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Abstract

We introduce a dynamic market share attraction model where agents are boundedly rational. They follow a simple

rule of thumb which is based on marginal profits to determine their actions over time. We show that multistability

arises, i.e. several attractors coexist. In such a situation the selected long run state becomes path-dependent, and a

thorough knowledge of the basins and their structure becomes crucial for the researcher to be able to predict the long

run outcome of the economic system. We show that the basins of the coexisting attracting sets might have quite

complicated structure. Furthermore, we give insights into the mechanism which is responsible for the creation of

complex basins of attraction.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

For a long time game-theoretic models focused on the question of outcomes in static games, where static in this

context refers to the fact that players meet only once and by some kind of process of introspection simultaneously and

immediately choose strategies which correspond to a (Nash) equilibrium. Players were assumed to be fully rational, i.e.

have perfect knowledge about every detail of the game they are playing (and also know that the same is true for the

other players). In the more recent literature on dynamic games, these assumptions have been relaxed in two ways. First,

situations are considered where players interact with each other repeatedly over time. Second, these players choose their

actions (or strategies) by trial-and-error methods which require less information with respect to fully rational decision

making. Agents behave adaptively and adjust their strategies to changes in and responses from the environment they are

living in; see e.g. [4,14,18,28]. The resulting models more closely resemble real world situations, where complexities and

difficulties arise when agents are faced when making decisions. For example, it is obvious that the ability of agents to

compute optimal solutions is limited, that it is difficult to foresee all contingencies in the future and that also oftentimes

it is prohibitively costly to calculate and implement an optimal plan of action.

On the other hand, in such a framework of boundedly rational behavior, new research questions arise: Does a

reasonable adaptive process (e.g. based on the best responses of the players) converge to anything? If so, to what does it

converge in the long run? A related problem which often arises in the study of dynamic games concerns the coexistence

of several attractors, each with its own basin of attraction. In such a situation where multiple attractors coexist, which

of these attractors characterizes the long run dynamics of the game? Here, an adaptive mechanism might clarify which

long run outcome one might expect (see [6,27]). Of course, if multistability prevails, the selected long run outcome is

path-dependent and the choices of the initial actions (the initial condition) are of crucial importance [5]. Stable Nash
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equilibria might coexist with other kinds of attractors and the boundedly rational players may in the long run learn to

play Nash equilibrium strategies or they may continue to play a different set of strategies that are not part of any

equilibrium selected by fully rational players. To get more insights into these issues one is quite naturally led to study

the basins of attraction, which requires a global analysis of the underlying dynamical system. In fact, a local stability

analysis, based on the linear approximation of the dynamical system around the attractors, is not enough to charac-

terize the structure of the basins and their qualitative changes. Local stability means that the game converges to a

particular attracting set in the long run, provided that the initial strategies are sufficiently close to it. On the other hand,

interesting phenomena may occur when the game starts far away from an equilibrium (or, in general, from an attracting

set), since global dynamic properties may influence the time path. However, this question and, related to it, the study of

the complex structure of the basins has been rather neglected in the economics and game theory literature.

An investigation of global bifurcations that change the qualitative structure of the basins is particularly challenging

in the case of discrete time dynamical systems governed by the iteration of noninvertible maps. Indeed, in this case the

basins may have complicated topological structures, since they may be multiply-connected or nonconnected sets, often

formed by the union of infinitely many disjoint portions. With the help of recent results on basin bifurcations in

noninvertible maps (see e.g. [1,2,6,7,22]), insights into the structure of the basins and into the creation of complex basin

boundaries can be obtained. As some parameter is varied, such changes in the structure can be characterized by global

bifurcations: they are the consequence of contact bifurcations, i.e. due to contacts between critical sets and invariant sets

(such as fixed points or cycles or their stable sets). For two-dimensional maps, such kinds of bifurcations can be very

rarely studied by analytical methods, since the equations of such singularities are not known in general. Hence these

global bifurcations are mainly studied by geometrical and numerical methods. For recent applications of this approach

to models arising in economics, game theory or finance, see e.g. [2,6,8,24,25].

Finally, before we introduce our model in the next section, we would like to point out that in the literature on

dynamic games two different routes to complexity have been studied. The first one is related to the complexity of the

attracting sets which characterize the long run evolution of the dynamic process and describe the evolution of players�
actions over time (see, e.g. [20,23]). The second one focuses on the complexity of the boundaries which separate the

basins when several coexisting attractors are present. It is important to realize that these two different kinds of com-

plexity are not related. Very complex attractors may have simple basin boundaries, whereas boundaries which separate

the basins of simple attractors, such as coexisting stable equilibria, may have very complex structure. Since we feel that

for game theoretic considerations the second line of research is more important, here we will mainly focus on the second

kind of complexity and consider a global analysis of dynamic games. In our model for market share competition where

two boundedly rational agents interact repeatedly, we will study the basins of attraction of long run outcomes, the basin

boundaries in situations of multistability, and the corresponding changes when structural parameters of the games are

changed.

The paper is organized as follows. In Section 2 we introduce the model and characterize the fixed points of the map

and in Section 3 we briefly focus on the properties of the symmetric model of homogeneous brands. A more general

analysis of the two different cases of homogeneous and heterogeneous brands is given in Section 4 (linear speed of

adjustment) and Section 5 (quadratic speed of adjustment). Section 6 concludes.

2. The model

Market share attraction models have been used in a variety of contexts to describe the behavior of competitors in a

market. Not only have they been employed frequently in empirical applications, they are also prevalent in the eco-

nomics, game theory and operations research literature. Market share attraction models have also received increasing

attention among marketing researchers in recent years. This type of model specifies that the market share of a com-

petitor is equal to its attraction divided by the total attraction of all the competitors in the market, where each com-

petitors� attraction is given in terms of competitive effort allocations. It has the theoretically appealing property that it is

logically consistent: it yields market shares that are between zero and one, and sum to one across all the competitors in

the market. For simplicity, let us consider the case of two brands, which compete against each other on the basis of both

the quality and the magnitude of the marketing effort expended for each brand. Let B denote the sales potential of the

market (in terms of customer market expenditures). If x units of marketing effort are expended for brand 1 and y units

of marketing effort are expended for brand 2, then the resulting shares of the market in monetary terms accruing to

brand 1 and to brand 2 are Bs1 and Bs2 ¼ B� Bs1, respectively, where

s1 ¼
axb1

axb1 þ byb2
; s2 ¼

byb2

axb1 þ byb2
ð1Þ
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The expressions A1 ¼ axb1 and A2 ¼ byb2 represent the attractions of customers to brand 1 and 2, respectively, given the

expenditures of x and y units of effort. 1 The parameters a and b denote the relative effectiveness of the efforts. Since

dA1

dx
x
A1

¼ b1 and
dA2

dx
x
A2

¼ b2

the parameters b1 and b2 denote the elasticity of the attraction of brand i with respect to the effort expended for brand i.
We refer to these parameters as response parameters. Note that the payoffs for each of the brands depend on the efforts

expended for both brands. In the existing literature market share attraction models are predominantly used in a static

framework. Here the emphasis of the investigation lies on demonstrating the existence and uniqueness of (Nash)

equilibria; see [13,21,26].

A dynamic version of a market share attraction model has been considered in Bischi et al. [8], where it is assumed

that brand managers choose the next period�s marketing effort according to the current profits. In the present paper, we

propose a different decision rule, namely one that is based on the perceived marginal profits. At time t the marketing

efforts for the next period, xðt þ 1Þ and yðt þ 1Þ are determined according to the following adjustment process:

xðt þ 1Þ ¼ xðtÞ þ k1ðxÞ
op1ðxðtÞ; yðtÞÞ

ox

� �

yðt þ 1Þ ¼ yðtÞ þ k2ðxÞ
op2ðxðtÞ; yðtÞÞ

oy

� � ð2Þ

where p1 and p2 represent the one-period profits of firm 1 and 2 respectively:

p1 ¼ m1Bs1 � c1x

p2 ¼ m2Bs2 � c2y
ð3Þ

with Bsi ¼ share of firm i in terms of the total sales potential; mi ¼ profit margin per unit sold by firm i (gross profit

margin); ci ¼ marginal cost of firm i. The expressions kð�Þ determine how much effort allocations can vary from period

to period following a given profit signal. It can be interpreted as the ‘‘speed of reaction’’ of the brand managers.

If we use the expressions for the market shares s1 and s2 in (1) and substitute them into (3), the resulting dynamic

market share attraction model (2) becomes:

T :
xðt þ 1Þ ¼ xðtÞ þ k1ðxðtÞÞ½m1b1BF1ðxðtÞ; yðtÞÞ � c1�
yðt þ 1Þ ¼ yðtÞ þ k2ðyðtÞÞ½m2b2BF2ðxðtÞ; yðtÞÞ � c2�

�
ð4Þ

where

F1ðx; yÞ ¼
s1s2
x

¼ k
xb1yb2

xðxb1 þ kyb2Þ2
; F2ðx; yÞ ¼

s1s2
y

¼ k
xb1yb2

yðxb1 þ kyb2Þ2

with k ¼ b=a. The symbol T will be used in the following to denote the two-dimensional map whose iteration defines the

time evolution of the marketing efforts for the two competing brands, according to T : ðxðtÞ; yðtÞÞ ! ðxðt þ 1Þ; yðt þ 1ÞÞ.
The corresponding time evolution of market shares is obtained by (1).

Obviously, the map (4) is defined only for positive values of the dynamic variables x and y. Hence, the first question

to study is under which conditions the positivity of the trajectories is obtained. In fact, starting from a given initial state

(or initial condition) x0, y0, a feasible time evolution of the system is obtained only if the trajectory ðxt; ytÞ ¼ T tðx0; y0Þ,
t ¼ 0; 1; 2; . . . is entirely contained in the positive orthant R2

þ ¼ fðx; yÞjx > 0 and y > 0g. We call a trajectory feasible if

it has the property stated above, and we will call feasible set the subset of R2
þ whose points generate feasible trajectories.

In the study of a dynamical model used to simulate the time evolution of an economic system, another important

property to check is that of boundedness of the trajectories. However, for the model (4) it is easy to prove that, the

infinity is repelling, as stated by the following proposition:

Proposition 1. Any feasible trajectory of the discrete dynamical system (4) is bounded.

The proof of this proposition is straightforward. In fact, as 0 < s1s2 < 1, we have xðt þ 1Þ < xðtÞ whenever

xðtÞ > mb1Bk=c1, and yðt þ 1Þ < yðtÞ whenever yðtÞ > mb2Bk=c2.

1 In the marketing literature market share attraction models are often times used to describe the competition between several brands

of a product in the market; see, e.g., [12,17]. The models are then oftentimes referred to as brand competition models.

G.-I. Bischi, M. Kopel / Chaos, Solitons and Fractals 18 (2003) 561–576 563



2.1. Fixed points and Nash equilibria

The steady states of the dynamical model (4), are the fixed points of the map T , defined by the condition

T ðx; yÞ ¼ ðx; yÞ, i.e.

k1ðxÞ
op1

ox
¼ 0

k2ðyÞ
op2

oy
¼ 0

8><
>:

The positive solutions of the system

op1

ox
¼ 0;

op2

oy
¼ 0; ð5Þ

which yield maximum profits, are Nash equilibria, and it is easy to see that these solutions are also fixed points of the

map (4). In other words, if effort allocations coincide with a Nash equilibrium profile, the system remains there forever.

Note, however, that the converse is not true in general, since fixed points which are not Nash equilibria may exists. They

are given by the solutions of one of the systems

k1ðxÞ ¼ 0

k2ðyÞ ¼ 0

�
or

k1ðxÞ ¼ 0
op2

oy
¼ 0

8<
: or

op1

ox
k2ðyÞ ¼ 0

(
ð6Þ

The following result holds:

Proposition 2. If b1 � b2 þ 1P 0 and b2 � b1 þ 1P 0 then a unique Nash equilibrium exists.

The proof of this proposition is a constructive one, i.e. it also gives a method to compute the Nash equilibrium.

Proof. Being x > 0 and y > 0, the system (5) can be written as

km1Bb1x
b1yb2 � c1xðxb1 þ kyb2 Þ2 ¼ 0

km2Bb2x
b1yb2 � c2yðxb1 þ kyb2Þ2 ¼ 0

�
ð7Þ

whose solutions must belong to the line

y ¼ c1m2b2

c2m1b1

x ð8Þ

After the inclusion of this equation in the first of (7) we obtain xb1þb2GðxÞ ¼ 0, where

GðxÞ ¼ k
c1m2b2

c2m1b1

	 
b2

ðm1Bb1 � 2c1xÞ � c1xb1�b2þ1 � c1k2 c1m2b2

c2m1b1

	 
2b2

xb2�b1þ1 ð9Þ

If x
 is a zero of the function G, then the point E
 ¼ ðx
; y
Þ, with y
 computed according to (8), is a Nash equilibrium.

As

Gð0Þ ¼ k
c1m2b2

c2m1b1

	 
b2

m1Bb1 > 0

and

G
m1Bb1

2c1

	 

¼ �c1 xb1�b2þ1

"
þ k2 c1m2b2

c2m1b1

	 
2b2

xb2�b1þ1

#
< 0

then a solution x
 2 0;
m1Bb1

2c1

	 

exists. Uniqueness of such solution is ensured if G is a decreasing function. Since

G0ðxÞ ¼ �c1 2k
c1m2b2

c2m1b1

	 
b2

"
þ ðb1 � b2 þ 1Þxb1�b2 þ k2 c1m2b2

c2m1b1

	 
2b2

ðb2 � b1 þ 1Þxb2�b1

#
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sufficient conditions for G0ðxÞ < 0 are b1 � b2 þ 1 P 0, b2 � b1 þ 1P 0, i.e. the strip of the parameter plane ðb1; b2Þ
between the two parallel lines b2 ¼ b1 � 1 and b2 ¼ b1 þ 1. �

Observe that the restrictions on the elasticities given in Proposition 1 are usually satisfied in applications, because

usually ðb1; b2Þ 2 ð0; 1Þ � ð0; 1Þ which is a weaker condition. Furthermore, note that the inequalities in Proposition 1

are trivially satisfied if b1 ¼ b2. Finally, we would like to point out that the particular functional form of the speeds of

reaction kið�Þ are inessential for the computation of the Nash Equilibrium.

Of course, the existence of a unique Nash equilibrium does not imply that any trajectory converges to it. It may be

locally (and not globally) stable, i.e. only trajectories starting close to the Nash equilibrium may converge to it, or it

may be unstable, i.e. even trajectories starting arbitrarily close to it converge to other attracting sets. Moreover, several

coexisting attractors, such as periodic cycles, quasi-periodic orbits or chaotic sets, may be present, each with its own

basin of attraction.

In order to study the stability of the steady states and, in particular, of the Nash equilibrium, we need to consider its

Jacobian matrix

DT ðx; yÞ ¼
1 þ k0

1ðxÞðm1b1BF1 � c1Þ þ m1b1Bk1ðxÞ
oF1

ox
m1b1Bk1ðxÞ

oF1

oy

m2b2Bk2ðyÞ
oF2

ox
1 þ k0

2ðxÞðm2b2BF2 � c2Þ þ m2b2Bk2ðxÞ
oF2

oy

2
664

3
775 ð10Þ

evaluated at the fixed points of the map T . From this conditions for the localization of the eigenvalues inside the unit

circle of the complex plane can be obtained. 2 However, a study of the stability property of the Nash equilibrium is not

an easy task, due to the fact that we do not have an analytic expression of the equilibrium effort allocations. Oftentimes,

a good strategy to get some insights is to consider first the simpler problem obtained under the assumption that the

competitors behave identically, i.e. to study the properties of the symmetric map obtained under the assumption that

structural parameters of the model are equal for both firms. This situation is often considered in the literature on brand

competition models, and in our case it is a useful starting point for a more rigorous analysis of the more complicated

model of heterogenous brands.

3. The symmetric case of homogeneous brands

In the case of homogeneous brands, that is, when the two competing firms react in the same way to profit signals,

k1ð�Þ ¼ k2ð�Þ ¼ kð�Þ, and are characterized by identical parameters

b1 ¼ b2 ¼ b; c1 ¼ c2 ¼ c; m1 ¼ m2 ¼ m and a1 ¼ a2 ði:e: k ¼ 1Þ ð11Þ

the map T in (4) assumes a symmetric form Ts. �Symmetry� in this case refers to the fact that the map remains the same if

the variables x and y are swapped. More formally, Ts � S ¼ S � Ts, where S : ðx; yÞ ! ðy; xÞ is the reflection through the

diagonal D ¼ fðx; xÞ; x 2 Rg.
This symmetry property implies that given an orbit G of Ts, either SðGÞ ¼ G, i.e. G is symmetric with respect to D, or

SðGÞ 6¼ G is an orbit of Ts as well, where SðGÞ is the symmetric orbit of G with respect to D. For example, if G is a cycle

of period k, say G ¼ Ck ¼ fðx1; y1Þ; . . . ; ðxk ; ykÞg, then either Ck is symmetric with respect to D, i.e. for each periodic

point ðxi; yiÞ 2 Ck also Sðxi; yiÞ ¼ ðyi; xiÞ 2 Ck , or the symmetric k-cycle C0
k ¼ fðy1; x1Þ; . . . ; ðyk ; xkÞg exist, with the same

stability property.

In particular, the symmetry property implies that the diagonal D is a trapping subspace for the map Ts, i.e.

TsðDÞ � D. This corresponds to the trivial statement that, in a deterministic framework, identical firms that start from

the same initial efforts xð0Þ ¼ yð0Þ, behave identically over time, i.e. xðtÞ ¼ yðtÞ for each tP 0. The trajectories trapped

into D are governed by a one-dimensional map, given by the restriction of Ts to D, say f ðxÞ ¼ TsjD : D ! D, where the

map f results from setting y ¼ x in (4), and is given by

xðt þ 1Þ ¼ f ðxðtÞÞ ¼ xðtÞ þ kðxÞ mbB
4x

�
� c

�
: ð12Þ

2 It is worth noticing that, even if the Nash equilibrium does not depend on the speeds of reaction ki, the stability properties may

nevertheless be influenced by it. This will be further stressed in the following.
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In fact, under assumption (11), F1ðx; xÞ ¼ F2ðx; xÞ ¼ 1=ð4xÞ. The map (12) may be interpreted as a one-dimensional

model describing the dynamics of a ‘‘representative firm’’ that summarizes the common behavior of the two identical

and synchronized firms. 3 In this case, the following problem can be considered: Let As be an attractor of the one-

dimensional map (12). Is it also an attractor, embedded into D, for the two-dimensional map T ? Of course, As is stable

with respect to perturbations along D, so an answer to the question raised above can be given through a study of the

stability of As with respect to perturbations transverse to D (transverse stability). In general, although stable along D, As

can be transversely unstable (see e.g. [3,9,11]). However, this cannot occur for the model we are considering, because

from (10) with (11) one easily gets for any point ðx; xÞ 2 D that

DTsðx; xÞ ¼ f 0ðxÞI; ð13Þ

where I is the identity matrix and

f 0ðxÞ ¼ 1 þ k0ðxÞ mbB
4x

	
� c



� kðxÞmbB

4x2
ð14Þ

is the derivative of (12). So, any periodic point located along D has two identical eigenvalues and any bifurcation that

occurs along the invariant line D has an identical bifurcation occurring in the direction orthogonal to D. As we shall see

in what follows, this property has important consequences for the creation of coexisting cyclic attractors of the sym-

metric map, both located along D (characterized by identical decisions of the firms at each time period) or symmetric

with respect to D (characterized by oscillations where the decisions of the two firms alternate, by exchanging x and y as

time goes on, a sort of cyclic imitative behavior).

We end this section by stressing that under assumption (11) the computation of the Nash equilibrium becomes

straightforward. In this case the equilibrium is embedded inside D and according to (8) it is characterized by identical

efforts of the two brands:

E
 ¼ ðx
; x
Þ with x
 ¼ mBb
4c

ð15Þ

A sufficient condition for the stability of E
 is jf 0ðxÞj < 1, where f 0ðxÞ is given in (14). Of course, this is strongly in-

fluenced by the choice of kið�Þ. So, in the following we will consider different choices of kið�Þ in order to obtain some

insight into the wide range of asymptotic behaviors of the brand competition model under consideration.

4. Linear speed of adjustment

In this section we consider the following form for the speeds of reaction

k1ðxÞ ¼ v1x and k2ðyÞ ¼ v2y: ð16Þ

That is, for both firms the decision about next period�s marketing efforts is characterized by a reaction speed which is

proportional to the previous-period effort, where v1 and v2 are the constants of proportionality (relative speeds). Bischi

et al. [8] make the same assumption about the linearity of the speeds of reaction, but in their paper the adjustment

process is based on profits rather than on marginal profits as in our paper. Nevertheless, the same choice of the

functional form gives us an opportunity to compare the results obtained for these two different models.

With (16) the map (4) governing the time evolution of the dynamical system becomes

TL :

xðt þ 1Þ ¼ xðtÞ þ v1 m1b1Bk
xb1ðtÞyb2ðtÞ

ðxb1ðtÞ þ kyb2ðtÞÞ2
� c1xðtÞ

" #

yðt þ 1Þ ¼ yðtÞ þ v2 m2b2Bk
xb1ðtÞyb2ðtÞ

ðxb1 ðtÞ þ kyb2ðtÞÞ2
� c2yðtÞ

" #
8>>>>><
>>>>>:

ð17Þ

The following proposition gives a sufficient condition under which all the points of R2
þ generate feasible and bounded

trajectories

3 This point of view is proposed in Bischi et al. [10] and Kopel et al. [19].
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Proposition 3. If v1c1 < 1 and v2c2 < 1, then all the points of R2
þ generate feasible and bounded trajectories.

Proof. The map (17) can be rewritten as

TL :

xðt þ 1Þ ¼ ð1 � v1c1ÞxðtÞ þ v1m1b1Bk
xb1ðtÞyb2ðtÞ

ðxb1ðtÞ þ kyb2ðtÞÞ2

yðt þ 1Þ ¼ ð1 � v2c2ÞyðtÞ þ v2m2b2Bk
xb1ðtÞyb2ðtÞ

ðxb1ðtÞ þ kyb2 ðtÞÞ2

8>>><
>>>:

Hence from 1 � vici > 0, i ¼ 1; 2, it follows that ðxðtÞ; yðtÞÞ 2 R2
þ ) ðxðt þ 1Þ; yðt þ 1ÞÞ 2 R2

þ. The fact that trajectories

of (17) cannot be positively divergent follows from the Proposition 1.

Indeed, the conditions 1 � vici > 0, i ¼ 1; 2, turn out to be also necessary for the feasibility of the whole phase space

R2
þ, i.e. if at least one of these two inequalities is reversed then points of R2

þ exist that generate unfeasible trajectories. In

order to prove this, we start from an important property of the map (17), namely that the coordinate axes are invariant

submanifolds. That is, xðtÞ ¼ 0 implies xðt þ 1Þ ¼ 0 and, analogously, yðtÞ ¼ 0 implies yðt þ 1Þ ¼ 0. The dynamics along

the invariant x-axis is governed by the one-dimensional restriction f1 ¼ TLjy¼0 of (17), where f1 is given by the one-

dimensional linear map

xðt þ 1Þ ¼ f1ðxðtÞÞ ¼ ð1 � v1c1ÞxðtÞ ð18Þ

Analogously, the dynamics on the invariant y-axis is governed by the one-dimensional restriction f2 ¼ TLjx¼0 given by

xðt þ 1Þ ¼ f2ðyðtÞÞ ¼ ð1 � v2c2ÞyðtÞ ð19Þ

If v1c1 < 1, then a point ðx; 0Þ, with x > 0, generates a positive sequence of points on the x-axis according to (18). By

continuity the same holds for points ðx; yÞ with arbitrarily small y. Hence, in this case the feasible region extends up to

the x-axis. Instead, if v1c1 > 1, then a point ðx; 0Þ, with x > 0, generates a negative point after the first iteration of (18).

Hence, in this case the whole x-axis must be out of the feasible region (or, equivalently, it belongs to the set of unfeasible

points). The same reasoning applies to the y-axis.

In order to obtain an exact delimitation of the boundary that separates the feasible region from the unfeasible one

we must consider the invariant coordinate axes and their preimages inside R2
þ. In fact, the map TL is a noninvertible

map. This means that even if it maps a point ðxðtÞ; yðtÞÞ into a unique image ðxðt þ 1Þ; yðt þ 1ÞÞ, the inverse relation

ðxðt þ 1Þ; yðt þ 1ÞÞ ! ðxðtÞ; yðtÞÞ is not necessarily unique. In other words, considering positive solutions of the system

(17) with respect to x and y, where x0 and y0 are given, there may be more than one or they may not exist. This can be

expressed by saying that a point may have more than one preimages or no preimage. Applying this idea to points of the

coordinate axes we notice that these points can be obtained not only as the image of a point belonging to the same axis

(computed according to the restrictions (18) and (19)), but also as the image of a point away from the axes. Let us e.g.

consider the generic point ð0; y0Þ, y0 > 0, of the y-axis. Its preimages are the positive solutions of the system

ð1 � v1c1Þxðxb1 þ kyb2 Þ2 þ v1m1b1Bkx
b1yb2 ¼ 0

ðð1 � v2c2Þy � y0Þðxb1 þ kyb2Þ2 þ v2m2b2Bkx
b1yb2 ¼ 0

�

If c2v2 < 1 one solution always exists on the y-axis, given by x ¼ 0, y ¼ ðy0=ð1 � v2c2ÞÞ. Solutions with x > 0 cannot exist

if v1c1 < 1, because the first equation is never satisfied in this case. On the other hand, if v1c1 > 1 two preimages with

x > 0 exist, located on the curves of the equation

y ¼ xb1�1

2kðv1c1 � 1Þ v1m1b1B
��

� 2ðv1c1 � 1Þx�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1m
2
1b

2
1B

2 � 4v1m1b1Bðv1c1 � 1Þx
q ��1=b2

ð20Þ

The same arguments, applied to the preimages of a generic point of the x-axis ðx0; 0Þ, can be used to prove that points of

the invariant x-axis have preimages in the positive quadrant R2
þ only if v1c1 > 1, and such preimages are located on the

curves of the equation

x ¼ kyb2�1

2ðv2c2 � 1Þ v2m2b2B
��

� 2ðv2c2 � 1Þy �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

2m
2
2b

2
2B2 � 4v2m2b2Bðv2c2 � 1Þy

q ��1=b1

ð21Þ

These results on the preimages of the invariant axes will prove to be important tools for determining the boundaries of

the feasible region.
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The unique positive fixed point of the map (17) represents the Nash equilibrium of the game (computed according to

the procedure outlined in the proof of Proposition 2). The only solution of the system (6) is the point (0, 0) in which the

map is not defined. Of course, the stability properties and the local bifurcations of the Nash equilibrium can be easily

studied numerically, using the solution of the equation F ðxÞ ¼ 0 and the Jacobian matrix. In the special case where

brands are homogeneous (see (11)) even an analytical study of the stability properties and local bifurcations of the Nash

equilibrium is possible.

4.1. Homogeneous brands

Under the assumption (11) of homogeneous brands, also the diagonal x ¼ y is an invariant line (line of synchronized

dynamics). The dynamics along the invariant diagonal are governed by the one-dimensional linear map

xðt þ 1Þ ¼ ð1 � vcÞxðtÞ þ vmbB
4

Of course, the fixed point of such a restriction coincides with the Nash equilibrium (15), and the Jacobian matrix

computed at any point of the diagonal (and, in particular, at the Nash equilibrium) becomes DT ðx; xÞ ¼ ð1 � vcÞI. So,

the following result holds:

Proposition 4. In the homogeneous case (11) the Nash equilibrium (15) is stable for 0 < vc < 2. For 0 < vc < 1 its basin of
attraction is given by the whole phase space R2, i.e. it is globally asymptotically stable. For 1 < vc < 2 its basin BðE
Þ is a
proper subset of R2, bounded by the preimages of the coordinate axes, belonging to the curves of equation

y ¼ xb�1

2ðvc� 1Þ vmbB
��

� 2ðvc� 1Þxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2m2b2B2 � 4vmbBðvc� 1Þx

q ��1=b

and

x ¼ yb�1

2ðvc� 1Þ vmbB
��

� 2ðvc� 1Þy þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2m2b2B2 � 4vmbBðvc� 1Þy

q ��1=b

The proof of this proposition is a straightforward consequence of the arguments given above.

The rank-1 preimages of the axes are curves issuing from the origin, symmetric with respect to the diagonal y ¼ x
and joining at the rank-one preimage of the origin

O�1 ¼
vmBb

4ðvc� 1Þ ;
vmBb

4ðvc� 1Þ

	 


Thus, for vc > 1, the length of the segment OO�1, which is proportional to the parameters m and b and inversely

proportional to the aggregate parameter ðvc� 1Þ, gives a rough idea of the extension of the feasible region. At vc ¼ 2

the Nash equilibrium (15) looses stability and the generic trajectory is unfeasible.

The results stated above are illustrated by the numerical computation shown in Fig. 1. The white region represents

the basin of attraction of the Nash equilibrium, denoted by E
, and the points in the black region generate unfeasible

trajectories. Fig. 1 is obtained with a set of parameters such that vc ¼ 1:05 > 1, so that O�1 ¼ ð10:5; 10:5Þ. If vc is

increased, with the other parameters held constant, the feasible region shrinks. If vc is decreased below 1, then global

stability of E
 is obtained, i.e. every positive initial condition generates a trajectory converging to E
. If vc is increased

beyond the value vc ¼ 2, then the Nash equilibrium loses its stability and becomes a repelling star node. In the case of

homogeneous firms this implies that the unfeasible region covers the whole phase space and, consequently, any

meaningful dynamics is lost.

4.2. Heterogeneous brands

We now relax the assumption of homogeneous firms. Also in this case, if vici < 1, i ¼ 1; 2, the feasible region co-

incides with the whole phase space R2
þ, because no preimages of the coordinate axes exist inside R2

þ. The numerical

simulations show that the Nash equilibrium is globally asymptotically stable, i.e. every initial condition in R2
þ generates

a trajectory which converges to it. Like in the case of homogeneous brands, also in this case a wide range of parameters

exist such that the Nash equilibrium is stable (a stable node or a stable focus). If one (or both) of the above inequalities
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are reversed, the Nash equilibrium becomes only locally stable, since it only attracts the points of the feasible set, which

no longer covers the whole phase space.

If v1c1 < 1 and v2c2 > 1, then the feasible set is an unbounded region (extending for arbitrarily large x) with the

upper boundary formed by the rank-1 preimage of the x-axis, say X�1 (see Fig. 2(a)) whose equation is given by (21)

with the ‘‘+’’ sign. The curve X�1 is tangent to the x-axis at the origin. Analogously, if v1c1 > 1 and v2c2 < 1, then the

feasible set is an unbounded region (extending for arbitrarily large y) with right boundary formed by the rank-1 pre-

image of the y-axis, say Y�1, whose equation is given by (20) with the ‘‘+’’ sign.

If v1c1 > 1 and v2c2 > 1, then the feasible set is a bounded region, whose boundary is formed by the curves X�1 and

Y�1, issuing from the origin O tangent to the axes and intersecting at the preimage of the origin O�1 (see Fig. 2(b)).

Hence, the conditions vici ¼ 1 and vjcj > 1, i 6¼ j, denote the occurrence of a global bifurcation, at which the feasible

region is changed from unbounded to bounded. Other bifurcations that change the topological structure of the

boundaries of the feasible region may occur, due to the fact that higher order preimages of the coordinate axes appear

inside R2
þ. In fact, in the case considered, a preimage of rank-k of a coordinate axis bounds a region of the phase space

whose points are unfeasible, since points in this set are mapped into points with a negative coordinate after k iterations.

Two of such regions are visible in Fig. 2(b), and have the shape of small lobes issuing from O and O�1. They are

bounded by preimages of rank-2 and rank-3 of the x-axis, say X�2 and X�3.

Also in this case, the Nash equilibrium loses stability as one or both of the expressions vici are increased. For ex-

ample, in the presence of small heterogeneities, the local bifurcation at which the Nash equilibrium loses stability is a

flip bifurcation occurring approximately when one of the products vici becomes greater than 2. Starting from the sit-

uation shown in Fig. 2(a), an increase of v1c1 causes the occurrence of a flip (or period doubling) bifurcation, through

which the Nash equilibrium becomes a saddle point and a stable cycle of period two appears close to it. It is worth

noticing that in this case, differently from the homogeneous case, only one eigenvalue of DTLðE
Þ exits the unit circle of

the complex plane (since in general v1c1 is different from v2c2 in the heterogeneous case) so that a standard flip bi-

furcation occurs, at which the Nash equilibrium becomes a saddle point and a stable cycle of period 2 appears near E


along its unstable set W uðE
Þ. Hence, differently from the homogeneous case, more complex bounded attractors (such as

periodic cycles) may exist around the unstable Nash equilibrium, so that the long-run dynamics may be characterized

by bounded periodic (or even aperiodic) oscillations around the Nash equilibrium. However, the occurrence of such

local bifurcations, at which new bounded attracting sets appear inside the feasible region, is not related to the global

Fig. 1. Brand competition model with linear speeds of reaction and homogeneous brands. The white region represents the basin of

attraction of the stable Nash equilibrium E
, the black region represents the unfeasible set. This figure is obtained with parameters

B ¼ 20, m ¼ 1, v ¼ 0:35, b ¼ 0:3, c ¼ 3.
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bifurcations that change the shape of the boundaries of the feasible region. As it can be seen in Fig. 2(b), if v1 and/or v2

are further increased after the flip bifurcation, the periodic points, denoted by c1 and c2 in the figure, move far away

from the Nash equilibrium until they reach the boundary of the feasible region. When this contact occurs, a typical

global bifurcation happens, called final bifurcation (or boundary crisis), that marks the disappearance of the bounded

attractor. After this bifurcation the generic trajectory will be unfeasible.

5. Quadratic speeds of reaction

In this section we assume that

k1ðxÞ ¼ v1x2 and k2ðyÞ ¼ v2y2 ð22Þ

i.e. the relative speed of adjustment of both firms is proportional to the efforts of the previous period. With (22) the map

(4) governing the time evolution of the dynamical system becomes

TQ :

xðt þ 1Þ ¼ xðtÞ þ v1xðtÞ m1b1Bk
xb1yb2ðtÞ

ðxb1ðtÞ þ kyb2ðtÞÞ2
� c1xðtÞ

" #

yðt þ 1Þ ¼ yðtÞ þ v2yðtÞ m2b2Bk
xb1ðtÞyb2ðtÞ

ðxb1ðtÞ þ kyb2ðtÞÞ2
� c2yðtÞ

" #
8>>>><
>>>>:

ð23Þ

Also in this case the coordinate axes are invariant, but now the restrictions of the two-dimensional map to the axes are

given by one-dimensional quadratic maps

x0 ¼ x� c1v1x2 and y0 ¼ y � c2v2y2: ð24Þ

Both of these quadratic maps are conjugate to the standard logistic map z0 ¼ lzð1 � zÞ with l ¼ 1 through the linear

homeomorphisms z ¼ c1v1x and z ¼ c2v2y respectively. From these one-dimensional restrictions to the invariant axes

we can easily deduce that the portion X ¼ ðO;O1
�1Þ ¼ ð0; 1

c1v1
Þ of the x-axis and the portion Y ¼ ðO;O2

�1Þ ¼ ð0; 1
c2v2

Þ of the

Fig. 2. Brand competition model with linear speeds of reaction and heterogeneous brands. (a) The parameters are B ¼ 20,

m1 ¼ m2 ¼ 1; k ¼ 1:2, v1 ¼ v2 ¼ 0:3, b1 ¼ 0:5, b2 ¼ 0:3, c1 ¼ 3 and c2 ¼ 4. The basin of attraction of the Nash equilibrium E
 is un-

bounded along the x direction, since v1c1 < 1. (b) With v1 ¼ 0:75, v2 ¼ 0:91, c1 ¼ 3 and c2 ¼ 2 the Nash equilibrium E
 is unstable and

a stable cycle of period two attracts the trajectories that start in the white region: one of these trajectories, starting from an initial

condition close to E
, is represented by a sequence of dots.
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y-axis are part of the boundary of the feasible region, whereas the remaining portions belong to the unfeasible region.

The complete boundaries of the feasible region of the two-dimensional phase space are formed by the preimages X�k
and Y�k of these segments. Such preimages are always included inside the phase space R2

þ. In fact, a rank-1 preimage Y�1

of the y-axis belongs to the curve

y ¼ xb1

2kðv1c1x� 1Þ v1m1b1B
��

� 2ðv1c1x� 1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1m
2
1b

2
1B

2 � 4v1m1b1Bðv1c1x� 1Þ
q ��1=b2

ð25Þ

which intersects the x-axis in the point O1
�1 ¼ ð 1

v1c1
; 0Þ. Analogously, a rank-1 preimage X�1 of the x-axis belongs to the

curve

x ¼ kyb2

2ðv2c2y � 1Þ v2m2b2B
��

� 2ðv2c2y � 1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

2m
2
2b

2
2B

2 � 4v2m2b2Bðv2c2y � 1Þ
q ��1=b1

ð26Þ

which intersects the y-axis in the point O2
�1 ¼ ð0; 1

v2c2
Þ. The two curves X�1 and Y�1 intersect in a point O3

�1 interior to R2
þ.

The quadrilateral region OO2
�1O

3
�1O

1
�1 gives a rough estimate of the feasible region, as we shall see in the examples

below. Its sides OO2
�1 and OO1

�1 belong to the x-axis and y-axis, O2
�1O

3
�1 and O3

�1O
1
�1 belong to X�1 and Y�1 respectively.

The vertexes O, O2
�1, O

3
�1, O

1
�1 are the four rank-1 preimages of the origin. In fact the map (23) is a noninvertible map of

type Z4 > Z2 � Z0, according to the terminology introduced in Mira et al. [22] (see also [2]). The origin O ¼ ð0; 0Þ always

belong to the region Z4, because it always has four rank-1 preimages. These can be obtained as solutions of the system

(23) with xðt þ 1Þ ¼ 0 and yðt þ 1Þ ¼ 0. Also the existence of the Z0 region, whose points have no preimages, can be

easily proved. In fact, the system (23), solved with respect to the unknowns xðt þ 1Þ and yðt þ 1Þ, has no solutions if

xðt þ 1Þ > 1 þ v1m1b1B
2

or yðt þ 1Þ > 1 þ v2m2b2B
2

From

kxb1yb2

ðxb1 þ kyb2Þ2
< 1

we have

x 1

"
� v1c1xþ v1m1b1Bk

xb1yb2

ðxb1 þ kyb2Þ2

#
< x½1 � v1c1xþ v1m1b1B� <

1 þ v1m1b1B
2

where the last inequality follows from the fact that ð1 þ v1m1b1BÞ=2 is the maximum value of the concave parabola

xð1 � v1c1xþ v1m1b1BÞ. Also in this case, the map (17) has a unique fixed point which coincides with the Nash equi-

librium, because the only solution of (6) is the point (0,0) in which the map is not defined.

5.1. Homogeneous brands

In the case (11) of homogeneous (or identical) brands also the diagonal x ¼ y is an invariant line, i.e. x0 ¼ y0 implies

xt ¼ yt for each tP 0 (line of synchronized dynamics). The dynamics along the invariant diagonal are governed by the

one-dimensional linear map

xðt þ 1Þ ¼ 1

	
þ vmbB

4



xðtÞ � vcxðtÞ2 ð27Þ

which is conjugate to the standard logistic zðt þ 1Þ ¼ lzðtÞð1 � zðtÞÞ with parameter

l ¼ 1 þ vmbB
4

ð28Þ

by the linear transformation z ¼ 4vc=ð4 þ vmbBÞ. Of course the positive fixed point of such a restriction coincides with

the Nash equilibrium (15), and the rank-1 preimage of the origin computed by (27) gives the coordinates of O3
�1, that in

this case belongs to the diagonal

O3
�1 ¼

4 þ vmbB
4vc

;
4 þ vmbB

4vc

	 

: ð29Þ
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This is the intersection of the two curves X�1 and Y�1, that now are symmetric with respect to the diagonal, and intersect

the axes in the symmetric points O1
�1 ¼ ð 1

vc ; 0Þ and O2
�1 ¼ ð0; 1

vcÞ. The Jacobian matrix, computed at any point of the

diagonal (and, in particular, at the Nash equilibrium) assumes the form (10), that becomes

DTðx; xÞ ¼ 1

	
þ vmbB

4
� 2vcx



I

Hence, the Nash equilibrium is an attracting star node for vmbB < 8, then loses stability via a degenerate flip bifur-

cation (i.e. both eigenvalues are �1) at vmbB ¼ 8, and becomes a repelling star node for vmbB > 8. Differently from the

case studied for the model with linear speed of adjustment, due to the nonlinearity of (27), this bifurcation does not

cause divergence in this case, but it creates two attracting cycles of period 2, one along the diagonal (which coincides

with the two-cycle of the one-dimensional restriction (27)) and the other one with periodic points out of the diagonal

and in symmetric position with respect to it.

As it is well-known from the bifurcation diagram of the logistic map, this first flip bifurcation is followed by a

sequence of flip bifurcations at which attracting cycles of period 2; 4; . . . ; 2k . . . are created. In our two-dimensional

symmetric model this gives rise to a very particular dynamic scenario: in fact, whenever a period doubling bifurcation of

a k-cycle flip bifurcates and creates a stable 2k-cycle along the diagonal, also a coexisting stable 2k-cycle is simulta-

neously created out of the diagonal. This is due to the fact that the Jacobian matrix of any periodic point along the

diagonal is a multiple of the identity matrix, so the cycles embedded into the diagonal have always identical eigenvalues,

associated to the invariant line D and to the direction orthogonal to D. Consequently, any period doubling bifurcation

along D is associated with a period doubling bifurcation in the symmetric direction. This leads to the creation of many

coexisting attracting cycles, each with its own basin of attraction, a particularly complex phenomenon of multistability.

Fig. 3 illustrates this situation. In Fig. 3(a) the Nash equilibrium is stable, and its basin of attraction coincides with

the feasible region (the white region) bounded by the quadrilateral whose vertexes are the origin of the coordinate axes

O ¼ ð0; 0Þ and its rank-1 preimages, Ok
�1, k ¼ 1; 2; 3. If the parameter v is increased, at vmbB ¼ 8 the first period

doubling bifurcation occurs at which the Nash equilibrium loses stability and becomes a repelling star node. This

implies that not only a stable cycle fc1; c2g of period 2 is created along the invariant diagonal x ¼ y, but also a stable

cycle fp1; p2g of period 2 is created out of the diagonal, with periodic points symmetric with respect to it (see Fig. 3(b)).

The basins of the two stable cycles, represented by light and dark grey regions in Fig. 3(b), are separated by the unstable

sets of the star node E
. The complicated topological structure of the basins, formed by many non connected portions

that accumulate along the outer boundary that separates them from the unfeasible set, is typical of noninvertible maps

(see [2,6,22]).

Fig. 3. Brand competition model with quadratic speeds of reaction and homogeneous brands. (a) With parameters B ¼ 20, m ¼ 1,

v ¼ 0:6, b ¼ 0:6, c ¼ 3 the Nash equilibrium E
 is stable with a bounded basin, represented by the white region. (b) With v ¼ 0:7 the

Nash equilibrium is unstable, and two stable cycles of period two denoted by fc1; c2g and fp1; p2g co-exist, whose basins of attraction

are represented by the dark grey and light grey, respectively.
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Analogously, when the two-cycle along the diagonal undergoes the second period doubling bifurcation, two stable

four-cycles are created, one along the diagonal and one with periodic points symmetric to it. These two stable cycles

coexist with the two-cyclic attractor fp1; p2g previously created out of the diagonal. As the parameter v is increased, also

the cycle fp1; p2g is transformed: it becomes a stable focus, and then undergoes a Neimark-Hopf bifurcation at which it

becomes a two-cyclic attractor formed by a 2-piece quasi-periodic attractor, then a two-piece chaotic attractor. Then

also the cycle of period 4 along the diagonal undergoes the degenerate flip bifurcation at which two stable eight-cycles

are obtained and so on. Such a sequence of bifurcations leads to the creation of several coexisting attractors. For

example, in Fig. 4(a), obtained with v ¼ 0:851, four coexisting attractors are present: a stable cycle of period 8 along the

diagonal x ¼ y (green basin), a stable cycle of period 8 with periodic points symmetric with respect to the diagonal

(white basin), a quasi-periodic 4 pieces attractor formed by four-cyclic closed invariant curves (red basin) and a two-

cyclic chaotic attractor (yellow basin). This figure reveals the complexity of the basins of attraction which we referred to

in the introduction. A small displacement of the initial conditions (or, equivalently, a small exogenous shock) may lead

to a very distinct long run evolution of the trajectory. This kind of sensitivity with respect to small changes of the initial

conditions is different from the sensitive dependence on initial conditions along a chaotic attractor (also known as the

‘‘butterfly effect’’). When we consider the dynamics along a chaotic attractor, even if two initially very close chaotic

trajectories depart fast as time increases (at an exponential rate), such trajectories are finally trapped inside the same

compact invariant set in the phase space (the chaotic attractor). In contrast to this, when we consider the situation of

complex basins, for points close to a basin boundary a small change in the coordinates will cause the trajectory to

converge to a different attractor. Considering Fig. 4 this attractor may be quite far from the previous one and char-

acterized by a qualitatively different asymptotic motion. Some authors call this kind of sensitivity ‘‘final state sensi-

tivity’’ (see [16]).

The attractors that are created by local bifurcations and evolve through sequences of flip and Neimark-Hopf bi-

furcations, are destroyed by contact bifurcations, due to contacts between their boundaries and the boundary of their

basin, as described in the previous section. These contact bifurcations are called final bifurcation in Mira et al. [22] and

Abraham et al. [1] or boundary crisis in Grebogi et al. [15]. For example, the two-cyclic attractor shown in Fig. 4(a) is

very close to a contact with the boundary of its basin of attraction. This means that a slight change of a parameter, such

as a small increase of v from 0.851 to 0.852, can result in the disappearance of the chaotic attractor. This situation is

depicted in Fig. 4(b). In this case the complexity of the basin boundaries, and consequently the final state sensitivity,

suddenly becomes even more striking. This is related to the fact that the destruction of the chaotic attractor means that

it is transformed into a chaotic repeller, whose skeleton is formed by the densely distributed repelling periodic cycles

Fig. 4. Brand competition model with quadratic speeds of reaction and homogeneous brands. (a) With parameters B ¼ 20, m ¼ 1,

v ¼ 0:851, b ¼ 0:6, c ¼ 3 the Nash equilibrium E
 is unstable and four coexisting attractors are present: a stable cycle of period 8 along

the diagonal x ¼ y (green basin), a stable cycle of period 8 with periodic points symmetric with respect to the diagonal (white basin), a

quasi-periodic four pieces attractor formed by four-cyclic closed invariant curves (red basin) and a two-cyclic chaotic attractor (yellow

basin). (b) After a slight increase of the parameter v, i.e. v ¼ 0:852, the chaotic attractor disappears, and its basin is filled up by a very

intermingled set of point from the white, green and red basin.
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that where embedded into the chaotic attractor which just disappeared. These periodic points are located on the very

intermingled boundaries that separate the green, white and red basins in the region that was occupied by the yellow

basin. This ‘‘ghost’’ of the former chaotic attractor gives rise to chaotic transients before a trajectory will reach one of

the surviving attractors.

For l > l1 ¼ 3:5699 . . . (the Feigenbaum point), corresponding to vmbB > 10:2796 . . . according to (28), the re-

striction (27) of TQ to the diagonal has chaotic attractors with infinitely many ‘‘windows’’ of attracting cycles. This leads

to a very particular (and complex) situation: any chaotic attractor A belonging to the diagonal is a chaotic saddle (i.e. it

is totally transversely repelling, because all the densely distributed unstable periodic points embedded inside it are also

transversely repelling due to the particular structure of the Jacobian matrix, whereas every ‘‘periodic window’’ of the

logistic, created via a fold bifurcation of (27), creates a stable star node for the two-dimensional map TQ. Moreover, the

period-doubling cascade that follows the creation of a stable cycle also creates attracting cycles out of the diagonal

through the mechanism of the degenerate flips described above. This causes the creation of several coexisting attracting

cycles, both embedded into the invariant diagonal D (synchronized cycles) and out of D, with periodic points symmetric

with respect to D (imitation cycles). The creation of so many coexisting periodic attractors give rise to very particular

situations of multistability, characterized by basins of attraction with quite complicated topological structures. This

implies a strong path dependence, i.e. the convergence to a particular attractor is very much influenced by historical

accidents, because even a very small change in the initial condition of a trajectory may cause the convergence to a

different attractor, and consequently to completely different long run dynamics. Finally, bounded attractors cannot be

observed for vmbB > 12 (corresponding to l > 4 according to (28).

5.2. Heterogeneous brands

If the two brands are heterogeneous (i.e. characterized by different parameter values), a rigorous analysis of the local

bifurcations of the Nash equilibrium is not possible. This is due to the fact that its coordinates can be only numerically

computed. However, guided by the results obtained in the simpler case of homogeneous brands, we can introduce small

heterogeneities and study how this changes the dynamics.

Starting from a benchmark situation obtained in the symmetric case of homogeneous brands, we can slightly change

some parameters in order to break the symmetry, and study the effects of the introduction of such small heterogeneities.

For example, starting from the set of parameters used in Fig. 4(a), we introduce the following parameter variations:

k ¼ 1:02, v1 ¼ 0:82, c2 ¼ 2:8. The result of such a modification is shown in Fig. 5(a), where two coexisting attractors are

Fig. 5. Brand competition model with quadratic speeds of reaction and heterogeneous brands. (a) Some parameters are slightly

changed with respect to Fig. 4(a): k ¼ 1:02, v1 ¼ 0:82, c2 ¼ 2:8. Two coexisting attractors are present: a cycle of period 4 and a two-

cyclic chaotic attractor. (b) With parameters k ¼ 1:5, v1 ¼ 0:85, v2 ¼ 0:75, b1 ¼ 0:6, b2 ¼ 0:5, c1 ¼ 3, c2 ¼ 2 the Nash equilibrium E
 is

an unstable focus, and a stable closed invariant curve exists around it, on which the long run behavior of the system is characterized by

quasi-periodic oscillations.

574 G.-I. Bischi, M. Kopel / Chaos, Solitons and Fractals 18 (2003) 561–576



present, a cycle of period 4 and a two-cyclic chaotic attractor. So, the property of multistability persists even in the

presence of heterogeneities. Of course, stronger heterogeneity may result in quite different dynamic scenarios which

cannot be observed in the case of homogeneous brands. To show this, we can consider the situation shown in Fig. 5(b),

obtained with parameters k ¼ 1:5, v1 ¼ 0:85, v2 ¼ 0:75, b1 ¼ 0:6, b2 ¼ 0:5, c1 ¼ 3, c2 ¼ 2. In this case, the Nash

equilibrium E
 is an unstable focus, and the unique attractor is a stable closed invariant curve located around it, on

which the long run behavior of the system is characterized by quasi-periodic oscillations. Due to the heterogeneities, the

shape of the boundary of the feasible region is no longer symmetric with respect to the diagonal x ¼ y. Of course, it may

be interesting to study (at least numerically) the influence of the introduction of asymmetries in other parameters, such

as the profit margins m1 and m2 or the marginal costs c1 and c2, both on the kind of attractors and on the shape of the

basin boundaries.

6. Conclusions

In this paper we have introduced a dynamic market share attraction model. Brand managers in firms are assumed to

be boundedly rational and over time adapt their marketing efforts for their brand in correspondence to the marginal

profits of the previous period. In contrast to existing studies which oftentimes focus only on the local dynamics and

maybe demonstrate the possibility of cyclic and erratic fluctuations, we have provided some insight into the properties

of the global dynamical behavior, i.e. we tried to characterize the attractors and their corresponding basins. We have

demonstrated that situations of multistability may arise, i.e. several stable attracting sets may coexist and the initial

conditions determine the long run fate of the trajectories of effort allocations. Furthermore, our results show that these

basins can have very complicated topological structure and, therefore, some kind of final state sensitivity plays an

important role.

In the study of the model we have first tried to understand for which initial efforts meaningful long run outcomes are

obtained. We have shown that by using an invariance property of the coordinate axes it is possible to delimitate the

feasible set of points for which trajectories are bounded and e.g. converge to the Nash equilibrium. Realizing that a

rigorous analysis of the general model of heterogeneous brands is impossible, we have focused––as a starting point––on

the symmetric model, which captures a situation where brand managers behave in the same way and marginal costs,

profit margins, elasticities and response parameters of the two brands are equal. We have provided a fairly complete

study of the attracting sets and the basins in this case. Using these insights as guidelines we could then move to the

general case of heterogeneous brands. The combination of rigorous arguments and numerical experiments give an

insightful characterization of the wide array of possible dynamics which can arise in this model of brand competition.
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