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     In this paper, we investigate the question of whether the assumption of the “representative
agent”, often made in economic modeling, is innocuous or whether it may be misleading
under certain circumstances. In order to obtain some insight into this question, two dynamic
Cournot duopoly games are considered, whose dynamics are represented by discrete-time
dynamical systems. For each of these models, the dynamical behavior of the duopoly system
with identical producers is compared to that with quasi-identical ones, in order to study the
effects of small heterogeneities between the players. In the case of identical players, such
dynamical systems become symmetric, and this implies that synchronized dynamics can be
obtained, governed by a simpler one-dimensional model whose dynamics summarizes the
common behavior of the two identical players. In both the examples, we show that a negligible
difference between the parameters that characterize the two producers can give dynamic
evolutions that are qualitatively different from that of the symmetric game, i.e. a breaking
of the symmetry can cause a noticeable effect. The presence of such bifurcations suggests
that economic systems with quasi-identical agents may evolve quite differently from systems
with truly identical agents. This contrasts with the assumption, very common in the economic
literature, that small heterogeneities of agents do not matter too much.
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1. Introduction

A common assumption, often made in economic modeling, is that the behavior
of a system with many identical agents can be summarized by that of a “representative
agent” (see e.g. [14,15,17,31]). This approach is generally followed even when
heterogeneous agents are present, since it is often argued that small heterogeneities of

Annals of Operations Research 89(1999)253–272 253



agents do not matter too much. In other words, unless the agents have very different
characteristics, it seems reasonable to expect that each individual will behave in more
or less the same qualitative way (though not necessarily identically) so that the
behavior of the aggregate system is still summarized by the behavior of the repre-
sentative agent (see e.g. [31]). This point has recently been criticized by some authors
[3,10,17,30].

In this paper, we investigate the question of the effects of small heterogeneities,
i.e. small deviations from the condition of identical agents, on the basis of some recent
results on the properties of symmetric dynamical systems (see [11] and references
therein).

Suppose, for example, that a dynamical system is used to model the interaction
between two identical economic agents. Such a dynamical system is symmetric because
it remains the same by interchanging the agents. This symmetry property implies that
an invariant one-dimensional subspace exists (see [11]). This invariance property
corresponds to the obvious statement that identical agents, starting from identical
initial conditions, behave identically for each time. Such synchronized dynamics are
governed by a simpler one-dimensional dynamical system, given by the restriction of
the two-dimensional system to the invariant subspace on which the synchronized
dynamics occur, which can be seen as the model of a representative agent, whose
dynamic behavior summarizes the common behavior of the two identical agents.

Some recent papers appearing in the mathematical and physical literature show
that the behavior of symmetric dynamical systems is often non-generic, since a break-
ing of the symmetry due, for example, to a slight modification of the parameters with
respect to the symmetric situation may lead to a qualitatively different dynamic
evolution (see e.g. [19,24,28,32,33]). In fact, the introduction of small asymmetries,
that may be due to the presence of noise or of small departures from homogeneity of
the agents, may destroy the invariant submanifold and cause important qualitative
changes in the dynamical behavior of the model. In other words, the destruction of the
invariance submanifold, on which synchronized dynamics takes place, implies that
the attractors that characterize the long-run behavior of the one-dimensional model of
the representative agent are substituted by new (two-dimensional) attractors that may
be very different from those existing when symmetry is present.

In order to obtain some insight into this question, in this paper we study two
particular duopoly games with bounded rationality. For both models, we address the
question of whether, in the presence of quasi-identical producers, characterized by
parameters with very small relative differences, the observed time evolution is similar
to that obtained with truly identical players.

In section 2, the bounded rationality adjustment process, on which the Cournot
games considered in this paper are based, is briefly described.

In sections 3 and 4, two particular duopoly models, obtained by the same adjust-
ment mechanism but with different demand functions, are considered. In both examples,
we show that a negligible difference between the parameters of the producers can
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give dynamic evolutions that are qualitatively and quantitatively different from that
of the representative firm, and the synchronization property can be completely lost.

Such qualitative changes in the system dynamics, due to a very small relative
variation with respect to the situation of identical firms, will be called symmetry-
breaking bifurcations. The methods used in this paper for the study of the effects of
small asymmetries in two particular models can be easily applied to the study of other
dynamical models describing the behavior of identical (or quasi-identical) interacting
agents, and we believe that the bifurcations described in this paper, due to the sudden
destruction of the invariant subset in which synchronized dynamics take place, can be
met in many other symmetric dynamic models. This suggests that the concept of
representative firm should be used very carefully in situations of interacting agents,
as already stressed in [4,10,17,18] on the basis of qualitative arguments.

2. Duopoly models

Dynamic duopoly games, in which two players choose their strategies (x1, x2) ∈
R2 at discrete-time periods t = 0, 1, 2,…, are often modeled by the iteration of a two-
dimensional map T : (x1(t), x2(t)) → (x1(t + 1), x2(t + 1)). As stressed in section 1, in
the case of identical players the map T remains the same by interchanging the players,
i.e. T o S = S o T, where S : (x1, x2) → (x2 , x1) is the reflection through the diagonal
x1 = x2. This symmetry property implies that the diagonal (line of equal productions)

  ∆ = {(x1, x2)j x1 = x2} (1)

is an invariant submanifold for the map T, i.e. T(∆) # ∆. This means that two identical
players, starting with identical initial strategies x1(0) = x2(0), behave identically for
each t ≥ 0. The synchronized trajectories, belonging to ∆ , are characterized by

  {(x1(t), x2(t)) = T t (x1(0), x2(0)) j x1(t) = x2(t) ∀t ≥ 0} (2)

and are governed by the one-dimensional map x ′ = g(x), where g(x) represents the
restriction of the two-dimensional map T to ∆:

  g = Tj∆ : ∆ → ∆. (3)

The simpler model x ′ = g(x) can be seen as the model of a representative player, whose
dynamics summarize the common behavior of the two identical players.

As an example, we consider a duopoly game which describes a market where
two quantity-setting firms, producing homogeneous goods, update their productions
q1(t) and q2(t) at discrete-time periods. The dynamic game is based on the assumption
that the two producers have no knowledge of the market. Hence, they are not able
to reach a Nash equilibrium in one shot and, consequently, they behave adaptively
following a bounded rationality adjustment process based on a local estimate of the
marginal profit ∂Πi ∂qi obtained, for example, through market experiments (see [9]
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and references therein). With this kind of information, the firms behave as local
(or myopic) profit maximizers: at each time period, a firm decides to increase its
production if it perceives a positive marginal profit, and decreases its production if
the marginal profit is negative:

qi(t + 1) = qi(t) + αi (qi (t))
∂Πi

∂qi
(q1(t), q2(t)); i = 1, 2; t = 0,1, 2, … , (4)

where α i(qi) is a positive function which gives the extent of production variation of
the ith firm following a given profit signal. In the following, we assume

αi (qi ) = υiqi , i = 1, 2, (5)

where υi is a positive parameter which represents the relative speed of adjustment. As
usual in duopoly models, the price of the good is determined by the total supply
Q(t) = q1(t) + q2(t) through a given inverse demand function p = f (Q), so that the one-
period profit for firm i is given by

Πi(q1, q2) = qi f (q1 + q2) − ciqi , i = 1, 2, (6)

where the positive constants c1 and c2 represent the marginal costs of the two firms.
With assumptions (5) and (6), the time evolution of the dynamic game (4) is deter-
mined by the iteration of the following two-dimensional map:

T :

′ q 1 = q1 + υ1q1 f (q1 + q2 ) + q1
∂ f
∂q1

− c1
 
  

 
  ,

′ q 2 = q2 + υ 2q2 f(q1 + q2 ) + q2
∂ f
∂q2

− c2
 
  

 
  ,

 

 
  

 
 
 

(7)

where ′ denotes the unit-time advancement operator: if the right-hand side variables
are productions of period t, then the left-hand ones represent production decisions for
period (t + 1).

Starting from nonnegative initial productions

(q1(0), q2(0)) = (q10 , q20 ), (8)

the iteration of (7) uniquely defines the time evolution of the production choices,
represented by the trajectory {(q1(t), q2(t)) = T t(q10, q20), t ≥ 0} of the two-dimen-
sional discrete-time dynamical system (7). In this model, the producer labeled by i
is characterized by the two parameters υi and ci , representing the relative speed of
adjustment and the marginal cost, respectively. The case of identical producers is
obtained for

c1 = c2 = c and υ1 = υ2 = υ. (9)

In this case, as explained above, every duopoly game starting with equal productions
q10 = q20 has a synchronized trajectory, embedded into the invariant line (1).

256 G.I. Bischi et al. y Symmetry-breaking in duopoly games



In the following sections, we consider two particular examples, obtained with
two different demand functions, and for each of them we compare the dynamical
behavior of the duopoly system with identical producers to that with quasi-identical
producers , characterized by a parameter mismatch

υ2 = υ1 + ε and or c2 = c1 + δ , (10)

where the constants ε and δ are small in comparison with the values of the respective
parameters, i.e. jεj υ1 ¿ 1, jδj c1 ¿ 1. If (υ1, c1) ≠ (υ2, c2), then the line of equal
productions ∆ is no longer invariant because the symmetry property of the map is
lost. In other words, even starting from identical initial productions, q10 = q20, the
synchronization q1(t) = q2(t) 8t is no longer true. In this case, we can ask if the time
evolution of the duopoly game with quasi-identical producers is similar, or not, to that
with truly identical producers.

3. Linear demand function

If we assume a linear demand function p = f (Q) = a – b(q1 + q2), with a, b posi-
tive constants, the model (7) gives rise to the following nonlinear discrete dynamical
system:

T :
′ q 1 = q1[1 + υ1(a − c1) − 2bυ1q1 − bυ1q2 ],

′ q 2 = q2[1 + υ2(a − c2) − 2bυ2q2 − bυ2q2 ].

 
 
 

  
(11)

This is a noninvertible map of the plane, that is, starting from some nonnegative initial
production strategy (8), the iteration of (11) uniquely defines the trajectory (q1(t), q2(t)) =
T t(q10, q20), t ≥ 0, whereas the backward iteration of (11) is not uniquely defined
because a point (q ′1, q ′2) of the plane may have several preimages, obtained by solving
the fourth degree algebraic system (11) with respect to q1 and q2 (see [1] or [22] for a
description of the properties of noninvertible maps of the plane). A detailed analysis
of the map (11), in the non-symmetric case, is given in [9]. The map (11) has four
fixed points: three boundary equilibria, located on the invariant coordinate axes, given
by E0 = (0, 0), E1 = ((a – c1) 2b, 0), E2 = (0, (a – c2) 2b), and the fixed point

E* = a + c2 − 2c1

3b
,

a + c1 − 2c2

3b

 
  

 
  , (12)

which is positive provided that

2c1 < a + c2 and 2c2 < a + c1. (13)

It is easy to verify that when (13) are satisfied, the fixed point E* represents the unique
Nash equilibrium for the duopoly game.

In the case (9) of identical producers, the duopoly map (11) can be written as
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where

TS :
′ q 1 = h(q1, q2),

′ q 2 = h(q2 , q1),

 
 
 

  
(14)

h( x, y) = (1 + υ (a − c))x − 2bυ x2 − bυx y. (15)

Under assumption (9), the Nash equilibrium (12) becomes

E* = a − c
3b

,
a − c

3b

 
  

 
  ∈ ∆ (16)

and the two boundary equilibria E1 and E2 are in symmetrical positions with respect
to the line ∆. The dynamics of TS restricted to this invariant line are governed by the
one-dimensional map q ′ = g(q) = TSj∆ = h(q, q), given by

g(q) = (1 + υ(a − c))q − 3bυq2 . (17)

This is a logistic map in nonstandard form, conjugate to the standard logistic x ′ =
µ x(1 – x), with parameter µ = 1 + υ(a – c), by the linear transformation

q = 1 + υ (a − c)
3bυ

x.

Thus, the dynamical behavior of the representative producer can be obtained from the
well-known behavior of the standard logistic map by an homeomorphism. The unique
positive fixed point of (17) is stable for 0 < υ(a – c) < 2 and its basin of attraction is
given by

q0 = q10 = q20 ∈ 0,
1 + υ(a − c)

3bυ
 
  

 
  .

Of course, the positive fixed point of (17) on the diagonal ∆ coincides with the Nash
equilibrium (16) of the duopoly game. At υ(a – c) = 2, the Nash equilibrium loses
stability through a flip (or period doubling) bifurcation, and for 2 < υ(a – c) < 6 , an
attracting cycle of period two exists around E*. Also this cycle undergoes a flip bifur-
cation at υ(a – c) = 6  that creates an attracting cycle of period four, and so on, and
a sequence of flip bifurcations, known as Myrberg (or Feigenbaum) cascades, leads to
chaotic behavior (see e.g. [6,12]). For υ(a – c) > µ* – 1, with µ*  3.57, the ω -limit
set of the generic trajectory of the synchronized dynamics of identical producers
starting with q10 = q20 ∈(0, (1 + υ(a – c)) (3bυ)) is either an attracting cycle or cyclic-
invariant chaotic intervals, or a Cantor set belonging to trapping intervals bounded by
critical points (see e.g. [21,29]). For υ(a – c) > 3, the generic trajectory of (17) is
divergent (see e.g. [13]).

We now examine the effect of a symmetry breaking due to the introduction of a
small parameter mismatch, according to (10). If such a difference is very small, we
may expect that the trajectories of the duopoly game are not far from the line ∆, i.e. a
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quasi-synchronized behavior should be obtained. For example, in figure 1, two trajec-
tories are represented in the strategy plane (q1, q2), both starting from the same initial
strategy (q10, q20) ∈∆ , one obtained in the case of identical producers with υ1 = υ2 =
0.375 and c1 = c2 = 3 (figure 1(a)) and the other with υ1 = 0.375, υ2 = 0.38, c1 = 3.1,
c2 = 3, i.e. in the case (10) of quasi-identical producers with jδj c1  0.03 and
jεj υ1  0.01 (figure 1(b)). In these figures, the shape of the attractor is obtained, as
usual, by representing many points (q1(t), q2(t)) of a trajectory after the transient part,
constituted by the early iterates, has been discarded. The white region represents the
basin of attraction of the bounded attractor, whereas the shaded region represents the

(c)

Figure 1.
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set of points that generate unbounded trajectories, i.e. the basin of infinity. The attractor
shown in figure 1(a) is a two-cyclic chaotic interval on ∆, where the dynamics are
governed by the one-dimensional map (17), whereas the attractor shown in figure 1(b)
is given by a two-cyclic chaotic area on which the dynamics is governed by the two-
dimensional map (11). It can be noticed that this two-dimensional attractor is close to
the line ∆, even if such a line is not invariant, and the dynamical behavior of the
duopoly game is similar to that obtained by the simpler one-dimensional model (17).
In other words, the two quasi-identical producers show quasi-synchronized produc-
tion decisions, i.e. characterized by small differences jq1(t) – q2(t)j between the two
productions. This is clearly shown in figure 1(c), where the difference q1 – q2 is repre-
sented versus time.

However, this conclusion cannot be applied in general, since for different sets of
parameters the situation appears to be very different. For example, the trajectory shown
in figure 2(a), obtained in the case of identical producers with υ1 = υ2 = 0.4035 and
c1 = c2 = 3, is completely different from that shown in figure 2(b), obtained after the
introduction of a very small difference between the marginal costs, namely c1 = 3 and
c2 = 3.00001, i.e. δ c1  3 × 10 –6. Both trajectories shown in figures 2(a),(b) have
been obtained starting with equal initial productions: the one obtained with identical
producers is characterized by a synchronized chaotic dynamics governed by the map
(17), whereas the one obtained with quasi-identical producers is characterized by an
erratic dynamics inside a large two-dimensional chaotic area. Despite the very small
difference between the parameters of the two producers, the synchronization between
the productions q1(t) and q2(t) is completely lost in the trajectory shown in figure
2(b). Indeed, it can be noticed that inside the large chaotic area, the points near the
line of equal productions ∆ are more frequently visited than those far from it, i.e. for
quasi-identical producers, similar productions are more probable. However, many time
periods exist which are characterized by very different production decisions, repre-
sented by the points far from ∆. This is clearly seen in figure 2(c), where the difference
q1 – q2 is represented versus time. In this case, even if the difference between the
parameters of the two producers is negligible, the simplified model (17) of the repre-
sentative firm loses any practical meaning, because there are time periods in which
the behavior of the two firms is very different. Furthermore, due to the chaotic behavior
of the duopoly, the time period in which the “asynchronous” production decisions
occur cannot be forecasted.

In order to understand the different effects of a parameter mismatch (10) in the
two cases shown in figures 1 and 2, we consider the local stability properties of the
attractors of the symmetric map TS located on the invariant submanifold ∆. The Jacob-
ian matrix of the map (14), computed on the line ∆, assumes the structure

DTS(x , x) =
l(q) m(q)

m(q) l(q)

 

 
 
 

 

 
 
 

(18)
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with l(q) = 1 + υ(a – c) – 5υbq and m(q) = – υbq. The eigenvalues are

(c)

Figure 2.

(19)

Of course, the eigenvalue λk, associated with the invariant manifold along the line ∆,
coincides with the multiplier of the restriction TSj∆ given by the map (17). The eigen-
vector associated with the other eigenvalue is always orthogonal to ∆ and independent
of q.

  

λk = l(q) + m(q ) = 1 + υ (a − c) − 6υbq , with eigenvector rk = (1 ,1) ,

λ ⊥ = l(q) − m(q) = 1 + υ (a − c) − 4υbq , with eigenvector r⊥ = (1, − 1).
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For a k-cycle {(α1, α1),…,(αk, αk)} of (14), corresponding to the cycle {α1,…,αk}
of the one-dimensional map (17), the two multipliers are

  

λk
(k) = (l(α i) + m(α i )) = (1 + υ(a − c) − 6bυα i),

i =1

k

∏
i =1

k

∏

λ⊥
(k) = (l(α i) − m(α i )) = (1 + υ(a − c) − 4bυα i).

i =1

k

∏
i =1

k

∏
(20)

Also for the cycles, the conditions for stability and local bifurcations along ∆ are the
same as for the one-dimensional map (17). Hence, we focus our attention on the
transverse stability.

For υ(a – c) ∈[0, 3], the ω -limit sets of the restriction g = Tsj∆ belong to the
attracting set

  
I = [c1, c] = g

1 + υ(a − c)
4

 
 

 
 ,

1 + υ(a − c )
4

 
  

 
  , ∆,

inside which only one attractor A exists (a periodic cycle or a cycle of chaotic intervals
or a Cantor set, which is a weak attractor). The one-dimensional invariant set I , ∆ is
also an asymptotically attracting set for the two-dimensional map Ts if all the cycles
of Ts inside it are transversally attracting (we recall that a set is asymptotically stable
if it attracts all the trajectories starting around it: more precisely, a set A is asymp-
totically stable if it is Lyapunov stable, i.e. for every neighborhood U of A, there exists
a neighborhood V of A such that T t(V) , U 8t, and the basin B(A) contains a neigh-
borhood of A). Indeed, for sufficiently small values of υ(a – c), any attractor of the
restriction Tsj∆ is also an asymptotically stable attractor for the two-dimensional map T.

For example, a numerical computation, performed with a = 10, b = 0.5, c = 3,
shows that the conditions for asymptotic stability of the attractor A along ∆ are fulfilled
for υ < 0.37562 (we remark that for this set of parameters, the Feigenbaum point is
given by υ* = 0.36713…). Hence, at the parameter values used in figure 1, all the
cycles existing inside I are transversally attracting and the attractor shown in figure
1(a) is asymptotically stable. In this case, all the trajectories starting inside a two-
dimensional neighborhood U of I synchronize and their ω -limit set is the attractor
A # I of the restriction g.

As υ reaches the bifurcation value υb  0.37562, a 2-cycle located on ∆ becomes
transversally unstable with λ⊥

(2) < –1.  For υ < υb, just before the bifurcation, this 2-
cycle is a saddle, repelling along ∆ and transversally attracting, with –1 < λ⊥

(2) < 0.
At υ = υb , it becomes a repelling node via a flip bifurcation, at which a saddle

cycle of period 4 is created out of ∆, with periodic points located symmetrically with
respect to the diagonal. The bifurcation occurring at υ = υb, called riddling bifurcation,
has recently been studied in [2,5,19].

For υ > υb, if we consider a sufficiently small neighborhood U of I, we have that
the local unstable set of the transversally unstable 2-cycle intersects ∂U. Moreover,
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repelling “tongues” exist around this transverse unstable manifold such that the
trajectories starting from the points of these “tongues” exit U after a finite number of
iterations, and similar “tongues” also exist in correspondence with the infinite pre-
images, along ∆, of the points of the 2-cycle (see [2,11,19,23]). This implies that no
neighborhood V , U exists such that the definition of Lyapunov stability holds, so
that the invariant interval I is no longer an asymptotically stable set for the map Ts. In
other words, even if the interval I , ∆ attracts the synchronized trajectories embedded
into ∆, it is a repelling set for the two-dimensional map TS .

Nevertheless, numerical explorations show that the bounded attractor A # I of
the map g continues to capture almost all the bounded trajectories of the symmetric
two-dimensional map TS . This suggests that A is an attractor in the weak Milnor sense
(see [2,5,20]). This is the situation for the parameter set used to obtain figure 2(a).
The generic trajectory, starting from a point of the white region, converges to the
submanifold ∆ where synchronized dynamics take place, even if the attractor A # ∆
is not an attractor in the usual topological sense. This is the local explanation of the
difference between the two different behaviors numerically evidenced by the parameter
mismatches shown in figures 1 and 2. For υ > υb, as in figure 2, most initial conditions
close to I # ∆ are attracted to I, but in any neighborhood of I, there exists a dense set
that is locally repelled in a direction transverse to ∆.

A similar “explosive” effect of a small parameter mismatch, called hard bubbling
transition in [32], has recently been observed in symmetric dynamical systems
characterized by the presence of a one-dimensional Milnor (transversally unstable)
chaotic attractor (see [32,33]). In this case, we have that both the long-run behavior
of identical and quasi-identical producers is erratic. The main difference is that for
truly identical agents we have synchronized chaos, so that the common behavior can
be modeled by the simpler model of the representative agent, whereas for quasi-
identical agents no common behavior can be observed.

In the case of quasi-identical firms, an estimate of the maximum value of the
difference jq2 – q1j between the two productions, proportional to the distance between
the phase point (q1, q2) and the line of equal productions ∆, can be obtained by a study
of the global properties of the map (11), characterized by its critical curves. In fact,
after the symmetry-breaking, which destroys the invariance of ∆, the fate of the locally
repelled trajectories depends on the global properties of the non-invertible map T, and
in particular on the folding action of its critical curves (see e.g. [1,16,22]).

The notion of critical curve is one of the distinguishing features of non-invertible
maps. We recall that the critical curve of rank-1, denoted by LC, is defined as the
locus of points having two, or more, coincident rank-1 preimages, located on a set
called LC–1. LC is the two-dimensional generalization of the notion of critical value,
local minimum or maximum, of a one-dimensional map, LC–1 is the generalization of
the notion of critical point (local extremum point). Arcs of LC separate the regions of
the plane characterized by a different number of real preimages.
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Since the map (11) is a continuously differentiable map, LC–1 belongs to the
locus of points where the Jacobian determinant of T vanishes (i.e. the points where T
is not locally invertible). In our case,

    LC−1 = {x ∈ R
2jdet DT = 0}

and LC is the rank-1 image of LC–1 under T, i.e. LC = T(LC–1).
For the map (11), the condition det DT = 0 becomes

q1
2 + q2

2 + 4q1q2 − α1q1 − α2q2 + β = 0
with

α i =
4(1 + υ j(a − c j )bυi) + 1 + υ i(a − ci)bυ j

4b2υ1υ2
, i = 1, 2; j ≠ i,

and

β = (1 + υ1(a − c1)bυ1) (1 + υ2(a − c2)bυ2 )
4b2υ1υ2

.

This is the equation of a hyperbola in the plane (q1, q2). Thus, LC–1 is formed by two
branches, denoted by LC–1

(a) and LC–1
(b) in figure 3(a). This implies that also LC is the

union of two branches, denoted by LC (a) = T(LC–1
(a)) and LC (b) = T(LC–1

(b)) (see figure
3(a)). Each branch of the critical curve LC separates the phase plane of T into regions
whose points have the same number of distinct rank-1 preimages. In the case of the
map (11), LC (b) separates the region Z0, whose points have no preimages, from the
region Z2, whose points have two distinct rank-1 preimages, and LC (a) separates the
region Z2 from Z4, whose points have four distinct preimages (for more details, see
[9]). The images of rank k of LC–1 give the critical sets of rank k, denoted by LCk –1 =
T k(LC–1) = T k –1(LC).

Portions of critical curves of increasing rank can be used to bound absorbing and
chaotic areas of non-invertible maps of the plane (see e.g. [1,16,22]). We recall that
an absorbing area A is a region of the plane, bounded by critical curve segments of
finite rank, such that the successive images of the points of a neighborhood of A, say
U(A), enter inside A after a finite number of iterations, and never exit, being
T(A) # A. A chaotic area is an absorbing area A such that T(A) = A and chaotic
dynamics occur inside A. The boundary of the chaotic area A appearing in figure 2(b)
can be obtained by taking the images of the two segments of LC–1 included inside A.
This statement is based on the following general procedure for the determination of
the boundary of an absorbing or a chaotic area given in [22, chap. 4]. Let γ =
LC–1 > A : then ∂A is made up of arcs belonging to T k(γ ), k = 1,…, m, for some
suitable integer m.

In our case, m = 4, as shown in figure 3(b). From this figure, it can be seen that
whenever LC–1 intersects LC, say in a point a0, the images of a0, given by ak = T k(a0),
are tangential points between critical curves, and the union of such tangential segments
of critical curves defines the boundary of a trapping region.
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We remark that  includes the invariant interval I, being A > ∆ = I, and all the
trajectories starting inside a neighborhood of I cannot go out of A. Loosely speaking,
∂A behaves as a bounded vessel for the trajectories starting from the “tongues” located
around the local unstable sets of the transversally repelling cycles.

4. Isoelastic demand function

In this section, we consider a unit-elastic demand function

(a) (b)
Figure 3.

p = f (Q) = 1
q1 + q2

. (21)

This demand function is often met in economic modeling. For example, it has been
used in [25] and [26] in order to obtain an explicit form of the reaction function in a
class of dynamic Cournot games. Instead, in this paper we propose such a demand
function in order to show a different kind of symmetry-breaking bifurcation, which is
definitely not typical, which gives us the opportunity of remarking the non-generic
behavior of a symmetric dynamical system and, consequently, that noticeable effects
of small heterogeneities should be expected.

With function (21), model (7) gives rise to the map

T :

′ q 1 = q1 1 − c1υ1 + υ 1
q2

(q1 + q2 ) 2
 
  

 
  ,

′ q 2 = q2 1 − c 2υ 2 + υ 2
q1

(q1 + q2 ) 2
 
  

 
  .

 

 
  

 
 
 

( 2 2 )
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This is a non-invertible map which is not defined in the whole plane, because the
denominator vanishes along the line of equation q1 + q2 = 0. The general properties
concerning the attractors and local bifurcations of (22) are analyzed in [8], and the
global bifurcations of the basin boundaries are studied in [7]. It is easy to see that (22)
has only one fixed point, given by

P* = c2

(c1 + c2)2 ,
c1

(c1 + c2 )2

 
  

 
  , (23)

which is the unique Nash equilibrium. Its local stability analysis, based on the locali-
zation, in the complex plane, of the eigenvalues of the Jacobian matrix DT(P*), shows
that P* is stable as long as the following stability conditions hold:

c1c2υ1υ2 − 4
c1c2

c1 + c2
(υ1 + υ2 ) + 4 > 0, (24)

c1c2υ1υ 2 − 2
c1c2

c1 + c2
(υ1 + υ 2) > 0. (25)

The equality given by the vanishing of the left-hand side of (24) gives the condition
for a flip bifurcation, whereas the equality given by the vanishing of the left-hand side
of (25) gives the condition for a Neimark–Hopf bifurcation of the Nash equilibrium.
For fixed values of the parameters c1 and c2, such equations represent hyperbolae in
the parameter plane (υ1, υ2). These hyperbolae intersect in the points

and bound the stability region S of the Nash equilibrium in the parameter plane
(υ1, υ2), represented by the shaded area of figure 4. The two lines l1 and l2 appearing
in figure 4(a) bound a cone, say F, inside which P* is a focus, a stable focus for the
portion of F belonging to the shaded region, an unstable focus for the part of F out of
the shaded region. If the marginal costs c1 and c2 are fixed, the shape of the stability
region S remains the same and by increasing υ1 and or υ2, the point V = (υ1, υ2) can
move out of it. If V crosses the boundary of S along the arc A1A2 (belonging to the
hyperbola whose equation is given by the vanishing of (25), i.e. det DT(P*) = 1), then
the fixed point P* changes from a stable focus to an unstable focus via a Neimark–
Hopf bifurcation, whereas if V exits the region S by crossing one of the arcs B1A1 or
B2A2 (both belonging to the other hyperbola, whose equation is given by the vanishing
of (24)), the fixed point P* is changed from an attracting node to a saddle point through
a flip bifurcation.

Similar arguments apply if the marginal costs (c1, c2) are varied. For example, if
c1 and c2 are increased, the stability region S becomes smaller, as can be easily deduced
from (26), and this can cause the exit of V from S even if the speeds of adjustment υ1

A1 = 2
c1

,
2
c2

 
  

 
  , A2 = 2

c2
,

2
c1

 
  

 
  , B1 = c1 + c2

c1c2
, 0

 
  

 
  , B2 = 0,

c1 + c2

c1c2

 
  

 
  (26)
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and υ2 are held constant. Also in this case, the loss of stability can occur via a Neimark–
Hopf or a flip bifurcation, depending on the boundary arc which is crossed by point V.

We observe that if c1 > c2, the positions of the vertices A1 and A2 are exchanged
with respect to those appearing in figure 4(a) (obtained with c1 < c2), and if the dif-
ference between the marginal costs of the two firms is increased, the region F enlarges
and, consequently, the arc A1A2, representing the curve where Hopf bifurcations occur,
becomes larger. If c1 = c2, the lines l1 and l2 merge, so that the cone F disappears, the
stability region S becomes a square, like that shown in figure 4(b), and the possibility
of Hopf bifurcations is lost. In the case (9) of identical producers, the map (22) assumes
the symmetric form (14) with

Figure 4.

h(x, y) = x 1 − cυ + υ
y

(x + y)2
 
  

 
  . (27)

In this case, the restriction TSj∆, which models the dynamics of the representative
firm on the invariant line ∆, is given by

′ q = (1 − cυ )q + υ
4

. (28)

This is a linear map with fixed point q* = 1 (4c), corresponding to the Nash equilib-
rium P* = (1 (4c), 1 (4c)) of the symmetric game. This fixed point attracts every
synchronized trajectory if cυ < 2, whereas diverging (and oscillatory) trajectories are
obtained along the invariant line ∆ if cυ > 2. These are also the conditions to have
stability or instability of the Nash equilibrium for the two-dimensional symmetric
map (14) with (27). In fact, the Jacobian matrix of such map, computed at any point
of the invariant line ∆, becomes

DTS(q, q) =
1 − cυ 0

0 1 − cυ

 

 
 
 

 

 
 
 

,
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so that the fixed point P* = (1 (4c), 1 (4c)) is a stable (unstable) star node if cυ < 2
(cυ > 2). This implies that for the duopoly model (22), a slight perturbation in the
parameter values with respect to the case of identical producers does not change the
stability property of the Nash equilibrium. Furthermore, differently from the model
analyzed in section 2, the Nash equilibrium is the only possible attractor of the sym-
metric map on the invariant line ∆ because the restriction TSj∆, being linear, can have
neither attracting cycles nor chaotic attractors.

Nevertheless, a particular symmetry-breaking bifurcation, causing very different
long-run dynamics of quasi-identical producers with respect to the corresponding case
of identical ones, can be obtained also in this case. Figures 5(a) and 5(b) show that a

Figure 5.

small change in the marginal costs, with δ c1 = (c2 – c1) c1  0.02, can transform
divergent dynamics obtained in the case of identical producers (figure 5(a)) into
bounded oscillatory dynamics that asymptotically approach an invariant closed curve,
around the Nash equilibrium, in the case of quasi-identical firms. The trajectories
shown in figure 5 are obtained starting from the same initial condition. In this figure,
also the transient part is represented.

Figure 5(a) is obtained with υ1 = υ2 = 0.502 and c1 = c2 = 4. An initial condition
belonging to ∆ and close to the Nash equilibrium generates a diverging oscillatory
trajectory, governed by the linear map (28). In this case, the stability region is given
by the square [0, 0.5 ] × [0, 0.5] shown in figure 4(b), so that the parameter values
used to obtain such a trajectory are out of the stability region. The trajectory shown in
figure 5(b) is obtained starting from the same initial condition and with the same values
of υ1 and υ2, but a small difference has been introduced between the two marginal
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costs. This slight perturbation opens a narrow cone F bounded by the lines l1 and l2

(figure 4), so that the Nash equilibrium is transformed from an unstable star-node into
an unstable focus, i.e. the coincident real eigenvalues λ1 = λ2 = 1 – cυ < –1 become a
pair of complex conjugate eigenvalues, located out of the unitary circle of the complex
plane. This causes the sudden appearance of a closed invariant and attracting orbit of
finite amplitude. In other words, the divergent dynamics obtained in the symmetric
case of identical producers is replaced, after the parameter mismatch, by a bounded
behavior (at least for the trajectories starting sufficiently close to the Nash equilib-
rium). This is shown in figure 6, where the two trajectories shown in figure 5 are
represented versus time.

It can be noticed that the creation of the closed invariant curve, caused by the
symmetry-breaking bifurcation, is not related to a change of stability of the fixed point.

Figure 6
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In other words, the variation of the parameters used to obtain the situation of figure
5(b), starting from the symmetric situation of figure 5(a), does not cause any crossing
of the eigenvalues through the unit circle. However, the existence of the invariant
closed orbit can easily be revealed if the same point in the parameter space is reached
following a different path in which the point (υ1, υ2) reaches the point (0.502, 0.502),
passing through the arc A1A2 at which a Neimark–Hopf bifurcation occurs.

The mechanism that makes the closed attracting orbit appear without the occur-
rence of a Neimark–Hopf bifurcation, like in the case of the symmetry-breaking
bifurcation shown in figure 5, can be explained as follows. As is well known, the
occurrence of a supercritical Neimark–Hopf bifurcation causes, as some parameter is
made to vary, the transformation of the fixed point from a stable to an unstable focus
and the creation of a stable closed invariant curve Γ around the unstable focus. Such
a stable orbit Γ attracts all the trajectories starting from a given basin of attraction
B(Γ). If the parameter continues to change, the closed orbit Γ becomes larger and
when it has contact with the boundary of its basin, ∂B(Γ), it disappears (Γ loses the
invariance property). This is a global bifurcation, i.e. not related to the eigenvalues of
DT(P*). If now we reverse the direction of the parameter variation, we shall see the
sudden appearance of the attracting orbit Γ, with its basin B(Γ), around the unstable
fixed point P*, and this creation of Γ is not related to any change of stability of the
fixed point. In our case, due to the symmetry breaking, the line ∆ loses its invariance
property and the sudden appearance of nonlinear terms causes the creation of a closed
invariant orbit, around P*, tangent to its boundary of attraction (the white region of
figure 5(b)).

We conclude, also in this case, that the linear model of the representative firm is
no longer meaningful for the description of the long-run behavior of the duopoly model
characterized by quasi-identical producers.

5. Conclusions

We have considered symmetric dynamical systems that model economic systems
with identical agents, and we have argued that such systems exhibit non-generic
properties, in the sense that the introduction of asymmetries, due to small hetero-
geneities (always present in real systems) can have noticeable effects on the qualitative
behavior of the model. This contrasts with the common assumption, usually made in
economic modeling, that if the agents have slightly different characteristics they
behave more or less in the same way.

To support this statement, we have considered a dynamic duopoly game with
identical producers, modeled by a symmetric discrete-time dynamical system of the
plane. The symmetry property implies that the diagonal (line of equal productions) is
invariant. The dynamics on this invariant line is governed by a one-dimensional map
that can be seen as the model of a representative firm, in the sense that the productions
obtained by the one-dimensional model summarize the common (synchronized)
production choices of the two identical producers.
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In order to show two different kinds of symmetry-breaking bifurcations, we have
studied two duopoly games, and for each of them compared the dynamical behavior
of the duopoly system with identical producers to that with quasi-identical ones. In
both examples, we have shown that a negligible difference between the parameters
can give dynamic evolutions that are qualitatively and quantitatively different from
that of the representative firm.

The presence of bifurcations like those shown in this paper suggests that a slight
structural modification of the symmetrical model of identical firms can produce notice-
able qualitative changes in the dynamics of the duopoly model. Indeed, this statement
is quite general in the theory of dynamical systems: dynamic models with symmetries
often show a non-generic behavior, i.e. a breaking of the symmetry generally leads to
a qualitatively different dynamic evolution. This means that the model of the repre-
sentative firm, which correctly summarizes the common choices of identical firms,
may be completely inadequate to represent the dynamics of quasi-identical firms, as
stressed in [17].

Acknowledgements

We thank an anonymous referee for helpful comments. The work has been per-
formed under the auspices of CNR, Italy, and under the activity of the national research
project “Dinamiche non lineari ed applicazioni alle scienze economiche e sociali”,
MURST, Italy.

References

[1] R. Abraham, L. Gardini and C. Mira, Chaos in Discrete Dynamical Systems (A Visual Introduction
in Two Dimensions), Springer, Berlin, 1997.

[2] J.C. Alexander, J.A. Yorke, Z. You and I. Kan, Riddled basins, Int. Journal of Bif. and Chaos
2(1992)795–813.

[3] M. Aoki, New Approaches to Macroeconomic Modelling, Cambridge University Press, New York,
1996.

[4] W. Arthur, S. Durlauf and D. Lane (eds.), The Economy as an Evolving Complex System 11, Addison-
Wesley, Reading, MA, 1997.

[5] P. Ashwin, J. Buescu and I. Stewart, From attractor to chaotic saddle: A tale of transverse instability,
Nonlinearity 9(1996)703–737.

[6] W.J. Baumol and J. Benhabib, Chaos: Significance, mechanism, and economic applications, Journal
of Economic Perspectives 3(1989)77–105.

[7] G.I. Bischi and L. Gardini, Focal points and basin fractalization in two classes of rational maps,
Proceedings ECIT96, 1997, in press.

[8] G.I. Bischi and A. Naimzada, A dynamic duopoly game with local adaptive response, Mimeo, 1996.
[9] G.I. Bischi and A. Naimzada, Global analysis of a dynamic duopoly game with bounded rationality,

in: Advances in Dynamic Games and Applications, Vol. 5., Birkhäuser, Boston, 1999, forthcoming.
[10] L. Blume, The statistical mechanism of strategic interaction, Games and Economic Behavior 5

(1993)387–424.
[11]  J. Buescu, Exotic Attractors, Birkhäuser, Basel, 1997.

G.I. Bischi et al. y Symmetry-breaking in duopoly games 271



[12] P. Collet and J.P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Birkhäuser, Basel,
1980.

[13] R.L. Devaney, An Introduction to Chaotic Dynamical Systems,  Benjamin-Cummings, Menlo Park,
CA, 1987.

[14] H. Föllmer, Random economies with many interacting agents, Journal of Mathematical Economics
1(1974)51–62.

[15] M. Gallegati and A. Kirman (eds.), Economies with Heterogeneous and Interacting Agents, Elgar,
1998, forthcoming.

[16] I. Gumowski and C. Mira, Dynamique Chaotique, Cepadues Editions, Toulouse, 1980.
[17] A.P. Kirman, Whom or what does the representative individual represent?, Journal of Econ. Per-

spectives 6(1992)117–136.
[18] P. Krugman, The Self Organising Economy, Blackwell, Oxford, 1996.
[19] Y.C. Lai, C. Grebogi and J.A. Yorke, Riddling bifurcation in chaotic dynamical systems, Phys.

Rev. Lett 77(1996)55–58.
[20] J. Milnor, On the concept of attractor, Commun. Math. Phys. 99(1985)177–195.
[21] C. Mira, Chaotic Dynamics, World Scientific, Singapore, 1987.
[22] C. Mira, L. Gardini, A. Barugola and J.C. Cathala, Chaotic Dynamics in Two-Dimensional Non-

invertible Maps, World Scientific, Singapore, 1996.
[23] E. Ott and J.C. Sommerer, Blowout bifurcations: The occurrence of riddled basins, Phys. Lett.

A188(1994)39–47.
[24] A.S. Pikovsky and P. Grassberg, Symmetry breaking bifurcation for coupled chaotic attractors, J.

Phys. A: Math. Gen. 24(1991)4587–4597.
[25] T. Puu, Chaos in duopoly pricing, Chaos, Solitons and Fractals 1(1991)573–581.
[26] T. Puu, Complex dynamics with three oligopolists, Chaos, Solitons and Fractals 7(1996)2075–

2081.
[27] C. Reick and E. Mosekilde, Emergence of quasiperiodicity in symmetrical coupled, identical period-

doubling systems, Phys. Rev. E52(1995)1428–1434.
[28] R.I. Schult, D.B. Cramer, F.S. Henyey and J.A. Wright, Symmetric and nonsymmetric coupled

logistic maps, Phys. Rev. A35(1987)3115–3118.
[29] A.N. Sharkovsky, Yu.L. Maistrenko and E.Yu. Romanenko, Difference Equations and Their Appli-

cations, Kluwer Academic, 1993.
[30] T. Stoker, Empirical approaches to the problem of aggregation over individuals, Journal of Economic

Literature 31(1993)1827–1874.
[31] S.J. Turnovsky, Methods of Macroeconomic Dynamics, The MIT Press, 1995.
[32] S.C. Venkataramani, B.R. Hunt, E. Ott, D.J. Gauthier and J.C. Bienfang, Transition to bubbling of

chaotic systems, Phys. Rev. Lett, 77(1996)5361–5364.
[33] S.C. Venkataramani, B.R. Hunt and E. Ott, Bubbling transition, Phys. Rev. E54(1996)1346–1360.

272 G.I. Bischi et al. y Symmetry-breaking in duopoly games


