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ABSTRACT. Several discrete-time dynamic models are ultimately expressed in
the form of iterated piecewise linear functions, in one- or two- dimensional
spaces. In this paper we study a one-dimensional map made up of three linear
pieces which are separated by two discontinuity points, motivated by a dy-
namic model arising in social sciences. Starting from the bifurcation structure
associated with one-dimensional maps with only one discontinuity point, we
show how this is modified by the introduction of a second discontinuity point,
and we give the analytic expressions of the bifurcation curves of the principal
tongues (or tongues of first degree) for the family of maps considered, which
depends on five parameters.

1. Introduction. In the recent literature, several papers on dynamic modelling
applied to the description of economic and social applications, as well as in engi-
neering applications, ultimately propose discrete-time models which are expressed
in the form of iterated piecewise linear (or more generally piecewise smooth) maps,
continuous (see e.g. [7, 8, 19, 20, 21, 13, 32, 33, 42, 39, 40, 15, 16, 14]) or discontinu-
ous, with one or more discontinuity points [35, 36, 34, 41, 43, 44]. The bifurcations
involved in such class of maps are often described in terms of the so-called border-
collision bifurcations. We can classify as border-collision any contact between an
invariant set of a map with the border of its region of definition. However, such con-
tacts may or may not produce a bifurcation. The term border-collision bifurcation
was used for the first time in [30] (see also in [31]) and it is now widely used in this
context, i.e. for piecewise smooth maps, although the study and description of such
border collision bifurcations began several years before those papers. For example,
Leonov [23, 24] described several bifurcations of that kind, and provided a recursive
relation to find the analytic expression of the sequence of bifurcations occurring
in a one-dimensional piecewise linear map with one discontinuity point, which is
still almost unknown, except for a limited number of researchers among which Mira
[28, 29], Maistrenko et al. in [25, 26, 27]. In particular, the results obtained by
Feigen in 1978, re-proposed in di Bernardo et al. [9, 10], were almost unknown
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until their quotation in the recent years. Feigen was the first author able to give a
clear and simple analysis for n—dimensional piecewise linear continuous maps, with
n > 1. Using different names and notations, these authors already described the
contact bifurcations now called of border collision.

These kinds of bifurcations are now widely studied and have given rise to a flour-
ishing literature over the last few years, mainly because of their relevant applica-
tions in Electrical and Mechanical Engineering. In fact, several papers on piecewise
smooth dynamical systems and border collision bifurcations have been motivated
by the study of models used to describe particular electrical circuits or systems for
the transmission of signals [1, 2, 3, 4, 5, 10, 11, 12, 17, 22, 25, 26, 27, 45, 46, 47].

The present work is motivated by some papers dealing with dynamic models
in social sciences, in which the models proposed are described by one dimensional
maps, piecewise linear or piecewise smooth, with two (or more) discontinuity points,
such as the duopoly model in [44] and the model in [6] (related to the works of
Schelling [37, 38]). The family of iterated maps considered in the present paper has
the form:

Tp(z)=mz+(1—mq) if 0<ax<d
' = T(:Z?) = TR(ac) = MoT if di<xz<ds (1)
T5(z) =msz+ (1—m3) if do<az<l1

where the parameters satisty the following conditions:
O<m;<1l, i=1,23, 0<di<dy <1 (2)

so that T maps the interval [0,1] into itself. The goal of this paper is to describe
the possible bifurcations occurring in the map 7 in (1) when the parameters vary
in the ranges given in (2). As we shall prove later, the slope ms is not a relevant
parameter, in the sense that whichever is its value inside the interval (0,1) we
obtain the same kind of dynamics. This means that we can arbitrarily fix its value,
for example setting ms = m;. For this reason we shall also consider the following
three-piece piecewise linear map:

x’zTg(x):{ ;L(x)imlx—i—(l—ml) if 0§x<d1. or do<x<1
r(T) = max if di<x<ds
(3)
such that the first and the third pieces belong to the same line.
Moreover, in order to understand the bifurcations occurring in this map it is
convenient to describe first the bifurcations occurring in the following piecewise
linear map with only one discontinuity point (i.e. considering the particular case

dg = 1)2

;o | Tio(x) =miz+ (1 —m) if 0<z<d;
o' =T(2) = { Tr(z) = max if di<z<l1 (4)

keeping the constraints on the parameters as given in (2).

The structure of the paper is as follows. In section 2 we show the graphical
representation of the standard numerical exploration of the regions, in the space
of the parameters, where stable cycles of different periods exist. The main goal
of the paper is the analytic computation of the bifurcation conditions that mark
the separation between such regions. In order to obtain this, in section 3 we first
study the border collision bifurcations of the map with one discontinuity point 77.
On the basis of the results obtained in this case (by using methods already given
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in the literature), in section 4 we move to the analytic study of the sequences
of bifurcations that characterize the creation and destruction of periodic cycles of
the map T5 characterized by the presence of two points of discontinuity. Finally, in
section 5, we show how the study of the more general map 7', with two discontinuities
and three different slopes, can be trivially deduced from the study of the map T5.
Section 6 concludes.

2. Numerical explorations of the existence of periodic cycles. In this sec-
tion we consider the problem of existence of periodic cycles for the map 7. Let us
first consider the map with only one discontinuity, ' = T1(z). As we shall see, the
set of bifurcation curves of this map gives a basic structure which is then modified by
the introduction of another discontinuity point. In other words, the basic skeleton
that gives the conditions of existence of the periodic cycles of the map T}, created
and destroyed by border collision bifurcations, constitutes a benchmark case from
which the more involved bifurcation structures of the maps T», as well as the more
general map T, characterized by the presence of two discontinuities, can be derived.

This property can be easily conjectured even by a quick numerical computation
and graphical representations of the regions of existence of stable cycles of different
periods. In fact, for any value of the discontinuity point d; € [0, 1] the numerically
computed two-dimensional bifurcation diagram in the parameter plane (mi, m2) has
a structure like the one represented in Fig. 1, where each grey tonality corresponds
to a cycle of fixed period, according to the numbers reported in the picture. Such
regions are usually called periodicity regions (or periodicity tongues due to their
shape). For parameters belonging to the boundary of a periodicity region a border-
collision occurs involving the cycles existing inside the region.

d=04 d=1

T

0 m; 1

FiGUurRE 1. Two-dimensional bifurcation diagram in the plane
(my1,me) at di = 0.4 and dy = 1 fixed, of the map T5, i.e. of
the map T7. Different grey tonalities correspond to the existence of
cycles of different periods.
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Let us consider now the map T, given in (1), characterized by two points of
discontinuity 0 < d; < do < 1. The introduction of the second discontinuity clearly
changes the bifurcations which involve the periodic points (of any period) which
may still exist. Two examples are shown in Fig. 2, at two different values of the
pair of discontinuity points d; and ds. It is immediately clear that the periodicity
regions are involved in new kind of bifurcations, again border-collision bifurcations.

d=0.6 d=0.7

m, my

stable fixed
pointx = |

stable fixed

pointx = I

0 @ .m‘, 0 (b) m; 1

FIGURE 2. Two-dimensional bifurcation diagrams in the plane
(mq1,mz) of the map T». In (a) at d; = 0.4 and dy = 0.7. In
(b) at dl = 0.6 and d2 =0.7.

The bifurcation curves associated with the map 77 can be obtained by using
methods already known in the literature, as described in section 3. The main
results of this paper concern the explanation of the bifurcation curves shown in Fig.
2, whose shape is evidently related to the “skeleton” of periodicity tongues of Fig. 1,
but there are evident modifications due to the presence of the second discontinuity
point. In section 4 we shall describe how to obtain the analytic expression of such
bifurcation curves as well.

3. Bifurcation curves of the map 7j.. As stated in the introduction, the main
results of the dynamics of the map 2/ = Ty(x) are owed to Leonov [23, 24], also
described by Mira in [29], and are quite known nowadays, also due to the recent
works in [1, 3, 10]. We can also refer to the “word-shifting” technique as defined
in [18]. However, in order to make the paper more self contained, we apply these
techniques to our map 77, because this will then be useful for understanding the
properties of the map T with two discontinuities.

First of all, it is obvious that all the possible cycles of the map 77 of period
k > 1 are always stable. In fact, the stability of a k—cycle is given by the slope
(or eigenvalue) of the function TF = Ty o ... o Ty (k times) in the periodic points
of the cycle, which are fixed points for the map TF, so that, considering a cycle
with p points on the left side of the discontinuity and (k — p) on the right side, the

(k—p)

eigenvalue is given by mim which, in our assumptions, is always positive and

less than 1.
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Moreover each k—cycle exists in a proper region, called “periodicity region”. Now
let us show, by using the method described by Leonov [23, 24], how to obtain the
analytical equation of the bifurcation curves that we have seen in Fig. 1. Let us
consider first the bifurcation curves of the so-called “principal tongues”, or “main
tongues” ([1, 2, 4, 9, 10, 25, 26, 27], or “tongues of first level of complexity” (in
[23, 24]) or “tongues of first degree of complexity” (in [28, 29]). In the following
we shall use “degree” for short. These are the regions of existence of the cycles
of period k having one point on one side of the discontinuity point d; and (k — 1)
points on the other side (for any integer & > 1). It is plain that we may have one
point on the left side and (k—1) points on the right side, or vice-versa. To formalize
the results it is useful to label the two components of the map «' = T} (x) as Tr, and
TR, as we have already done in the definition (4). Let us start with the conditions
for determining a cycle of period k having one point on the left side, L, and (k—1)
points on the right side, R.

1 1
X
T
L x5 X
I
X
x} TR y TR
X;
0 xI =dj 0 .X,'3 :dl
0 d, x 1 0 x 1

d,
(a) (b)

FIGURE 3. Starting condition in (a) and closing condition in (b)
related with the period-3 orbit associated with the symbol sequence
LRR.

The condition that starts the existence of a k—cycle, i.e. the bifurcation that
marks the creation of a cycle of period k, is that the critical point x = dy (the
discontinuity point) is a periodic point to which we apply, in the sequence, the maps
T, Tg,...,Tr. Fig. 3a shows the starting condition related with £ = 3, i.e. a
3—cycle, given by Tr o T 0 Tr,(d1) = dy. Then the k—cycle with periodic points
Z1, ..., T, numbered with the first point on the left side (1 < dy, z; > d; for
i = 2,..,k) satisfies o = Tr(x1), 3 = Tr(x2),..., 1 = Tr(z)). In formulae we
get:

pr = di (5)
D2 myd; +1—my
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ps = ma(midi +1—my)

Ph+1 = 'T.T'Lékfl)(mld1 +1—my)
and a k—cycle occurs when pp41 = p1, i.e. the following equality holds:
dy =m$* ™V (mady +1—my) (6)
and rearranging we obtain (for any &k > 1):

(k—1)
m — d1
¢ka . my = 2—_ (7)
(1 —dy)mY

This cycle ceases to exist when the last point (zj) merges with the discontinuity
point, that is, xx = d;, which may also be stated as: the point x = dy is a periodic
point to which, in the sequence, we apply the maps Tr,Tr,TR,...,Tr. In the qual-
itative picture in Fig. 3b we show the closing condition related with the 3—cycle,
that is, TRo T, 0o Tr(dy) = d;. In general, a k—cycle exists until the point = d; be-
comes a periodic point when, in the sequence, we apply the maps Tr,Tr, TR, ..., TR.
Thus, we obtain the following expressions:

p1 = di (8)
P2 = mad;
p3 = mimad; +1—my
ps = ma(mimady +1—my)
perr = mS P (mimady +1—my)

and the condition for a k—cycle pi1 = p1 becomes
dy = mék72) (mlmgdl +1-— ml)
which, rearranged, gives (for any k > 1):

(k—2)
m — dl
ko : M1 = = - 9)
(1 — mgdl)m(k 2)

Summarizing, the k—cycle exists for m; in the range

(k—1) (k—2)
m —d m —d
mla::2—1<m1<m1b:: 2 !

(1 —d)md = 7 (1 — mady)mY=?

The relations given above can also be used to find the explicit coordinates of the
k—cycles. Let (z7, 25, ..., x}) be the periodic points of the k—cycle, where x] < d
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and x} > d; for i > 1. From (5) we have:

\ my V(1 —m)

Ty = i (10)
and then (11)

x5y = Tr(ay)=mizi +1—my

xy = Tr(zd) =ma(mial +1—mq)

vy = Tr(5) =mj(mia] +1—mi)

t = Trleha) =mg? (maf +1-m)

Analogously, from the conditions in (8) we get:

(k—2)
. m (I —mq)
Th= (12)
1 —mim,
Similar arguments apply to find the condition of existence of a k—cycle with periodic
points 21, ..., x; having one point in the R side and (k— 1) points in the L side (also

called principal orbits) (see in Fig. 4 a 3—cycle of this kind).

m=07 m=02 d,=04

Xy
T,
d,
yd X3
T
x2
0
0 d, X

FIGURE 4. Period-3 cycle with the symbol sequence RLL.

We consider the critical point z = d;, and we apply the maps Tr, 11, ..., 11, S0
we get py = di, po = madi, ..., Pri1 = mgk_l)mgdl +(1- mgk_l)) and a k—cycle

occurs when the following equality holds:

dy = mgkfl)mgdl + (1 — mgkil)) (13)
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Rearranging we obtain (for any k > 1):

di— 14 m{Y

- (19)
1

1Z)ka : ma

dlm

The cycle exists until the point * = d; becomes a periodic point to which, in

the sequence, we apply the maps 17, Tr,Tr,...,Tr. Thus we obtain the following

expressions: p; = dy, po = midy + 1 —mq, ..., prr1 = mgkfz)mg(mldl +1-—my)+

(1- mgk_m) and the condition for a k—cycle pry+1 = p1 occurs when the following
equality holds:

dy = m® P ma(mady +1 - my) + (1 -m{*?) (15)
which, rearranged, gives (for any k > 1):
di —1+m{"?

Yot M2 = —g— (16)

my O (mady +1—my)

Summarizing, the k—cycle (z7,23,...,x}) where 7 > dy and o} < dy for i > 1
exists for mo in the range

di —1+m{* Y di —1+mf?
mog ‘= -y <mg < mgp = (k—2)
dlml my (m1d1 +1-— ml)

The periodic points of the k—cycle (z7], 3, ..., z}) where ] > di and z] < d; for
¢ > 1, can be also obtained. From (15) we get:

. m§k72)m2(1 —my)+1— mgk72) 17
T = 1 (k—1) ( )
— mammy
and from (13):
1-— mgk_l)
x] = (18)
! 1-— mgmgk_l)

The equations given above in (14) and (16) are the analytic expressions of the
bifurcation curves at which a “border-collision” bifurcation occurs. That is, fixing
a value of my, the k—cycle exists for values of the parameter ms € (ma,, map), and
its periodic points are explicitly given in (17) and (18). If the slope ms is decreased
until mg = may,, then the periodic point x7] collides with the boundary of its region
of periodicity (i.e. we have z7 = d;) and then it will disappear, that is, it is no
longer a periodic point for mo < ms,. Vice-versa, increasing meo until mo = maoy
the periodic point z collides with the boundary of its region (i.e. we have z}, = d;)
and the cycle will disappear: it no longer exists for mo > mayp.

It is easy to see that for k = 2 the formulas in (7) and in (9) and those in (14)
and (16) give the same equations (and thus the same bifurcations curves). However,
they are labeled symmetrically. That is: what is called initial (or starting curve)
and final (or closing curve) in the former case, is called final and first, respectively,
in the latter. In fact, they are obtained by naming the periodic points as 2} < d;
and z5 > d; in the former case, while they are labeled as ] > d; and z35 < d;
in the latter. We clearly have a unique cycle of period 2, and the border collision
curves in the two cases are the same, that is ] = di and x5 = d; (although the
starting and closing labels are inverted).

The 2-cycle, however, is the only exception: for any k > 2 we have two different
regions of existence of the k—cycles. By using the formulas in (7) and (9) with
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k = 3,...,16, we obtain all the bifurcation curves of the principal tongues located
above the period-2 tongue in Fig. 5a, and by the formulas in (14) and (16) we get all
the bifurcation curves of the principal tongues located below the period-2 tongue in
Fig. 5a. Note that the formulas given in (7) and in (9) and those in (14) and (16)
are generic, and hold whichever is the position of the discontinuity point x = d;. A
three dimensional view of the bifurcations is shown in Fig. 5b.

(a)

FIGURE 5. In (a), parameter plane (m1,ms) at di = 0.4 fixed,
bifurcation curves of first degree of complexity for cycles of periods
2,...,16 are obtained from the analytical expressions, for the map
T1. In (b), the bifurcation curves are shown in three sections of the
three dimensional parameter space (my,ma,d;) at d; fixed, with
dl = 0.1,d1 = 0.5 and d1 =0.9..

Following similar arguments it is possible also to find the boundaries of the other
bifurcation curves. In fact, besides the regions associated with the “tongues of first
degree” [23, 24, 28, 29] there are infinitely many (countable) periodicity tongues.
The simplest well known mechanism for finding the periods that characterize these
infinite sequence of periodicity tongues is that between any two tongues having
periods k1 and ks there also exists a tongue having period k1 + ko (see the numbers
of the periods indicated in Fig. 1 and Fig. 5. Between the tongues of period 2 and
3 a tongue of period 5 exists, and between 5 and 2 we can see 7, and so on...).

To be more specific, in the description of the periodicity tongues we can associate
a number to each region, called the “rotation number”; in order to classify all the
periodicity regions. In this notation, a periodic orbit of period k is characterized not
only by the period but also by the number of points in the two branches separated
by the discontinuity point (denoted by T, and Tx respectively). So, we can say that
a cycle has a rotation number £ if a k-cycle has p points on the L side and the other
(k —p) on the R side. Then between any pair of periodicity regions associated with
the “rotation number” % and i—z, there also exists the periodicity tongue associated
with the “rotation number” 2% & 22 = % (also called Farey composition rule @
(see for example in [18]).

Then, following Leonov [23, 24] (see also Mira [28, 29]), between any pair of

: « ” 1 1 : :
contiguous “tongues of first degree”, say T and g1 e can construct two infinite



258 GIAN-ITALO BISCHI, LAURA GARDINI AND FABIO TRAMONTANA

families of periodicity tongues, called “tongues of second degree” by the sequence
obtained by adding with the Farey composition rule & iteratively the first one or
the second one, i.e. 7- © =g = 5 25 @ &= = 3527, -and so on, that is:

2k1+1° 2k1+1 3k1+1°
—— foranyn>1
nki +1 Y
1 1 _ 2 2 1 _ 3 3 1 _ 4 L
and = & 73 = i T O RT — a2 s O BT — dm g that s
n
——— foranyn > 1
nki+n—1

which give two sequences of tongues accumulating on the boundary of the two
starting tongues.

Clearly, this mechanism can be repeated: Between any pair of contiguous “tongues
of second degree”; for example # and Wﬂ%’ we can construct two infinite
families of periodicity tongues, called “tongues of third degree” by the sequence ob-
tained by adding with the composition rule & iteratively the first one or the second
one. And so on. All the rational numbers are obtained in this way, giving all the
infinitely many periodicity tongues.

Besides the notation used above, called the method of the rotation numbers, we
may also follow a different approach related to the symbolic sequence associated
with a cycle. In this notation, considering the principal tongue of a periodic orbit
of period k constituted by one point on the L side and (k — 1) on the R side,
we associate the symbol sequence LR..(k — 1 times).R with the cycle. Then the
composition of two consecutive cycles is given by:

LR..(k —1 times).R® LR..(k times).R = LR..(k — 1 times).RLR..(k times).R

That is, the two sequences are simply put together in file (and indeed this sequence
of bifurcations is also called “bozes in files” in [29]), and the sequence of maps to
apply in order to get the cycle are listed from left to right. More generally, it is true
that given a periodicity tongue associated with a symbol sequence o (consisting of
letters L and R, giving the cycle from left to right) and a second one with a symbol
sequence 7, then the composition of the two sequences also exists, associated with
a periodicity tongue with symbol sequence o7 :

odbT =0T

It is worth noticing that these periodicity tongues never overlap (as proved in [23,
24, 28, 29]), and this implies that the coexistence of different periodic cycles is not
possible.

As we shall see in the next section, part of the bifurcation curves described above
is also present in the map 75 with two discontinuity points, the study of which is
the main goal of this paper.

4. Bifurcation curves of the map 75.. Now let us introduce a second discon-
tinuity point, by considering the map 2/ = Th(z). Our analysis begins with the
description of the possible attractors of the map. First of all, we notice that for any
value of the parameters all the initial conditions with x > dy converge to the fixed
point = 1. This may be the unique attractor or it may coexist with another at-
tracting k—cycle C' (with k > 1), existing in the interval 0 < x < do. This depends
on the values of the four parameters: di, d2, m; and msy. Moreover, when we have
the coexistence of two attractors, their basins may consist in only one interval or in
the union of two or more intervals.
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m=0.5 my=0.7 d;=0.4 d,=0.7

1
&(1)
d,
______ -
7} 2
x’g TL(dI)
x; f} T’
&(0)
0 -
0 d, d, X 1

FIGURE 6. Coexistence of two attractors and related connected basins.

m;=0.45 my=0.67 d;=04 d,=0.7 m=0.6 my=0.1 d,=0.6 d,=0.7
1 1
&0
"é-‘(]) - ( )
TR ! T,(d,)
T = < 1a
il Crd,
v L g id; Ii(d) T :""?" d,
| Do |d;2: d |“"':“" _
: Ve ’ L (d)zl
| P ANz i ' SB(C
| B(0) '
d72
dy 2 -
0 _ 0 R
0 d d X 1 0 d, d, X 1

(a) (b)

FIGURE 7. Coexistence of two attractors and related non-
connected basins. In (a) B(1) is formed by four disjoint intervals,
while it is formed by three disjoint intervals in (b).

We show some examples in Fig.s 6 and 7. In Fig. 6 we see the coexistence of
two attractors, the fixed point x = 1 and a cycle of period 3 respectively, and each
of the two basins of attraction, say B(1) (represented by a thicker line along the
diagonal) and B(C'), consists in one interval. Instead, in Fig. 7 we show two cases
in which the fixed point x = 1 still coexist with a cycle of period 3, but their basins
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are made up of several disjoint intervals. In Fig. 7a, B(1) is formed by four disjoint
intervals, while in Fig. 7b by three disjoint intervals. The complementary set in the
interval [0, 1] belongs to the basin B(C).

In short, there are only two possibilities:

I) each of the two basins is made up of only one interval, separated by the
discontinuity point dy (as in the case shown in Fig. 6), so that the basin of the
attracting cycle is: B(C) = [0, d2[ while the other points converge to the attracting
fixed point: B(1)=]ds, 1];

IT) each of the two basins is made up of disjoint intervals as in the cases shown
in Fig. 7, separated by the two discontinuity points d; and ds and their preimages.
Considering the interval |ds, 1] which is the immediate basin of the fixed point x = 1,
we have B(1)= U;>oT; 7 (Jd2,1]), while the complementary region in [0, 1] gives the
basin of the k—cycle: B(C) = [0, 1]\ B(1).

We notice for the example in Fig. 7a we have also B(C) = U;j>0Ty  (|dy, dy 2[),
while for the example in Fig. 7b we have B(C) = Uj>T; ? (|d1, da|).

From the above description it is clear that the qualitative change in the struc-
ture of the basins depends on a border-collision bifurcation: as shown in Fig.
6, in the simplest case (when the basins are two disjoint intervals) the interval
[Tr(d1),Tr(dy)] is invariant, and this occurs as long as Tr(d1) < da, or, equiva-
lently, as long as dy has no rank-1 preimage with 7, . When we have Ty (dy) > da,
i.e. T, '(d2) < dy, then each basin is made up of at least two intervals. At the bifur-
cation value, Tr(dy) = dg2, we have an invariant set ([Tr(d1),Tr(d1)] belonging to
the basin of a cycle C) which is merging with a border of another basin, B(1), and
this collision produces a qualitative change in the structure of the two basins (note
that for the attractors nothing changes, in this description they are not involved in
the border-collision bifurcation).

So the bifurcation between the two cases (I) and (IT) occurs when

Tr(dy) = da
that is, when mid; + (1 — my) = day or, equivalently, when m; = }:gf. So, let us
define

_1—d
C1-dy
then the following proposition is proved:

mj (19)

Proposition 1. (I) When my > mj then there are two coexisting attractors (the
fized point x =1 and a k— cycle C for some integer k) and the two basins are made
up of only one interval: B(1) =]dg, 1] and B(C) = [0, ds|.

(II) When mq < mj then either the fized point is the only attractor in the whole
interval [0,1] or there are two coexisting attractors (the fized point and a k— cycle
C for some integer k > 1) and the two basins are made up of at least two pieces:

B(l) = UjZQTQ_J(]dQ, 1]) and B(C) = [O, 1] \ B(l)

As remarked above, we have two different dynamic behaviors in our map. In the
simplest case (I) in the interval |da, 1] we only have convergence to the fixed point
x = 1, whereas, as a function of the parameters, what occurs in the interval [0, ds]
has been already described in the previous section because the restriction of the
map 15 to that interval reduces to the map 7. In fact, for m; > mj the bifurcation
diagrams in the plane mq, mo are the same as those in Fig.s 1 and 5. In the case
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of two discontinuities the meaning of the different grey tonalities in Fig. 2 is that
in the light grey region the fixed point is the only attractor, while in the other
regions the fixed point coexists with a k—cycle, whose period k > 1 is different in
the regions with different grey tonalities. So we have proved that for m; > mj
we know the bifurcation curves (those of the principal tongues are given in section
3). What remains is to describe the bifurcations occurring for m; < mj. Moreover,
from Fig. 2 we may also argue that different kinds of border-collision bifurcation
occur in the periodicity tongues of the family LR...R (see Fig. 2a) with respect
to those occurring in the family RL...L (see Fig. 2b). However, we shall see that
the two different bifurcations have something in common, and clearly related to the
second discontinuity point.

Consider m; = mj and let us decrease m; starting in the region of cycles of the
family LR...R (i.e. above the periodicity region of the 2-cycle). Then, no curves
of type dra (of the “starting” cycles) can exist for m; < mj, while if a k—cycle
already exists then

i) eitherit ends to exist in the usual way, by border collision with the discontinuity
point dy, that is when x}, = d;, and this is represented in the portion of curves of
the family ¢ existing for m; < mfj,

ii) or the cycle ceases to exist by border-collision with the basin of attraction of
the fixed point, and this occurs when the periodic point of the k—cycle closest to d;
from the left is merging with dy ' = T '(d2), that belongs to the boundary of B(1)
(see Fig. Ta), and from the expression reported in (10) we obtain the condition of
the contact bifurcation by using:

vy =1; " (d2) (20)
that is:
mgkfl)(l —my)  dy—1+my
1- mlmékfl) a my

which, rearranged, may be rewritten as:

1—ds
ket M1 = T D

1-— d2m2
Similarly (or better, symmetrically) we can reason for the other family, RL...L, of
principal tongues. In this case the periodic points of the k—cycle (z7, 3, ..., z}) have
x] > dy and 7 < d; for ¢ > 1. In particular z is the one closest to d; from the left.
Then decreasing m; from mj some portion of curves of type ¥y, (of the “starting”
cycles) for my < m7 can still exist (see Fig. 7b), while if a k—cycle already exists
then for m; < mj it cannot ceases to exist because of the collision of the periodic
point z; with the border d; (because of the structure of the basins (see Fig. 7b).
So that for m; < mj no curves of type 1 (of the “closing” cycles) can exist. Thus
an existing cycle can cease to exist only by collision of the periodic point of the
cycle closest to di with the point d; ' = T} '(d2) (i.e. the collision of the cycle with
the basin of attraction of the fixed point). For the main tongues in this region the

periodic point z}, is the one involved in the contact, so the condition becomes:

wp = T; ' (d2)

(21)

Equivalently, we can say that the periodic point on the right of the discontinuity
dy, closest to da, “collides” with the discontinuity point do. That is, in our case:

xTng
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Clearly we obtain the same bifurcation curve from both the conditions, which may

be written as: )
~1+dy +mi"!
¢kc : mo = 2 (kfl)l (22)
dgml

So, the border-collision bifurcation curves existing for the second family for m; <
mj are the curves ¥, and V..

So far we have considered a generic k—cycle in a main tongue, and we remark
that the result holds also for the 2-cycle. In the family LR...R, the bifurcation
curve is given by ¢o. and in the RL...L family the bifurcation curve is given by s..
Which is obvious: for m; < mj a 2—cycle either exists or it cannot appear any
longer, and an existing one either ceases to exist when x5 = dy or when z] = d».

We have thus proved the following proposition:

Proposition 2. (1) When my > mj the border-collision bifurcation curves of the
k— cycles of the map T are the same as those of the map T .

(II) When my < mj then an existing cycle may end to exist either by collision
with the border di or with the border ds.

The explicit analytic expressions of the bifurcation curves of the principal tongues
(or tongues of first degree) have been determined in the previous section, and by
similar reasoning also the analytic expressions of the bifurcation curves of second
or higher degree of complexity can be determined.

=04 d,=0.7
1 e

FIGURE 8. In (a), parameter plane (my,mso) at d; = 0.4 and dy =
0.7 fixed, bifurcation curves of first degree of complexity for cycles
of periods 2, ..., 16 are obtained from the analytical expressions, for
the map T5. In (b) the same bifurcation curves are shown with
grey tonalities associated with the different periodicities.

By using the curves of the family ¢, and ¢, for £k = 2,...,16 we have drawn
all the bifurcations curves of the principal tongues of the family LR...R reported
in Fig.s 8a,b, and with the curves of the family vy, and ¥g., k = 2,...,16, we
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d=06 d,=0.7 d=06 d,=0.7
1 X
m;
0
u (a) (b)

FIGURE 9. In (a), parameter plane (m,mg) at dy = 0.6 and dy =
0.7 fixed, bifurcation curves of first degree of complexity for cycles
of periods 2, ..., 16 are obtained from the analytical expressions, for
the map T5. In (b) the same bifurcation curves are shown with
grey tonalities associated with the different periodicities.

have drawn all the bifurcations curves of the principal tongues of the family RL...L
reported in Fig.s 9a,b.

We recall that besides the periodicity regions associated with bifurcation curves
of the first degree of complexity, for m; > mj also all those associated to any degree
of complexity exist, and all them have also a portion in the range m; < mj. Given
their “starting” and “closing” bifurcation curves for m; > mj, the portion in the
range myp < mj is analytically determined in the same way as we have done for
the curves of the first degree of complexity. Although their existence is rigorously
proved from a theoretical point of view, they are quite thin and not well observable
via numerical simulations, but it is easy to verify their existence also numerically, as
more and more regions can be seen by proper enlargements. The fact that those of
higher degree between those of first degree disappear quickly (by border collision)
in the range my < mj is due to the fact that the two boundaries (upper and lower)
intersect quite soon: the higher the period, the smallest the interval associated with
the existence of a periodic point before colliding with a discontinuity point.

The existence of all the periodicity regions can also be argued from the one-
dimensional bifurcation diagram (or orbit diagram, as it is also called) shown in
Fig. 10, obtained with the same set of parameters as in Fig. 8 but with a fixed
value of the parameter mo = 0.5 and bifurcation parameter m; varying in the range
[0.4,1]. Tt clearly shows how infinitely many intervals (“boxes in files”) associated
with the bifurcation of periodic orbits exist, one close to the other.

5. Reduction of the map T to T,. In this section we show that all the dynamic
properties of the map T3 are independent of the third slope mg, so that its study is
immediately reduced to that of the map 75 considered in the previous section. In
order to prove this statement, let us first consider the map 2’ = T'(z) with a given
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my=0.5 d=04 d,=0.7

0.7
x
I
2
0.1
0.4

FIGURE 10. One-dimensional orbit diagram of the map 75 as a
function of my at ms = 0.5, dy = 0.4 and dy = 0.7 fixed.

slope mg3 in the third branch of the map, and let us start with the description of
the possible attractors.

Clearly = = 1 is a fixed point of the map 7', and it is always locally asymptotically
stable because the slope associated with the third branch of the function is mg €
10,1[. It follows that all the points (initial conditions) x > dy generate trajectories
which are converging to this stable fixed point of 7. In other words, the interval
|d2,1] is the so-called immediate basin of the fixed point © = 1. As argued in
the previous section, this stable fixed point may be the unique attractor or it may
coexist with a stable cycle.

In the latter case, its basin of attraction may be made up of the unique interval
]d2, 1] or it may include also other intervals, whose union forms the total basin of at-
traction. However, whichever is the value of the third slope ms €]0, 1], the dynamic
behavior of the map T is determined from the values of the other parameters, as it
can be easily deduced from the qualitative picture in Fig. 11. It is quite evident
here that for any value ms € (0,1) the map has the same coexisting attractors as
well as the same basins of attraction. This is a simple consequence of the property
noticed above, i.e. that the fixed point x = 1 is always stable with immediate basin
the interval |da, 1]. Moreover the presence of a possible coexistent attractor depends
only on the values of the other parameters, as well as the possible preimages of
the immediate basin. So, the value of the parameter ms only influences the rate of
convergence to the fixzed point x = 1.

6. Conclusions. The main goal of this paper was the analytic description of the
bifurcations occurring in a piecewise linear map T : [0,1] — [0, 1] formed by three
portions of different slopes, m; € [0,1], i = 1,2, 3, separated by two discontinuity
points 0 < d; < de < 1. For this piecewise continuous map, which depends on these
five parameters, we have first recalled how some border-collision bifurcations occur
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Ficure 11. Coexistence of attractors of the map 7', with con-
nected basins in (a), and disconnected basins in (b).

in the benchmark case in which ds = 1, i.e. the map has only one discontinuity
point. In this case we have obtained the analytic expression of the border collision
bifurcation curves that bound the periodicity tongues of first degree in the plane of
parameters (my,ms). On the basis of this result obtained for the simpler benchmark
case by using methods already known in the literature, we have then studied the
effects on the structure of the border collision bifurcation curves induced by the
introduction of the second discontinuity point. This was investigated in section 4
keeping a fixed value of the third slope mj3. Then we have shown that the value
of the third slope does not influence the results obtained since the global dynamic
properties of the map T are independent of the value of ms.

The analytic results obtained in this paper for the construction of the whole
structure of the periodicity tongues of first degree constitute a generalization of
the studies given in the literature on one-dimensional maps with only one discon-
tinuity point. Moreover, the methods used in this paper to obtain such analytic
expressions are quite general and can be easily generalized to cases with more than
two discontinuities and with slopes of different values with respect to the ones here
considered.
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