, i.e. they
generate chains of arborescent preimages of increas-
ing rank. One of the focal points, @%1!, is located
in Zy, so that it has no preimages. These chains
of preimages explain the complexity of the basin
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structure. Simpler basins are obtained when less

focal points are in Zs.

2.3.3.  An invertible map with
one prefocal line

The map
=y
/
y=1-a)y+a
(1-a) -
is not defined in the points of the line d;s of equation
y=2 (42)
on which the focal point
Q=7 0) (43)
exists, with prefocal curve dg of equation
x=0. (44)

The relations (12) and (13), that define the one-
to-one correspondence m <> (3, y), between slopes
of arcs through @ and points of dgp, become,
respectively,

y(m) = (1- )8+ =

a

and m(y) = —-aB

B=15a=02vy=12

Figure 20.

If (3+ 1)2 —4y > 0 the map (41) has two fixed
points, solutions of the system

x? — T =
{ B+Dz+v=0 (46)
xT=1y.

Notice that the two fixed points do not depend on
the parameter «. In order to show, for the map (41),
some peculiar bifurcations of the basin boundaries
we fix the parameters § = 1.5 and v = 1.2, so that
the fixed points are P} = (0.648...,0.648...) and
Py =(1.852...,1.852...), and we vary the param-
eter a. At a = 0.2, P is a stable focus and Pj
is a stable node. These two coexisting attracting
fixed points are shown in Fig. 20, where the respec-
tive basins of attraction B(P;) and B(P5) are rep-
resented by the red and white regions respectively.

The boundary that separates the two basins,
say F = OB(P}) = 0B(Py), is formed by the line of
nondefinition ds and its preimages:

F = G T"(5,).
k=0

The fact that the line d,, at which the denomi-
nator vanishes, belongs to the boundary that sepa-
rates the two basins of attraction is a peculiar prop-
erty of maps with denominator. We remark that in
this case no saddles nor repelling nodes exist, hence
the boundary of the domain of definition of T is
also the boundary which separates the basins. The



preimages of §s can be easily obtained by inverting
the map (41), i.e. by expressing the variables z and
y in terms of z’ and y’. Such inverse map is given
by

m:ﬁ(l_a)ml—
(0% [0

l—«o
2

Tt l1,, B8, (47)
+ oy =~y +y

y=2a
provided that y # 3, i.e. ' # 3 according to the
first of (41). From (47) with ' = 3 we obtain that

the rank-1 preimages of the points of d5 are located
on the parabola d; ! of equation

-1 2 2
wzaa y2+ﬁ<a—1)y+7—% (48)

i.e. points belonging to the parabola (48) are
mapped by T into points of the line ds. This
parabola is clearly visible in Fig. 20. Preimages
of §; of rank k£ > 1, i.e. the sets of points that are
mapped into the singular line after k iterations of
the map (41), can be obtained by a similar proce-
dure, even if their analytical expressions becomes
more and more complicated. The line J;, its preim-
age 0,1 and some higher rank preimages & k are
represented by blue curves in Fig. 20, and they
clearly appear to be located on the boundary that
separates the red and white regions, that is, the nu-
merically obtained basins of attraction of the stable
fixed points P and Py respectively.

As the parameter a increases, the vertex V of
the parabola (48) moves to the right and at o = ay,
where o = 4(3 — ) /(8% + 4(8 — 7)) ~ 0.3478, the
parabola §; ! is tangent to the prefocal line (44) in
the point V, = (8, yp), with y, = 0.56(2 — «)/(1 —
@) ~ 1.899. This implies that its preimage J, 2 has
a cusp with tip on the focal point @ and tangent of
slope mp = 2(1 — a)/B(3 — 2a)) ~ 0.377 (Fig. 21),
according to the second of Eqs. (45) with y = yp.

This first contact between the basin boundary
JF and the prefocal line dg represents a global bi-
furcation at which the first loop of F, bounding a
lobe of B(Py), is created. In fact, for a > ay, just
after the bifurcation, §;2 has a loop with double
point in @, the slopes of the two tangents to J 2 in
Q being given by the two values of m obtained by
the relation (45) with the y coordinates of the two
intersections of the parabola J; ! with the prefocal
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Figure 22.

line, denoted by y; and yo in Fig. 22. The lobe of
B(Py), issuing from the focal point, is clearly visi-
ble in Fig. 22, obtained with a = 0.4. For the set of
parameters used in Figs. 21 and 22, the trajectories
starting in the white region converge to a stable cy-
cle of period 2 (not visible in the figure) created at
a =2 0.2198 through a flip bifurcation at which the
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B=1.5 =045 y=12

1.8

Figure 23.

fixed point P5 is changed from a stable node to a
saddle point.

As the parameter « is further increased the x
coordinate of the vertex V of d; ! continues to in-
crease, and the same is true for its preimages. This
implies that also the lobe bounded by 62 moves to-
ward the prefocal curve dg, and another bifurcation
value of the parameter a exists, say «j, at which
this lobe has a contact with the prefocal curve. For
a = a} the curve 653 reaches the focal point @ and
has a cusp in it, with slope ml% > my, since the y
coordinate of the contact between &2 and J is less
than y,. This implies that for o > aé another lobe
of the basin B(Py) is created, bounded by a loop of
6,3 located between the parabola d; ! and the lobe
bounded by 6,2 (see Fig. 23). As a increases, the
creation of a new lobe issuing from the focal point
Q occurs at each contact of an old lobe with the
prefocal line d¢g (as in Fig. 24, where for a = 0.458
the lobe bounded by 4§, 3 is tangent to dg, so that
a cusp of §;4 is ready to give a new lobe issuing
from Q).

At o = a, with o, = 0.4583936. . ., another bi-
furcation occurs that causes a sudden change in the
structure of the basins, due to the creation of white
crescents inside the red lobes (see Fig. 25). Also the
bifurcation that leads to this new basin structure
can be characterized by contacts between the basin
boundary F, i.e. a preimage of the singular line J,,

B=15 a=0.458 y=1.2

Figure 24.

=15 a=045 y=1.2
_ -

Figure 25.

and the prefocal line d¢g. In fact, white lobes issuing
from @, and nested inside the red basin B(P}'), are
created whenever a white tongue of B(P5) crosses
0g. The bifurcation value o, corresponds to the
value of a at which the first tongue, bounded by
a preimage 6, % of J,, has a contact with 0g. In
Fig. 26, obtained with a = 0.4583938, i.e. just
after the bifurcation value, four “white tongues”,
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Figure 26.

B=15 a=051 y=12

25

Figure 27.

bounded by 6;6, §;7, 678 and 6, are clearly vis-
ible. At this stage the narrow tongue of the white
basin bounded by ;2 has crossed the prefocal line
80, hence 0,10 (not visible in the figure) bounds
a white strip that reaches the focal point ) with
a white lobe issuing from it. As the parameter
is further increased, more and more white tongues
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Figure 29.

reach the focal points and accumulate below dg, thus
creating the structure observed in Fig. 25.

For higher values of the parameter a another
global bifurcation occurs which causes a sudden ex-
plosion of the red basin of the fixed point P; (see
Fig. 27, obtained with o = 0.51). Such bifurcation
is due to a contact between the unstable manifold
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W™(Py) of the saddle Py and the singular line Js,
occurring at a = ap = 0.494.... Figs. 28 and 29
have been obtained for o = 0.493 and o = 0.495
respectively, i.e. just before and just after the bifur-
cation. The red points represent the basin of the
stable focus P;, the white points converge to a cy-
cle of period 2 and the green points represent the
basin of attraction of a coexisting stable cycle of
period 8. The explosion of red points occurring as
the parameter « crosses the bifurcation value «y, is
rather evident.

The explanation of such a bifurcation can
be given by considering the unstable manifold
W (Ps5), represented by the black curve in Fig. 30,
the stable manifold W*#(Py), represented by the red
curve in the same figure, and the line of nondefini-
tion Js, represented by the blue curve (in Fig. 30
also its rank-1 preimage &, ! is represented by a blue
curve).

In Fig. 30(a), obtained for o < ay, W¥(Py)
does not intersect the singular line: It is bounded
and entirely located above J§; and on the right of
dg. In Fig. 30(b), obtained with a > ay,, W*(P5)
intersects the singular line, so that new unbounded
branches of W*(P5) are created that intersect again
ds and so on. Hence, just after the bifurcation,
infinitely many new (and unbounded) branches of
WY(P5) are created, asymptotic to the line g and
to its images as well.

The points below §5, near the intersections with
WH*(Py), belong to the basin of P}, and their preim-
ages of any rank, that also belong to B(P}), after
the contact between W*(Py) and 5, are stretched
along the stable manifold W#(Py) and accumu-
late on it (see the qualitative Fig. 31). In fact,
when W"(Ps) has a contact with J; in a point
A [Fig. 31(b)] then infinitely many preimages &%,
kE=1,2,..., are tangent to W*(P5), the contact
points being the preimages A_j of the point A. The
sequence {A_;} of preimages of A is convergent,
as k — oo, to Py on the local unstable manifold.
All these preimages 6%, k = 1, 2,..., bound red
tongues of B(P;) issuing from the focal point, and
after the contact these infinitely many tongues cross
W (Py) and are stretched along W*(Py), thus giv-
ing the explosion of the basin shown in Fig. 29 [see
also the qualitative picture in Fig. 31(c)]

Notice that new homoclinic points belonging
to W"(Py) N W?*(Py) are created at a = ap due
to the appearance, for o > «p, of the branches
of W"(Ps) below the singular line, intersecting the
portion of stable set W#(Py) located below 5 [see

B=15 =048 y=12

10

/

N\

Figure 30.

Fig. 30(b)]. Although this homoclinic bifurcation
of the saddle Py is not the first one, as homoclinic
points of Pj, located above ds, already exist be-
fore this bifurcation, it is of particular type, be-

cause it is caused by the creation of a new (un-
bounded) branch of W*(P5), due to the contact



Figure 31.

of W¥(Py) with ds. Such new branch, located
below s together with its infinitely many preim-

ages, gives rise to infinitely many new intersections
between W"(Py) and W#(Py), which are not a
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consequence of a homoclinic tangency between
W¥(P5) and W*(Py), as it usually happens in ho-
moclinic bifurcations of saddles in maps defined in
the whole plane.

Another particular structure of the basin of the
stable focus P} can be evidenced for higher values
of the parameter «, like that shown in Fig. 32, ob-
tained for « = 0.7. In order to understand how
such basin’s structure is created, and which is the
role played by the presence of the focal point and
the prefocal line, we start from an higher value of
a, and then we decrease it. At o = 0.853.... a sub-
critical Neimark—Hopf bifurcation occurs at which
the fixed point P} is transformed, for decreasing val-
ues of «, from an unstable focus into a stable focus,
and a repelling closed invariant curve I' is created
around it which constitutes the basin’s boundary,
i.e. I' = OB (Pf) just after the Neimark—Hopf bifur-
cation (see Fig. 33). As « is decreased the repelling
invariant curve I" enlarges and changes its shape. In
particular, since a portion of I' approaches the pre-
focal line d¢g, another portion of it must approach
the focal point ), and when I" has a contact with
the prefocal line the boundary B(Pf) of the basin
of Pf has a cusp point in (), and cusp points must
exist in all the preimages of (), that also belong
to OB(Py) (see Fig. 34). Thus the contact be-
tween I' and dg marks the change from a smooth
to a nonsmooth basin boundary. Of course the
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invariant curve I', created at the Neimark—Hopf bi-
furcation, no longer exists at the bifurcation, since it
contains the focal point (), in which the map is
not defined. If « is further decreased a portion
of OB(Py) crosses the line dg and lobes are cre-
ated in @ and its preimages (Fig. 35). This par-
ticular bifurcation of a closed invariant set is due

B=15a=0715 y=1.2

Figure 35.

to a contact with dg: OB(P;), smooth before the
contact, is changed into a nonsmooth set after the
contact.

As already remarked in Sec. 2.1, we observe
again that even if the map (47) is defined in the
whole plane, this does not mean that it is the
inverse of (41) in the whole plane. In fact (47)
has been obtained from (41) under the assump-
tion ' # (3, so that it can be considered as the
inverse of (41) only in points out of the line 2’ = f.
This can also be seen from the fact that the whole
line ' = B is mapped by (47) into the focal point
Q = (v, B), i.e. the whole line is “focalized” into
the focal point of (41). Of course this implies that
(47) is not an invertible map in the whole plane,
since the point () would have infinitely many rank-1
preimages.

3. Polynomial Maps with
Fractional Rational Inverses

3.1. A Polynomial invertible map
whose inverse has a focal point

Consider the map

=y
T: (49)
y' = zy — by? — ax + aby



with a, b real parameters. This map is defined in
the whole plane. Its Jacobian matrix is

0 1
DT (x, y) = 50
(= 9) y—a x—2by+ab (50)

hence the Jacobian
det DT'(z,y) =y —a (51)

vanishes on the line of equation y = a. The image
of this line is “focalized” by the map T into a single
point, being

T({y = a}) = (a, 0). (52)

From this fact we argue that at least one inverse of
(49) must be a map with denominator, and with a
focal point in (a, 0) related to a prefocal curve of
equation y = a.

Indeed, the map (49) can be easily inverted to
obtain the fractional map

y + bx'? — abx’

-1, ) *= r_

T 1. ' —a (53)
y=z

not defined in the line 2’ = a. It is easy to realize
that the point Q = (a, 0) is a focal point of T~ 1,
with prefocal line dg of equation y = a. In this
case the correspondence between slopes of curves
through @ and points of dg can be obtained very
easily by the second of (14). In fact, from

0 1
DT(z, a) = 54
(@, ) [O w_ab] (54
we obtain the correspondence m <> (z, a) with
m=ux—ab. (55)

Of course the same result can also be obtained
by computing the limit of T-!(y) along an arc
v through @Q.> Let v be parameterized as 2’ =
a+&7+0(1?); v =m7 + O(72). Then

lim 77 (y(7)) = <lim w, a)

7—0 7—0 &

= (m + ab, a)
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where m = n;/£1, from which x = m + ab, as in
(55).

These properties of the map (49) and its
inverse (53) can have important consequences on
the structure of the attractors and their basins of
attraction. The map (49) has two fixed points:
O=(0,0)and P=(a+1/(1—=0),a+1/(1-0)).
For the parameter values a = —0.6, b = 0.5 the fixed
point O is an attracting node and P = (1.4, 1.4) is
a repelling node. In Fig. 36, obtained with these
parameters, the basin of attraction of the stable
fixed point O is represented by the white region,
whereas the grey region represents the basin of in-
finity, i.e. the set of points that generate diverging
trajectories. Since the point @ = (0, a) is inside
the basin of O, also the whole line y = a (the pre-
focal line of the inverse, which is “focalized” by the
map T into the point @) must belong to the same
basin, as well as its preimages of any rank. This
implies that the basin of O cannot be a bounded
set because it must necessarily include a whole line
and its preimages, which are asymptotes of the basin
boundary.

Another interesting situation is shown in
Fig. 37, obtained with a = —1.5 and b = 0.5.
For this set of parameters the fixed point O is a
saddle point, and P is a repelling node. A chaotic
attractor, that has been created near O through a
sequence of period doubling bifurcations, is repre-
sented in Fig. 37 together with the basin of bounded
trajectories (the white region). The chaotic at-
tractor has a very peculiar shape, characterized
by a sort of “knot” of infinitely many curves that
shrink into a unique point, the point @ = (0, a),
which is the focal point of the inverse map (53).
In fact, every trajectory contained inside the at-
tractor is conveyed through ) whenever it crosses
the line y = a. In particular, @ is the centre of
a fan of unstable sets of saddle cycles belonging
to the chaotic area, such as the fixed point O, or
of unstable sets of cycles belonging to the basin
boundary.

However, the “structure” of such an attract-
ing set must be more complex of what we see at
a first glance because all the images of the knot-
point, that belong to the attracting set, behave in
the same way.

3We do not apply directly (12) or (13) because the map (49) is not in the form (3). However the procedure followed to obtain

(12) can be easily repeated with obvious changes.
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Figure 36.

=-15 b=05

Figure 37.

3.2. A Triangular noninvertible map with a, b real parameters. Also this map is defined
of Zy—Z,—Z, type, whose inverses in the whole plane, and its Jacobian matrix is
have a focal point

DIy = | | (57)

Consider the map [Mira et al., 1996, p. 226] g by(1—y)  ba(l - 2y)

o =x?—q Its Jacobian determinant
T { (56)
y = bzy(l —y) det DT(z, y) = 2bz*(1 — 2y) (58)



vanishes on the lines of equation y = 1/2 and = = 0.
The image of the line y = 1/2 is given by the
parabola of equation

16 5
T=5Y—a

(59)
whereas the whole y axis is mapped by 7' into one
point, being

T({x = 0}) = (~a, 0).

As in the previous example, we argue that at least
one inverse of (56) must exist which is a fractional
map with a focal point in (—a, 0) and prefocal curve
on the y axis. However in this case we do not ex-
pect that the map T has a unique inverse, since the
curve (59) is a critical curve LC, locus of merging
preimages, that separates regions characterized by
a different number of inverses. In fact the map T’
has up to four distinct inverses, given by

r=+2"+a

(60)

N =

y:

Y O
bvz' +a

r=vz' +a

-1,

SR TS Y SR A
Y73 bvz' +a

defined for 2’ > —a and y < b/4V/2’ + a, and

r=—Vr+a

Tt 1 4y ;
y:§<1+ 1+ﬁm>

r=—Vz+a

Tt 1 4
2 bvz+a
defined for 2’ > —a and y > —b/4V2’ + a.

From the expressions of the inverses we can see
that not only the critical curve LC' defined in (59)
separates regions whose points have different num-
ber of preimages, but also the vertical line of equa-
tion z = —a. In fact, the plane (z, y) can be divided
into four regions (see Fig. 38):

1. Zy = {(z, y)|lr < —a} whose points have no
preimages, i.e. no inverses are defined in this
region;
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2. Zy = {(z,y)|lr > —a and y > b/4\/z —a}
where the inverses 15 L and T4_1 are defined;

3. Zy = {(z,y)lxr > —a and y < —b/4Vx —a}
where the inverses T, ' and Ty, ' are defined;

4. Zy = {(z, y)|lr > —a and —b/4/r—a <y <
b/4v/x — a} where the four inverses are defined.

It can be noticed that the line x = —a separates
regions with different numbers of inverses, but it is
not a critical curve. The only peculiarity of that
line lies in the fact that it is the curve at which the
denominator of the inverses vanishes.

Roughly speaking, we can say that for the map
(56) the line x = —a plays a role analogue to that of
a horizontal asymptote in a one-dimensional map.
In fact, as it is well known, a horizontal asymp-
tote can separate, in the range of a one-dimensional
map, regions characterized by a different number of
inverses. As an example, consider the map

1

fEl:f(l’):m

(61)
whose graph is shown in Fig. 39(a). The critical
point ¢ = f(0) = 1 separates the regions Zs and Z
where two and no inverses are defined respectively,
and the horizontal asymptote y = 0 separates the
regions Zy and Zj). Of course a horizontal asymp-
tote of a map corresponds to a vertical asymptote
for at least one of its inverses. For example, both
the inverses of the map (61), given by

1—2 _ 1—2
and fot=—
! vl

fit=

have a vertical asymptote of equation ' = 0 [see
Figs. 39(b) and 39(c)].
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Many other examples of one-dimensional maps,
in which the horizontal asymptotes separate the real
axis into regions whose points have different num-
ber of preimages, can be given. For example, the
graph of Fig. 40 represents a one-dimensional map
in which the horizontal asymptote separates the real
axis into the regions Zs and Z7, where two and one
inverses are defined respectively. It can also be no-
ticed that in this case the horizontal asymptote be-
comes a vertical asymptote for only one of the two
inverse maps.

These one-dimensional examples suggest us an
heuristic “geometrical” interpretation of the set of
points at which a denominator vanishes which are
not focal. In fact, roughly speaking, these points
can be considered, for a two-dimensional map T, as
the two-dimensional analogue of a vertical asymp-
tote. Following the same analogy, the set d5 of an

inverse of T' (except for the focal points) plays the
role of a vertical asymptote of T~! and, at the same
time, of an “horizontal asymptote” for the map T'.

As in the one-dimensional case, also for a two-
dimensional map an “horizontal asymptote” may
separate regions having a different number of rank-
1 preimages, and the difference in the number of
preimages between such regions is not necessarily a
multiple of 2 (as it occurs for critical curves). For
example, for a two-dimensional map, the presence
of a curve which belongs to the set of points in which
a denominator of at least one inverse map vanishes,
can be a curve that separates a region Z; from a
region Zj 2, or Zj, from Zj 1, or even Zj, from Zj,,
where Z;, and Zj, indicate two regions whose points
have the same number k of rank-1 preimages, but
obtained by different inverses, as we shall see in the
next examples.



3.2.1.

A noninvertible Zy — Zy map whose
tnverses have a “vertical asymptote”

Consider the map

. {x’ =azx(l —z) —axy (62)

y = bxy

proposed in [Cathala & Barugola, 1996] (see also
[Mira et al., 1996, p. 197]. From the Jacobian

matrix
a—2ar—ay —azr
DT (z, y) = (63)
by bx
we see that the Jacobian
det(DT) = abz (1l — 2x) (64)

vanishes on the two lines of equation z = 0 and
x = 1/2. The former is “focalized” by the map T
into a single point, since T'({z = 0}) = (0, 0). Thus
we expect that the map T has at least one inverse
with denominator, and such that @ = (0, 0) is a fo-
cal point with the y axis as corresponding prefocal
line dg. In fact the inverses

SHSRRIC)

Tt B 2y ;

are such that one of them, T{l, has a focal point
in @ = (0, 0) with the y axis as prefocal line. The
relation between slopes of arcs through ) and the
points of dg can be easily obtained from (14) ap-
plied to DT(0, y):

m=———-. (66)
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The other line on which the Jacobian vanishes,
x = 1/2, is a curve of merging preimages, LC_;.
In fact, its image by T is the line of equation

1

+2= (67)

ISERS
=

which is a critical curve, LC' = T(LC_,), locus of
points with two merging preimages, that separates
the plane into the two regions Zs and Zy where two
and no inverses are defined respectively. However
in [Cathala & Barugola, 1996] it is stressed that for
the points of the line I, of equation bz’ + ay’ = 0,
only one inverse, T} ! is defined, since the denomi-
nator of T: 271 vanishes on the points of the line I', so
that I" separates the region Z5 into two regions, de-
noted by Zj and ZJ in [Cathala & Barugola, 1996]
[see also Fig. 41(b)].

Also in this case we can say, following the anal-
ogy discussed above, that the line I' behaves as a
vertical asymptote for one of the inverses, and con-
stitutes the two-dimensional analogue of a horizon-
tal asymptote for the map (62). A one-dimensional
map showing a property similar to that of the map
T can be easily found. Consider, for example, the
map

/ w2
v (1+z)? (68)

whose graph is shown in Fig. 41(a). The horizontal
asymptote ' = 1 separates two regions, say Zé and
Z4, both with points that have two rank-1 preim-
ages, but obtained by different inverses. For z’ =1
only one preimage exists, given by z = —1/2, while
a critical point, #' = 0, separates the regions Z§
and Zj.

4. Some Definitions and Properties of
Maps Defined by an Implicit Form

In the previous section we have suggested a ge-
ometrical interpretation, based on analogies with
one-dimensional maps, of the non-focal points of
the set ds at which a denominator of a map T
of the plane vanishes, but we have not discussed
any possible one-dimensional analogue for a focal
point and its associated prefocal set. Indeed it
is not easy to imagine something similar in one-
dimensional maps. A possibility is that of consider-
ing a graph like that shown in Fig. 42. Clearly this
is not the graph of a function 2’ = f(x), because
in the point x = @ it is not single-valued. If we
are allowed to write f(Q) = [«, 3] then @ behaves
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(b)

Figure 41.

as a one-dimensional “focal point”, whose associ-
ated prefocal set dg is the segment [a, 8]. The two
inverse functions f, ! and Iy 1 defined for 2/ < ¢
and taking values on the left and on the right of
the critical point * = c_; respectively, are single
valued. Using the same notations introduced in
the previous sections we have f,~ Y(a, 8]) = Q and
d/dz’' f; }(z') = 0 Va' € [a, B].

In order to draw an analogy with the class of
maps analyzed in Sec. 3, we consider the function
x' = f(z) with a graph like that shown in Fig. 43.
In this case f(x) is a single-valued function, but this
is not true for all its inverses. In fact, let f, ! be the
inverse of f that takes values in the range z < c_j.
Indeed, the map f(x) is not invertible in [«, 3] since
f'(z) = 0 for each z € [, B]. However, using the
notations of the previous sections, we can say that
fla, B] = @', thus f; ! is not a single valued func-
tion because we ought to write £, 1(Q") = [a, ).
Also in this case we can say that the point @’ is

v

(o) Q X

Figure 42.

Q,

v

Figure 43.

a one-dimensional analogue of a focal point of the
inverse f, ! and d¢g = [a, 3] is the related prefocal
set.

A method for the description of both the situa-
tions represented in Figs. 42 and 43 can be obtained
by the definition of an implicit equation in the form

h(z, 2') =0 (69)

from which both the relations 2z’ = f(x) and
x = f~1(2') can be obtained. In the following we
assume that at least one of the two explicit forms
obtained from (69) is singled valued. The graph
of the relation (69) is, as usual, the set of points
(x, ') for which (69) holds true. In particular,
the implicit relation (69) is satisfied by the sets
{(Q, o) 2" € dg} or {(x, Q)| € Iy} in the situa-
tions represented in Figs. 42 and 43 respectively.



In these cases we can write, more synthetically,
h(Q, dg) = 0 or h(dg, Q') = 0 respectively.

The implicit representation of a one-
dimensional map given in (69) is often met in appli-
cations, and the presence of denominators is often
the result of the necessity of writing an explicit map
of the form 2’ = f(z). A sufficient condition to ob-
tain a single valued explicit function is provided by
the implicit function theorem: if Oh/0x(Z, T') # 0
then the single-valued function z’ = f(z) can be
obtained, defined at least in a neighborhood of .
Thus the condition 0h/0z'(Q, «') = 0Va' € o is a
necessary condition for a focal point (), with prefo-
cal set dq, as in the situation shown in Fig. 42.

A similar reasoning can be followed for the case
of maps of the plane, where the implicit relation
(69) is substituted by the following equations

Hy(z,y, ', y') =0
{H2(9U, y. 2, y)=0
or, in a more compact vector notation
H(z, y, 2", y) =0 (70)

whose graph is a two-dimensional subset of ®*. In
the following we assume that (70) is of class C'1) in
the whole space R*. From (70) the explicit relations
(', y') = T(z, y) and (z, y) = T~ 1(2/, 3/'), between
the points of the planes (z,y) and (2/, 3/), can be
obtained, not necessarily defined in the whole plane.
We assume that at least one of the explicit relations
T or T~ is single valued.

The existence, for the explicit form 7', of a focal
point ) with related prefocal set d¢, is defined by
the identity

H(Q, 2/, y) =0 Y(«',y) € dg (71)

or, more synthetically, H(Q, dg) = 0. Analogously,
the presence of a focal point @) for the explicit form
T~ with associated prefocal set d¢q, is defined by
the identity

H(z,y, Q) =0 VY(z,y) €y (72)

or, more synthetically, H(d¢/, Q") = 0.
From the Jacobian matrix

8H 1 8H 1 8H 1 8H 1
OH B Ox oy oz’ oy’
Nz, y,2',y) | 0Hy OHy, OHs OHy

oz oy oz’ oy’
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the Jacobians of 7 and T~! can be easily computed,
being
OH
det [7]
Az, y)] .
OH '
det | —
‘ [3(9:’, y’)]

det OH
) [3(9:’, y')
det [5’71{]

Az, y)
the first one expressed with the variables z and y,
using, if necessary, the explicit relation (2/, y') =
T(z, y), the second one expressed with the variables
z' and 3/, using, if necessary, the explicit relation
(2, y)= T, ).

This suggests a method to find the focal points
and prefocal sets for T or T~! starting from the im-
plicit relation (70). Let J; be the locus of points at
which the Jacobian of T~! vanishes, i.e.

Jo =A{(@, y)|det(DT}(a', y/)) = 0}.  (75)

A point @ is a focal point of T, with associated
prefocal curve dg, if

det[DT (z, y)| =
(74)

det[DT1(z', y)] =

soeJy and  H(Q, dg) =0. (76)

A similar method can be used to find the focal
points and prefocal sets of T7!: let Jy be the lo-
cus of points at which the Jacobian of T vanishes,
ie.

Jo ={(z, y)|det(DT(z, y)) =0}.  (77)
A point Q is a focal point of 7!, with associated
prefocal curve ¢, if

5Q/ € Jo and H((SQ/, QI) =0. (78)

This method can be easily applied to find the focal
points and the prefocal sets of the maps we have
considered in the previous sections. Consider, for
example, the map (17). It can be obtained from
the implicit relation:

y—x'=0
yy' — By —y* + Azy (79)
+ By — BA\x —ax® —yx =0

defined for each (z, y, 2/, v') € R*.

From (79) the explicit relations T and 71
can be obtained: the relation T is the single valued
map (17), defined for y # (3, and the inverse rela-
tion 7! is given by 7! = Ty ' U Ty !, where Ty *
and T, ! are given in (22). We now show how the
prefocal sets and focal points can be found through
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the study of the Jacobian matrix of the implicit relation (79):

OH B 0
8(1'7 y7 x/’ y,) B

from which

det [3371?1/)}

o2, y')
_ —Ay + 2ax + BN+ v
By ’

det[DT (z, y)] =

det[DTT (2, y)] =

p—a

and

det[DTy (2!, of)] =

p—a
=z + 2axe (2, y') + BA +y

where z1(2/, y') and zo(2’, y') represent, respec-
tively, the first component of Tl_1 and T2_1 given
in (22). From the condition det(DT(x, y)) = 0 we
obtain the equation

Ay —2ax+v7—-pBAX—v=0,

which defines the set LC_; of merging preimages
given in (26), whose image by T is the critical
curve LC of Eq. (21). Instead, from the condi-
tion det(DT~!(a', y')) = 0 we obtain the line dg
of equation 2’ = 3, whose images by 77 * and T}, *
can be easily obtained through the implicit relation
(83). In fact, with 2’ = 8 (79) becomes

y=>,
—ax? —yr =0

from which the points Q! = (—v/a, 8) and Q? =
(0, B) are obtained. This is equivalent to say that

Ay —2ax — BA—y

1 -1 0
Yy —2y+Ix+p0 0 y—4

Ti'({e' = 8}) = Q" and T, ({2 = 8}) = @7,
which means that Q' and Q? are two focal points
associated with the same prefocal line dg of equa-
tion y = (.

The application of this method to the other ex-
amples proposed in this paper, in order to find the
focal points and prefocal sets of the maps, and of
their inverses, is a simple exercise which is left to
the reader.

5. Conclusions

In this paper we have studied some global dynam-
ical properties and bifurcations of two-dimensional
maps, related to the presence, in the map or in one
of its inverses, of a vanishing denominator. Some
new kinds of contact bifurcations have been ev-
idenced, whose description can be made through
the definition of new concepts, specific of maps
with vanishing denominator, like the set of non-
definition, the focal points and the prefocal curves.
These concepts allowed us to give a geometric char-
acterization to some new bifurcations which change
the structure of the basin boundaries, and to de-
scribe a new mechanism for the occurrence of homo-
clinic bifurcations specific to maps with vanishing
denominator.

We have shown, through theoretical arguments
and examples, that these concepts are also use-
ful to understand some particular properties ob-
served in maps defined in the whole plane (for ex-
ample polynomial maps) related to the presence
of a vanishing denominator in at least one inverse
map. In particular, for noninvertible maps, we have
shown that the locus of points in which the de-
nominator of some inverse vanishes may separate
regions of the phase plane whose points have a dif-
ferent number of preimages. Such points are the
two-dimensional analogue of a horizontal asymp-
tote of a one-dimensional map (which corresponds
to a vertical asymptote of at least one inverse)
which separates zones with different numbers of
preimages.



The presence of inverse maps with vanishing
denominator imply that the locus of points Jy at
which the Jacobian of a map vanishes may include
a whole curve which is entirely mapped into a single
point, a property often observed in maps studied in
the literature. We have shown that these particular
curves, whose properties are different from those of
the critical points even if they belong to Jp, may
have a strong influence on the dynamical properties
of the map, and are related to the presence of a
prefocal curve of one inverse map.

Other important bifurcations (for example due
to the merging of focal points, or to the merging
of focal points and fixed points, or to contacts be-
tween prefocal curves and critical curves) have not
been considered in the present paper, and will be
the object of further studies.
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