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Summary. In this paper we consider dynamic game-theoretic models, where boundedly

rational players use simple decision rules to determine their actions over time. The

adaptive process which captures the interaction of the players’ decisions is the main

objective of our study. In many situations this process is characterized by multistability,

where e.g. multiple stable (Nash) equilibria emerge as possible long run outcomes.

When such coexistence occurs, the selected equilibrium becomes path-dependent, and a

thorough knowledge of the basins and their structure becomes crucial for the researcher

to be able to predict which one of the multiple equilibria is more likely to be observed

in situations described by the game. We demonstrate that, despite the fact that the

long run dynamics of the adaptive process might be rather simple, the basins of the

attracting sets might have quite complicated structure. In this paper we show that

the complexity of basins can be explained on the basis of the global properties of the

dynamical system, and we introduce the main tools – critical sets and basin boundaries

– which enable the model builder to analyze the extent of the basins and their changes

as structural parameters of the model are changed. The main point is that one has to

study the global properties of the system, and not restrict the investigation to the local

dynamics around the attracting sets.
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1 Introduction

For quite a long time the standard approach in game theory textbooks treated the question

of outcomes in static games. Static in this context refers to the fact that players meet only

once and by some kind of process of introspection simultaneously and immediately choose

strategies which correspond to a (Nash) equilibrium. Players were assumed to be fully

rational, i.e. they know everything about the game they are playing (and also know that

the same is true for the other players). However, in real world situations complexities and

difficulties arise, e.g. the limited ability of agents to compute optimal solutions, the difficulty

to foresee all contingencies in the future and prohibitive costs to calculate and implement

an optimal plan of action. Accordingly, due to these restrictions which agents in the real

world have to face, they only behave boundedly rational. In the more recent literature,

dynamic situations are considered, where players interact with each other repeatedly over

time and often choose their actions or strategies by trial and error methods that require less

information and a lower degree of rationality of the players. It is assumed that agents behave

adaptively and adjust their strategies to changes in their environment; see e.g. Binmore [5],

Weibull [32], Hofbauer and Sigmund [20], Fudenberg and Levine [18]. Convergence to a

Nash equilibrium of a dynamic game played by boundedly rational agents means that this

equilibrium is not the result of some fixed point argument (and is assumed to be reached by

fully rational players in one shot), but instead emerges in the long run as the result of an

adaptive process. This “evolutionary approach” to Nash equilibrium reinforces its meaning

as a real word outcome. This becomes even more important as observations in the field of

experimental economics provides evidence that players find their way to an equilibrium of

a game by using trial-and-error methods (see e.g. Binmore, [6]).

In this paper we focus on this line of research and consider situations where boundedly

rational agents interact repeatedly. The dynamic process by which players adapt their

choices over time can be formally described as follows. At each discrete time period t = 0, 1,

2, ... , the n players choose their actions by using some (more or less sophisticated) decision

rules, based on the information about past behavior. Players’ actions are represented by

real numbers, x1(t), ... , xn(t), i.e. a point in a n-dimensional strategy space S ∈ R
n. The

adjustment process, which governs the evolution of the game can then be expressed in the

form of a discrete dynamical system defined in S ⊆ R
n. Given an initial choice of the players

(the initial condition) x(0) ∈ S, the sequence of actions x (t), t ∈ N, is obtained inductively

by the iteration of a map T : S → S defined by

x′ = T (x) (1)

where ′ denotes the unit-time advancement operator. That is, if the right hand side variables

represent the players’ actions at time period t, then the left hand side represents the set
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of actions at time (t + 1). As a classical example, we mention the Cournot tâtonnement

process, by which players adjust their production sequences in a quantity-setting oligopoly

game (see Cournot, [15]). In this game it is assumed that in each period every player

chooses its own production strategy as a best response to the choices of the competitors in

the previous period. The map T can then be derived on the basis of the players’ best replies.

Starting from an initial condition x0 ∈ S, the repeated application (iteration) of the map T

uniquely defines a trajectory of players’ actions

τ(x0) =
{

x(t) = T t(x0), t = 0, 1, 2, ...
}

, (2)

where T 0 is the identity map and T t = T (T t−1). The main goal is to study the asymptotic

evolution of these trajectories and how it is influenced by the starting conditions of the

game (initial values of actions) and the values of some structural parameters of this game.

The asymptotic properties of a trajectory as t → ∞ represent the long run outcome of the

game, which may be convergence to a Nash equilibrium, a bounded cyclic or chaotic motion

around an (unstable) Nash equilibrium, or an irreversible departure from it. In some cases,

trajectories may even exit the strategy space, i.e. diverging trajectories may be obtained.

The insight that a dynamic process defined by the iterated map (1) may converge to a

given steady state (or equilibrium), but also may lead to more complex behavior, has been

rather influential. In a pioneering paper, Rand [27] has shown that quite complex dynamics

with periodic and chaotic trajectories may characterize the long run evolution of dynamic

(duopoly) games. In the following years other authors have given examples of economically

interesting dynamic games, showing complex dynamics; see, e.g. Dana and Montrucchio

[16], Van Witteloostuijn and Van Lier [31], Puu [25], [26], Kopel [21], Agiza et al. [2], Bischi

et al. [10], Rosser [29]. In these papers it is shown that trajectories of actions might never

settle to any steady state and in the long run exhibit bounded dynamics which may be

periodic, quasi-periodic or even chaotic. Divergence from an equilibrium in this context

means that the Nash equilibrium is not really relevant because it cannot be endogenously

learned by boundedly rational agents.

A rather different problem which often arises in the study of dynamic games concerns

the coexistence of several equilibria, each with its own basin of attraction. In this case, a

problem of equilibrium selection arises (see Van Huyck et al. [30], Bischi and Kopel [7]), and

a mechanism is required that allows to make predictions which of the multiple equilibria (or

other attracting sets) will be more likely observed in situations described by the game. One

approach to select among the equilibria is to use stability arguments. The idea behind this

approach is that an equilibrium point is a convention that arises among players interacting

repeatedly. As unstable equilibria will not be the result of such an evolutionary process,

only stable equilibria have to be considered. If such a stability argument selects a single
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equilibrium, we can abstract from the process itself with its undesirable dependence on

historical accident. However, often many equilibria survive this refinement, and a situation

of strategic uncertainty prevails. In such situations of multistability, the selected equilibrium

is path-dependent and the choices of the initial actions (the initial condition) are of crucial

importance. In other situations, stable Nash equilibria might even coexist with other kinds

of attractors and the boundedly rational players may in the long run learn to play Nash

equilibrium strategies or they may continue to play a different set of strategies that are not

part of any equilibrium selected by fully rational players.

Such situations of multistability quite naturally lead to the study of the basins of at-

traction, which requires a global analysis of the dynamical system (1). In fact, a local

stability analysis, based on the linear approximation of the dynamical system around the

steady states, is not enough to characterize the structure of the basins and their qualitative

changes. Local stability means that the game converges to a particular attracting set in the

long run, provided that the initial strategies are sufficiently close to it. On the other hand,

interesting phenomena may occur when the game starts far away from an equilibrium (or, in

general, from an attracting set), since global dynamic properties may influence the time path

due, for example, to overreactions of the agents when their strategies are very far from all

the equilibria. However, this question and, related to it, the study of the complex structure

of the basins has been rather neglected in the economics and game theory literature.

An investigation of global bifurcations that change the qualitative structure of the

basins is particularly challenging in the case of discrete time dynamical systems governed by

the iteration of noninvertible maps. Indeed, in this case the basins may have complicated

topological structures, since they may be multiply-connected or non-connected sets, often

formed by the union of infinitely many disjoint portions. With the help of recent results on

basin bifurcations in noninvertible maps, mainly based on the method of critical sets (see

e.g. Mira et al. [23], [24], Bischi and Kopel [7]), insights into the structure of the basins

and into the creation of complex basin boundaries can be obtained. As some parameter

is varied, such changes in the structure can be characterized by global bifurcations: they

are the consequence of contact bifurcations, i.e. due to contacts between critical sets and

invariant sets (such as fixed points or cycles or their stable sets). For two-dimensional

maps, such kinds of bifurcations can be very rarely studied by analytical methods, since the

equations of such singularities are not known in general. Hence these global bifurcations are

mainly studied by geometrical and numerical methods. For recent applications to models of

economic and financial systems, see e.g. Bischi et al. [9], [10], Agliari et al. [3], Puu [26],

Bischi and Kopel [7].

Summarizing, we may say that in the literature on dynamic games two different routes to

complexity have been studied. The first one is related to the complexity of the attracting sets
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which characterize the long run evolution of the dynamic process and describe the evolution

of players’ actions over time. The second one focuses on the complexity of the boundaries

which separate the basins when several coexisting attractors are present. It is important to

realize that these two different kinds of complexity are not related. Very complex attractors

may have simple basin boundaries, whereas boundaries which separate the basins of simple

attractors, such as coexisting stable equilibria, may have very complex structure. Since we

feel that for game theoretic considerations the second line of research is more important,

we will mainly focus on the global analysis of dynamic games, the study of the basins of

attraction of long run outcomes, the basin boundaries in situations of multistability, and the

corresponding changes when structural parameters of the games are changed.

The paper is organized as follows. In Section 2, we briefly review some important

definitions and concepts from the theory of dynamical systems. In section 3 we consider

one-dimensional maps, and illustrate how global bifurcations give rise to non-connected

basins of attracting sets. We then consider two-dimensional examples in section 4. We take

economic applications of dynamic games, and show that complicated structures of the basins

may emerge, although the long run dynamics of these games are rather simple. Section 5

concludes.

2 Some Definitions

In this section we recall some definitions concerning discrete dynamical systems represented

by iterated maps of the form (1). The point x′ is called the rank-1 image of x. A point

x such that T (x) = x′ is called a rank-1 preimage of x′. The point x(t) = T t(x), t ∈ N,

is called image of rank-t of the point x, where T 0 is identified with the identity map and

T t (·) = T (T t−1 (·)). A point x such that T t (x) = y is called rank-t preimage of y.

A set A ⊂ R
n is trapping if it is mapped into itself, T (A) ⊆ A, i.e. if x ∈ A then

T (x) ∈ A. A trapping set is invariant if it is mapped onto itself: T (A) = A, i.e. all

the points of A are images of points of A. A closed invariant set A is an attractor if it

is asymptotically stable, i.e. if a neighborhood U of A exists such that T (U) ⊆ U and

T t(x) → A as t → +∞ for each x ∈ U .

The Basin of an attractor A is the set of all points that generate trajectories converging

to A

B (A) =
{

x|T t(x) → A as t → +∞
}

. (3)

Starting from the definition of stability, let U(A) be a neighborhood of an attractor A whose

points converge to A. Of course U(A) ⊆ B (A), but note that also the points of the phase

space which are mapped inside U after a finite number of iterations belong to B (A). Hence,
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the total basin of A (or briefly the basin of A) is given by

B (A) =
∞
⋃

n=0

T−n(U(A)), (4)

where T−1(x) represents the set of the rank-1 preimages of x (i.e. the points mapped into x

by T ), and T−n(x) represents the set of the rank-n preimages of x (i.e. the points mapped

into x after n applications of T ).

A map T is said to be noninvertible (or “many-to-one”), if distinct points x 6= y exist

which have the same image, T (x) = T (y) = x′. This can be equivalently stated by saying

that points exist which have several rank-1 preimages, i.e. the inverse relation x = T−1 (x′)

may be multi-valued. Geometrically, the action of a noninvertible map T can be described

by saying that it “folds and pleats” the plane, so that two distinct points are mapped into

the same point. Equivalently, we could also say that several inverses are defined, and these

inverses “unfold” the plane. For a noninvertible map T , the space R
n can be subdivided into

regions Zk, k ≥ 0, whose points have k distinct rank-1 preimages. Generally, as the point

x′ varies in R
n, pairs of preimages appear or disappear as this point crosses the boundaries

which separate different regions. Hence, such boundaries are characterized by the presence

of at least two coincident (or merging) preimages. This leads to the definition of the critical

sets, one of the distinguishing features of noninvertible maps (Mira et al., [24]): The critical

set CS of a continuous map T is defined as the locus of points having at least two coincident

rank − 1 preimages, located on a set CS−1 called set of merging preimages. The critical

set CS is the n-dimensional generalization of the notion of critical value (when it is a local

minimum or maximum value) of a one-dimensional map1, and of the notion of critical curve

LC of a noninvertible two-dimensional map (from the French “Ligne Critique”). The set

CS−1 is the generalization of the notion of critical point (when it is a local extremum point)

of a one-dimensional map, and of the fold curve LC−1 of a two-dimensional noninvertible

map. The critical set CS is generally formed by (n − 1)-dimensional hypersurfaces of R
n,

and portions of CS separate regions Zk of the phase space characterized by a different

number of rank − 1 preimages, for example Zk and Zk+2 (this is the standard occurrence).

As an illustration, we consider the well-known one-dimensional logistic map (fig. 1a)

x′ = f(x) = µx(1 − x). (5)

This map has a unique critical point c = µ/4, which separates the real line into the two

subsets: Z0 = (c,+∞), where no inverses are defined, and Z2 = (−∞, c), whose points have

1This terminology, and notation, originates from the notion of critical points as it is used in the classical
works of Julia and Fatou.
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two rank-1 preimages. These preimages can be computed by the two inverses

x1 = f−1
1 (x′) =

1

2
−

√

µ (µ − 4x′)

2µ
; x2 = f−1

2 (x′) =
1

2
+

√

µ (µ − 4x′)

2µ
. (6)

If x′ ∈ Z2, its two rank-1 preimages, computed according to (6), are located symmetrically

with respect to the point c−1 = 1/2 = f−1
1 (µ/4) = f−1

2 (µ/4). Hence, c−1 is the point where

the two merging preimages of c are located. The map f folds the real line, the two inverses

unfold it (fig. 1b). As the map (5) is differentiable, at c−1 the first derivative vanishes.

However, note that in general a critical point may even be a point where the map is not

differentiable. This happens for continuous piecewise differentiable maps such as the well

known tent map or other piecewise linear maps. In these maps critical points are located

at the kinks where two branches with slopes of opposite sign join and local maxima and

minima are located.

Z0

Z2

c

(a)

Z0

Z2

c

(a)

Figure 1a
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Folding by T

Unfolding by T-1

c-1

(b)

Folding by T

Unfolding by T-1

c-1

(b)

Figure 1b

Analogously, for a two-dimensional continuous map the set LC−1 is included in the

set where det DT (x, y) changes sign, since T is locally an orientation preserving map near

points (x, y) such that detDT (x, y) > 0 and orientation reversing if detDT (x, y) < 0. An

intuitive visualization in R
2 is given in fig. 2. Also in this case, if the map is continuously

differentiable, the points of LC−1 necessarily belong to the set where the Jacobian determi-

nant vanishes, and LC = T (LC−1) constitutes the boundary lines which separates regions

Zk characterized by a different number of preimages.

Figure 2



Gian-Italo Bischi & Michael Kopel 445

In order to give a geometrical interpretation of the action of a multi-valued inverse relation

T−1, it is useful to consider a region Zk as the superposition of k sheets, each associated

with a different inverse. Such a representation is known as Riemann foliation of the plane

(see e.g. Mira et al., [24]). Different sheets are connected by folds joining two sheets, and the

projections of such folds on the phase plane are arcs of LC. This is shown in the qualitative

sketch of fig. 3, where the case of a Z0 −Z2 noninvertible map is considered. This graphical

representation of the unfolding action of the inverses gives an intuitive idea of the mechanism

which causes the creation of non-connected basins for noninvertible maps of the plane.

LC

LC-1

SH2

SH1

R1 R2

Z2 Z0

1

1

-
T

1

2

-T

UU-1,2

U-1,1

x’

y’
y

x

LC

LC-1

SH2

SH1

R1 R2

Z2 Z0

1

1

-
T

1

2

-T

UU-1,2

U-1,1

x’

y’
y

x

Figure 3

From the definition given above for the n-dimensional case, it is clear that the relation

CS = T (CS−1) holds, and the points of CS−1, in which the map is continuously differ-

entiable, are necessarily points where the Jacobian determinant vanishes. In fact, in any

neighborhood of a point of CS−1 there are at least two distinct points which are mapped

by T in the same point. Accordingly, the map is not locally invertible in points of CS−1.

3 One-Dimensional Dynamics

In this section, we start with continuous, noninvertible and one-dimensional maps, and

we illustrate how non-connected basins of attraction arise. Furthermore, we show how the

global bifurcations that cause their qualitative changes can be described in terms of contacts

between critical points and the basins’ boundaries.

Let us first take a look at iterated invertible maps though. If f : I → I is a continuous

and increasing function, then the only invariant sets are the fixed points. When many fixed

points exist, say x∗
1 < x∗

2 < ... < x∗
k, they are alternatingly stable and unstable: the unstable

fixed points are the boundaries that separate the basins of the stable ones. Starting from an

initial condition where the graph of f is above the diagonal, i.e. f(x0) > x0, the generated
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trajectory is an increasing sequence converging to the stable fixed point on the right. On

the other hand, starting from an initial condition such that f(x0) < x0, the trajectory is a

decreasing sequence converging to the fixed point on the left (see fig. 4a, where p∗ is a stable

fixed point, and its basin is bounded by two unstable fixed points q∗ and r∗, where q∗ < p∗

and r∗ > p∗). If f : I → I is a continuous and decreasing map, the only possible invariant

sets are one fixed point and cycles of period 2. Periodic points of the cycles of period 2

are located around the fixed point, the unstable ones being boundaries of the basins of the

stable ones (see fig. 4b, where a stable fixed point x∗ exists, and its basin is bounded by the

periodic points α1, α2 of an unstable cycle of period 2).

x*

a
1

a
2

x
0

(a) (b)

p*

q*

r*

x*

a
1

a
2

x
0

(a) (b)

p*

q*

r*

Figure 4

In general, in the case of one-dimensional invertible maps the only kinds of attractors are

fixed points and cycles of period two. In the first case, the basin is an open interval which

includes the fixed point, and in the second case, the basin is the union of two open intervals,

each one including an attracting periodic point.

Obviously, if the map is invertible, the basins of the attracting sets are simple. This

not true if the map is noninvertible. In this case the structure of a basin may be very

complicated. Non-connected portions of the basins may be created, given by open intervals

that do not include any point of the related attractor. As a first example, let us consider

the logistic map (5), a noninvertible Z0 − Z2 map whose graph is represented again in fig.

5. For µ < 4 every initial condition x0 ∈ (0, 1) generates bounded sequences, converging

to a unique attractor A (which may be the fixed point x∗ = (µ − 1) /µ or a more complex
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attractor, periodic or chaotic and located around x∗). Initial conditions out of the interval

[0, 1] generate sequences diverging to (minus) infinity. The boundary that separates the

basin of attraction B (A) of the attractor A, from the basin B (∞) is formed by the unstable

fixed point q∗ = 0 and its rank-1 preimage (different from itself), q∗−1 = 1. Observe that,

of course, a fixed point is always preimage of itself, but in this case also another preimage

exists because q∗ ∈ Z2. If µ < 4, like in fig. 5a, q∗−1 > c = µ/4, where c is the critical point

(maximum) that separates Z0 and Z2. Hence, q∗−1 ∈ Z0. If we increase µ, at µ = 4 we have

q∗−1 = c = 1, and a contact between the critical point and the basin boundary occurs. This

is a global bifurcation, which changes the structure of the basin. For µ > 4, we have q∗−1 < c,

and the portion
(

q∗−1, c
)

of B (∞) enters Z2. This implies that new preimages of that portion

are created, which belong to B (∞) according to (4). The two rank-1 preimages of
(

q∗−1, c
)

are located in a neighborhood I0 of the critical point c−1 = 1/2, as shown in fig. 5b. Points

of I0 exit the interval (0, 1) after one iteration, thus giving an unbounded sequence. As

I0 ∈ Z2, it also has two rank-1 preimages, that are rank-2 preimages of
(

q∗−1, c
)

. These

preimages are given by the two smaller intervals denoted by I
(1)
−1 and I

(2)
−1 in fig. 5b and

are located symmetrically with respect to c−1 = 1/2. Points belonging to I
(1)
−1 and I

(2)
−1 exit

the interval (0, 1) after two iterations of (5). Even these two smaller – non-connected –

portions of B (∞) are in Z2. Hence, each of them has two preimages, which again result in

non-connected portions of B (∞). Obviously, this process gives rise to a infinite sequence

of preimages whose points generate unbounded sequences. So, after the contact between

the critical point c and the basin boundary q∗−1, infinitely many non-connected portions of

B (∞) are created inside (0, 1) (only a few of them are shown in fig. 5b). The union of

all these preimages is an open set whose closure is [0, 1]. Its complement in [0, 1] has zero

Lebesgue measure and is a Cantor set (see Guckenheimer and Holmes, [19], Devaney, [17]).

m = 3.8

(a)

1

1

0
0

m = 4.05

(b)

1

c= m/4
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1
c= m/4.m = 3.8

(a)

1

1

0
0

m = 4.05

(b)

1

c= m/4

x*

1

10

1
c= m/4.

Figure 5
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A similar situation occurs for a unimodal Z0 − Z2 map where the attractor at infinity

is replaced by an attracting fixed point, like the one shown in fig. 6. As in the previous

example, we have an attractor A, which may be the fixed point x∗ (or some other invariant

set around it), with a simply connected basin bounded by the unstable fixed point q∗ and

its rank-1 preimage q∗−1. This example differs with respect to the previous one in so far as in

this case initial conditions taken in the complementary set generate trajectories converging

to the stable fixed point z∗. This means that the basin B (z∗) is formed by the union

of two non-connected portions: B0 = (−∞, q∗) ⊂ Z2, which contains z∗ (usually called

immediate basin, the largest connected component of the basin which contains the attractor)

and B1 =
(

q∗−1,+∞
)

= f−1 (B0) ⊂ Z0. In fig. 6 the two non-connected portions of the

basin B (z∗) are marked by bold lines. Interesting effects occur, if some parameter variation

causes an increase of the critical point c (maximum value) until it crosses the basin boundary

q∗−1. If this happens, the interval (q∗−1, c), which is part of B1, enters Z2, and infinitely many

non-connected portions of B (z∗) emerge in the interval (q∗, q∗−1). Note that the total basin

can still be expressed as the union of all the preimages of any rank of the immediate basin

B0.

.

.

q*

z*

x*

*

1-q

.

x0

c

Z0

Z2

c

.

.

q*

z*

x*

*

1-q

.

x0

c

Z0

Z2

c

Figure 6
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Another interesting situation is obtained if we change the right branch of the map of

fig. 6 by folding it upwards such that another critical point, a minimum, is created. Such

a situation is shown in fig. 7. This is a noninvertible Z1 − Z3 − Z1 map, where Z3 is the

portion of the codomain bounded by the relative minimum value cmin and relative maximum

value cmax. In the situation shown in fig. 7a we have three attractors: the fixed point z∗,

with B (z∗) = (−∞, q∗), the attractor A around x∗, with basin B (A) = (q∗, r∗) bounded

by two unstable fixed points, and +∞ (i.e. positively diverging trajectories) with basin

B (+∞) = (r∗,+∞). In this case all the basins are immediate basins, each being given

by an open interval. In the situation shown in fig. 7a, both basin boundaries q∗ and r∗

are in Z1, so they have only themselves as unique preimages (like for an invertible map).

However, the situation drastically changes if, for example, some parameter changes causes

the minimum value cmin to move downwards, until it goes below q∗ (as in fig. 7b). After

the global bifurcation, when cmin = q∗, the portion (cmin, q∗) enters Z3, so new preimages

f−k (cmin, q∗) appear with k ≥ 1. These preimages constitute non-connected portions of

B (z∗) nested inside B (A), and are represented by the thick portions of the diagonal in fig.

7b.
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4 Two-Dimensional Dynamics

We now consider two examples, which are taken from recently published papers. In these

models two-dimensional iterated maps are used to describe the time evolutions of players’

actions in discrete time dynamic games. In each example we emphasize the creation of non-

connected basins and how it can be explained in terms of contacts between critical curves

and basin boundaries, where the latter are often formed by stable sets of saddle points

or cycles. The first example is taken from Bischi and Kopel [7], who propose a dynamic

duopoly game in the tradition of Cournot. In contrast to the early models on oligopoly

dynamics, in their model players form adaptive expectations and players’ reaction functions

are unimodal. This framework gives rise to a situation of multistability, where the basins

of each stable Nash equilibrium is a rather complicated set. The second example presents

a dynamic brand competition model proposed by Bischi, Gardini and Kopel [9]. In this

game a unique and stable fixed point exists, but the basin of the fixed point can have a very

complicated structure.

4.1 Example 1: Quantity-setting duopoly games with adaptive ex-
pectations

The first example we present is a dynamic Cournot duopoly game with unimodal reaction

functions. The two quantity-setting firms produce homogeneous goods and, since they do not

know the competitor’s output, they try to predict this quantity using an adaptive scheme.

Let x1 (t) and x2 (t) be the outputs at time period t. The two players determine their pro-

duction quantities of the next period, x1 (t + 1) and x2 (t + 1), by solving the optimization

problems

max
x1

Π1 (x1, x
e
2(t + 1)) ; max

x2

Π2 (xe
1(t + 1), x2) (7)

where Πi is the profit of player i, and xe
i (t + 1), i = 1, 2 represent the predictions for the

output of the competitor. The solutions of the optimization problems (assumed to be unique)

are denoted by

x1 (t + 1) = r1 (xe
2(t + 1))

x2 (t + 1) = r2 (xe
1(t + 1))

(8)

where r1 and r2 are called the Best Replies (or reaction functions). In the original work

of Cournot [15], as well as in much of the literature which followed, naive expectations

xe
i (t + 1) = xi (t) have been considered. Under the assumption of naive expectations each

firm expects or predicts that the quantity offered by the competitor in the next period will

be the same as in the current period. The time evolution of the duopoly system is then
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represented by the two-dimensional discrete dynamical system

(x1 (t + 1) , x2 (t + 1)) = (r1 (x2 (t)) , r2 (x1 (t))) (9)

which is also referred to as the Cournot tâtonnement process. In contrast to this, in Bischi

and Kopel [7] firms are assumed to revise their beliefs according to the adaptive expectations

scheme
xe

1 (t + 1) = xe
1 (t) + α1 (x1 (t) − xe

1 (t))
xe

2 (t + 1) = xe
2 (t) + α2 (x2 (t) − xe

2 (t))
(10)

If the relations (8) are inserted into (10), one gets the following two-dimensional dynamical

system in the belief space

xe
1 (t + 1) = (1 − α1) xe

1 (t) + α1r1 (xe
2 (t))

xe
2 (t + 1) = (1 − α2) xe

2 (t) + α2r2 (xe
1 (t))

. (11)

Of course, the quantities chosen by the competitors can be obtained by the transformations

x1 (t) = r1 (xe
2 (t)), x2 (t) = r2 (xe

1 (t)), i.e. by a mapping from the belief space into the

action space. The steady states of the dynamical system (11), defined by xe
i (t + 1) = xe

i (t),

i = 1, 2, i.e.
xe

1 (t) = r1 (xe
2 (t))

xe
2 (t) = r2 (xe

1 (t))
(12)

are located at the intersections of the two reaction curves and are independent of the ad-

justment coefficients α1 and α2. In other words, a steady state is a situation where beliefs

are not further revised and quantities do not change, and at the steady states the expected

outputs coincide with the realized ones. Hence, in belief space we are considering a situa-

tion where beliefs are consistent and this corresponds to a Nash equilibrium in the quantity

space. In Bischi and Kopel [7] the following reaction functions have been considered

r1(x2) = µ1x2 (1 − x2)
r2(x1) = µ2x1 (1 − x1)

(13)

It has been shown elsewhere (see Kopel, [21]) that if the competitors regard their products

as strategic complements over a certain range of the set of admissible actions, the functions

given in (13) can be derived as Best Responses, and the parameters µi, i = 1, 2 measure the

intensity of the positive externality the actions of one player exert on the payoff of the other

player.

To simplify the notation, we rename the expected outputs by setting x(t) = xe
1 (t)

and y(t) = xe
2 (t). Inserting the reaction functions specified in (13) into (11), the time

evolution of the competitors’ beliefs is obtained by the iteration of the two-dimensional map

T : (x, y) → (x′, y′) defined by

x′ = (1 − α1) x + α1µ1y (1 − y)
y′ = (1 − α2) y + α2µ2x (1 − x)

(14)
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Under the assumption µ1 = µ2 = µ , the fixed points can be expressed by simple analytical

expressions: besides the trivial solution O = (0, 0), a positive symmetric equilibrium exists

for µ > 1, given by S = ((µ − 1)/µ, (µ − 1)/µ). Two further equilibria E1 = (x̄, ȳ) and E2 =

(ȳ, x̄) exist for µ > 3, where x̄ =
(

µ + 1 +
√

ψ
)

/2µ, ȳ =
(

µ + 1 −
√

ψ
)

/2µ with ψ =

(µ + 1)(µ − 3). These equilibria are located in symmetric positions with respect to the

diagonal ∆. The corresponding Nash equilibria have the same entries. As shown in Bischi

and Kopel [7], a wide range of parameters µ, α1, α2 exists such that E1 and E2 are both

stable. Accordingly, a problem of equilibrium selection arises, which leads to the question

of the delimitation of the two basins of attraction B (E1) and B (E2).

As argued in the previous sections, the properties of the inverses of the map become

important in order to understand the structure of the basins and their qualitative changes.

The map (14) is a noninvertible map. This can be deduced from the fact that given a point

(x′, y′) ∈ R
2, its rank-1 preimages may be up to four; they can be computed by solving the

fourth degree algebraic system (14) with respect to x and y. The critical curves are computed

as follows: LC−1 coincides with the set of points in which the Jacobian determinant vanishes,

i.e. detDT = 0, where

DT (x, y) =

[

1 − α1 α1µ1 (1 − 2y)
α2µ2 (1 − 2x) 1 − α2

]

(15)

and LC = T (LC−1). So, LC−1 is an equilateral hyperbola, of equation

(

x − 1

2

) (

y − 1

2

)

=
(1 − α1) (1 − α2)

4α1α2µ1µ2
. (16)

Since LC−1 is formed by the union of two disjoint branches, say LC−1 = LC
(a)
−1 ∪ LC

(b)
−1,

it follows that also LC = T (LC−1) is the union of two branches, say LC(a) = T (LC
(a)
−1 )

and LC(b) = T (LC
(b)
−1), see figs. 8a and 8b. The branch LC(a) separates the region Z0,

whose points have no preimages, from the region Z2, whose points have two distinct rank-1

preimages. The other branch LC(b) separates the region Z2 from Z4, whose points have

four distinct preimages. Any point of LC(a) has two coincident rank-1 preimages, located

at a point of LC
(a)
−1 , and any point of LC(b) has two coincident rank-1 preimages, located

at a point of LC
(b)
−1, plus two further distinct rank-1 preimages, called extra preimages.

Following the terminology of Mira et al. [24], we say that the map (14) is a noninvertible

map of Z4 > Z2 − Z0 type, where the symbol “>” denotes the presence of a cusp point in

the branch LC(b) (see fig. 8b). The corresponding Riemann foliation is shown in fig. 8c.

Different sheets are connected by folds joining two sheets, and the projections of such folds

on the phase plane are arcs of LC. The cusp point of LC is characterized by three merging

preimages at the junction of two folds.
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In order to study the structure of the basins and explain the global bifurcations that

change their qualitative properties, we first consider the symmetric case of players with

homogeneous expectations, i.e. α1 = α2 = α. In this case, the map (14) has a symmetry
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property, as it remains the same if the variables x and y are swapped. Formally, we have

T (P (x, y)) = P (T (x, y)), where P : (x, y) → (y, x) is the reflection through the diagonal

∆ = {(x, x) , x ∈ R}. This symmetry property implies that the diagonal ∆ is a trapping

subspace for the map T , i.e. T (∆) ⊆ ∆. The trajectories embedded in ∆ are governed by the

restriction of the two-dimensional map T to ∆, i.e. f = T |∆ : ∆ → ∆. The map f , obtained

by setting x = y and x′ = y′ in (14), is given by x′ = f(x) = (1 + α (µ − 1))x−αµx2. In the

symmetric case of homogeneous players we can give a complete analytical characterization

of the global bifurcation that transforms the basins from simply connected sets to multiply

connected. In fact, the following result is given in Bischi and Kopel [7]:

If µ1 = µ2 = µ and α1 = α2 = α and the equilibria E1 and E2 are both stable, then the

common boundary ∂B (E1)∩∂B (E2) which separates the basin B (E1) from the basin B (E2)

is given by the stable set W s(S) of the saddle point S. If α (µ + 1) < 1 then W s(S) = OO
(1)
−1,

where O = (0, 0) and O
(1)
−1 =

(

1+α(µ−1)
αµ

, 1+α(µ−1)
αµ

)

, and the two basins are simply connected

sets. If α (µ + 1) > 1 then the two basins are non-connected sets, formed by infinitely many

simply connected components.

The bifurcation occurring at α (µ + 1) = 1 is a global bifurcation. It cannot be revealed

by a study of the linear approximation of the dynamical system and the occurrence of such a

bifurcation can be characterized by a contact between the stable set of the symmetric fixed

point S and a critical curve. In order to explain this, we start from a set of parameters

such that both of the basins are simply connected, like in fig. 9a, where µ1 = µ2 = µ = 3.4

and α1 = α2 = α = 0.2 < 1/(µ + 1). For this set of parameters, four fixed points exist,

indicated by O, S, E1 and E2. The fixed points O and S are saddle points, whereas the

Nash equilibria E1 and E2 are both stable, each with its own basin of attraction. These

basins, B (E1) and B (E2), are represented by white and light grey respectively (the dark

grey region represents the set of initial conditions which generate unbounded trajectories;

we could refer to this set as the basin of infinity). In this situation, any bounded trajectory

starting with xe
1(0) > xe

2(0) (xe
1(0) < xe

2(0)) converges to E1 (E2). In economic terms this

means that an initial difference in the expectations of the competitors uniquely determines

which of the equilibria is selected in the long run. Expectations of the players become

self-fulfilling: if xe
1(0) > xe

2(0) (xe
1(0) < xe

2(0)) then xe
1(t) > xe

2(t) (xe
1(t) < xe

2(t)) for any t

and equilibrium E1, where firm 1 dominates the market (equilibrium E2 at which firm 2

dominates the market) is selected in the long run. In contrast to this, the situation shown

in fig. 9b, where the value of the parameter µ is the same, but α1 = α2 = 0.5 > 1/(µ + 1),

is quite different. In fact, in this case the basins are no longer simply connected sets. Many

portions of each basin are present, both in the region above and below the diagonal, and

the adjustment process of our dynamic game starting with initial beliefs xe
1(0) > xe

2(0) (or

xe
1(0) < xe

2(0)) may lead to convergence to either of the equilibria.
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Now let us turn to an explanation of the global bifurcation which causes the transition

between these rather different structures of the basins. First notice that the boundary

separating B (E1) and B (E2) contains the symmetric equilibrium S as well as its whole

stable set W s(S). In fact, just after the creation of the two stable fixed points E1 and E2 for

µ = 3, the symmetric equilibrium S ∈ ∆ is a saddle point. The two branches of the unstable

set Wu(S) departing from it reach E1 and E2 respectively. Hence, since a basin boundary

is backward invariant (see Mira et al., [24], [22]), not only the local stable set W s
loc(S)

belongs to the boundary that separates the two basins, but also its preimages of any rank:

W s(S) =
⋃

k≥0 T−k (W s
loc(S)). Because of the symmetry property of the system (14) with

homogeneous players, the local stable set of S belongs to the invariant diagonal ∆. As long

as α (µ + 1) < 1, the whole stable set W s(S) belongs to ∆ and is given by W s(S) = OO
(1)
−1,

where O
(1)
−1 is the preimage of O located along ∆. Observe that if α (µ + 1) < 1 holds,

the cusp point K of the critical curve LC(b) has negative coordinates and, consequently, the

whole segment OO
(1)
−1 belongs to the regions Z0 and Z2, see fig. 9a. This implies that the two

preimages of any point of OO
(1)
−1 belong to ∆ (they can be computed by the restriction f of

T to the invariant diagonal ∆). This proves that the segment OO
(1)
−1 is backward invariant,

i.e. it includes all its preimages. The structure of the basins B (Ei), i = 1, 2, is very simple:

B (E1) is entirely located below the diagonal ∆ and B (E2) is entirely located above it. Both

of the basins B (E1) and B (E2) are simply connected sets.

Their structure becomes a lot more complex for α (µ + 1) > 1. In order to understand

the bifurcation occurring at α (µ + 1) = 1, we consider the critical curves of the map (14).

At α (µ + 1) = 1 a contact between LC(b) and the fixed point O occurs, due to the merging

between O and the cusp point K.2 For α (µ + 1) > 1, the portion KO of WS
loc (S) belongs

to the region Z4, where four inverses of T exist. This implies that besides the two rank-1

preimages on ∆, the points of KO have two further preimages, which are located on the

segment O
(2)
−1O

(3)
−1 of the line ∆−1. Since OO

(1)
−1 = W s

loc(S) ⊂ ∂B (E1) ∩ ∂B (E2), also its

preimages of any rank belong to the boundary which separates B (E1) from B (E2). So the

rank-1 preimages of the segment O
(2)
−1O

(3)
−1, which exist because portions of it are included

in the regions Z2 and Z4, belong to W s (S) as well, being preimages of rank-2 of OO
(1)
−1.

This repeated procedure, based on the iteration of the multi-valued inverse of T , leads to

the construction of the whole stable set W s(S).

2To compute the coordinates of the cusp point of LC(b) notice that in any point of LC−1 at least one

eigenvalue of DT vanishes. In the point C−1 = LC
(a)
−1 ∩ ∆ = (c−1, c−1), with c−1 = (α (µ − 1) + 1) /2αµ,

the eigenvalue z‖ with eigendirection along ∆ vanishes, and its image C = LC(a)
∩ ∆ = (c, c) with c =

f(c−1) = (α (µ − 1) + 1)2 /4αµ is the point at which LC(a) intersects ∆. This corresponds to the unique
critical point of the restriction of T to ∆. At the other intersection of LC−1 with ∆, given by K−1 =

LC
(b)
−1 ∩∆ = (k−1, k−1) with k−1 = (α (µ − 1) − 1) /2αµ the eigenvalue z⊥ vanishes, and the curve LC(b) =

T (LC
(b)
−1) has a cusp point (see e.g. Arnold et al., 1986) K = LC(b)

∩ ∆ = (k, k) with k = f(k−1) =
(α (µ + 1) − 1) (αµ + 3(1 − α)) /4αµ
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Similar results can be obtained in the case of heterogeneous players, where the hetero-

geneity arises e.g. due to different speeds of adjustment α1 6= α2. The main difference with

respect to the homogeneous case lies in the fact that the diagonal ∆ is no longer invariant.

Even if the fixed points remain the same, the basins are no longer symmetric with respect

to ∆. Nevertheless, many of the arguments given above continue to hold in the case of

heterogeneous beliefs. In particular, the boundary which separates the basin of equilibrium

E1 from that of E2 is still formed by the whole stable set W s(S), but in the case α1 6= α2

the local stable set W s
loc(S) is not along the diagonal ∆. The contact between W s(S) and

LC(b), which causes the transition from simple to complex basins, does not occur at O (since

now O /∈ W s(S)) and no longer involves the cusp point of LC(b). So, the parameter values

at which such contact bifurcations occur cannot be computed analytically.

In fig. 10a, obtained with µ = 3.6, α1 = 0.55 and α2 = 0.7, the two equilibria E1

and E2 are stable, and their basins are connected sets. An asymmetry in the expectation

formation process has a negligible effect on the local stability properties of the equilibria,

but it results in an evident asymmetry in the basins of attraction. As shown in fig. 10a,

when α2 > α1 the extension of B (E2) is, in general, greater than the extension of B (E1).

Moreover, the situation is not always as simple as in fig. 10a. The symmetric equilibrium

S is a saddle fixed point and is included in the boundary – the whole stable set W s(S) –

which separates the two basins. It can be noticed that in the simple situation shown in fig.

10a, the whole stable set W s(S) is entirely included inside the regions Z2 and Z0. However,

the fact that a portion of W s(S) is close to LC suggests that a contact bifurcation may

occur if, e.g., the adjustment coefficients are slightly changed. In fact, if a portion of B (E1)

enters Z4 after a contact with LC(b), new rank-1 preimages of that portion will appear near

LC
(b)
−1. This is the situation illustrated in fig. 10b, obtained after a small change of α1.

The portion of B (E1) inside Z4 is denoted by H0. It has two rank-1 preimages, denoted

by H
(1)
−1 and H

(2)
−1 , which are located at opposite sides with respect to LC

(b)
−1 and merge

on it (by definition the rank-1 preimages of the arc of LC(b) which bound H0 must merge

along LC
(b)
−1). The set H−1 = H

(1)
−1 ∪ H

(2)
−1 constitute a non-connected portion of B (E1).

Moreover, since H−1 belongs to the region Z4, it has four rank-1 preimages, denoted by

H
(j)
−2 , j = 1, ..., 4 in fig. 10b, which constitute other four “islands”3 of B (E1). Points of

these “islands” are mapped into H0 after two iterations of the map T . Indeed, infinitely

many higher rank preimages of H0 exist, thus giving infinitely many smaller and smaller

disjoint “islands” of B (E1). Hence, at the contact between W s (S) and LC, the basin B (E1)

is transformed from a simply connected into a non-connected set, constituted by infinitely

many disjoint components. The larger connected component of B (E1) which contains E1 is

the immediate basin B0 (E1), and the whole basin is given by the union of the infinitely many

3We follow the terminology introduced in Mira et al. (1994).
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preimages of B0 (E1): B (E1) =
⋃

k≥0 T−k (B0 (E1)). Observe that even if small differences

between the adjustment speeds have negligible effects on the properties of the attractors,

they may cause remarkable asymmetries in the structure of the basins, which can only be

detected when the global properties of the economic model are studied.
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So, as in the one-dimensional case, the global bifurcation which causes a transforma-

tion of a basin from connected set into the union of infinitely many non-connected portions,

is caused by a contact between a critical set and a basin boundary. However, since the

equations of the curves involved in the contact often cannot be analytically expressed in

terms of elementary functions, the occurrence of contact bifurcations can only be revealed

numerically. This happens frequently in the study of nonlinear dynamical systems of di-

mension greater than one: results on global bifurcations are generally obtained through an

interplay between theoretical and numerical methods, and the occurrence of these bifurca-

tions is shown by computer-assisted proofs, based on the knowledge of the properties of

the critical curves and their graphical representation (see e.g. Mira et al., [24], for many

examples). This “modus operandi” is typical in the study of global bifurcations of nonlinear

two-dimensional maps.

4.2 Example 2: A rent-seeking/competition game

The second dynamic model we present is used to describe a market game where a population

of consumers can choose between two brands of homogeneous goods which are produced
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by two competing firms. Let x1 and x2 represent the marketing efforts of two firms (e.g.

advertising effort) and B the total sales potential of the market (in terms of customer market

expenditures). If firm 1’s effort is x1 and firm 2’s effort is x2, then the shares of the market

(in terms of sales) accruing to firm 1 and to firm 2 are Bs1 and Bs2 = B − Bs1, where

s1 =
axβ1

1

axβ1

1 + bxβ2

2

, s2 =
bxβ2

2

axβ1

1 + bxβ2

2

. (17)

The terms A1 = axβ1

1 and A2 = bxβ2

2 represent the recruitment of customers by firm 1 and 2,

given the firms’ efforts x1 and x2. The parameters a and b denote the relative effectiveness

of the effort made by the firms. Since dA1

dx1

x1

A1

= β1 and dA2

dx2

x2

A2

= β2, the parameters β1

and β2 denote the elasticities of the attraction of firm (or brand) i with regard to the effort

of firm i. A dynamic model is obtained by assuming that the two competitors adjust their

marketing efforts in response to the profits achieved in the previous period:

T :















x1 (t + 1) = x1(t) + λ1x1(t)
(

B [x1(t)]
β1

[x1(t)]
β1+k[x2(t)]

β2
− x1(t)

)

x2 (t + 1) = x2(t) + λ2x2(t)
(

B [x2(t)]
β2

[x1(t)]
β1+k[x2(t)]

β2
− x2(t)

)

(18)

The parameters λi > 0, i = 1, 2, measure the rate of this adjustment and k := b/a.

An important feature of the map (18) is that the two coordinate axes are invariant lines,

since T (x1, 0) = (x′
1, 0) and T (0, x2) = (0, x′

2). The dynamics of (18) along the axis xi = 0

are governed by one-dimensional maps x′
j = fj(xj), where fj is the restriction of T to the

corresponding axis. The map fj is given by fj(xj) = (1 + λjB) xj − λjx
2
j . It is conjugate

to the standard logistic map (5) by the homeomorphisms xj = x (1 + λjB) /λj , where the

parameters µ is given by µ = 1 + λjB. Thus, the properties of the trajectories embedded

in the invariant axes can be easily deduced from the well-known properties of the standard

logistic map (5).

The fixed points of the map (18) are the solutions of the system














x1

(

B
x

β1

1

x
β1

1
+kx

β2

2

− x1

)

= 0

x2

(

B
kx

β2

2

x
β1

1
+kx

β2

2

− x2

)

= 0

(19)

There are three evident “boundary solutions”,

O = (0, 0) ; E1 = (B, 0) ; E2 = (0, B) , (20)

but O is not a fixed point because the map is not defined in it. The fixed points E1 and

E2 are related to the positive fixed points of the one-dimensional quadratic maps f1 and f2

governing the dynamics along the invariant axes. There is also another fixed point, interior

to the positive quadrant R
2
+, given by

E∗ = (x∗
1, B − x∗

1) . (21)
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The coordinate x∗
1 ∈ (0, B) is the unique solution of the equation F (x) = k

1

1−β2 x
1−β1

1−β2 + x−
B = 0, since F a continuous function with F (0) < 0, F (B) > 0 and F ′(x) > 0 for each

x > 0. With a given set of parameters B, β1 and β2, the positive fixed point E∗ is locally

asymptotically stable for sufficiently small values of the adjustment speeds λ1 and λ2. It

loses stability as one or both of the adjustment speeds are increased and more complex

attractors are created around it.

In the following we focus our attention on the global properties of the map (18), in par-

ticular on the boundaries of the feasible set B. This feasible set is defined as the set of points

which generate trajectories which are entirely in the positive orthant (feasible trajectories).

A feasible trajectory may converge to the positive steady state E∗, to other more complex

attractors inside B or to a one-dimensional invariant set embedded inside a coordinate axis

(the last occurrence means that one of the two brands disappears). Trajectories starting

outside of the set B represent infeasible evolutions of the economic system. As proved in

Bischi, Gardini and Kopel [9], (18) is a noninvertible map of Z4 > Z2 − Z0, and the quali-

tative shape of the critical curves, as well as the Riemann foliation, are similar to the ones

of the previous example, see fig. 8. As before, starting from the knowledge of the global

properties of the map (18), we illustrate how the boundaries of the feasible set changes when

a structural parameter of the game is changed. By using the method of critical curves, we

try to reveal the mechanism which is responsible for these changes.

With values of the parameters βi in the range (0.2, 0.3), our numerical investigation has

shown that the invariant coordinate axes are transversely repelling, i.e. they act as repelling

sets with respect to trajectories approaching them from the interior of the nonnegative

orthant. Moreover, for the parameters used in our simulations, we have observed only one

attractor inside B, although more than one coexisting attractors may exist, each with its

own basin of attraction. On the basis of this numerical evidence, in what follows we will

often speak of a unique bounded and positive attracting set A, which attracts the generic

feasible trajectory, even if its existence and uniqueness are not rigorously proved. Let ∂B
be the boundary of B. Such a boundary can have a simple shape, as in the situation shown

in fig. 11a, where the attractor A is the fixed point E∗ and B is represented by the white

region. However, the basin can also have a very complex structure, as in fig. 12b, where,

again, B is given by the white points and A is a chaotic attractor represented by the black

points inside B.

An exact determination of ∂B is the main goal of the remainder of this subsection.

Let us first consider the dynamics of T restricted to the invariant axes. We know that the

maps fj that govern the dynamics along the invariant axes are conjugated to the logistic

map (5). This insight is important, and the reader is urged to recall the properties of this

one-dimensional map, see section 3 and fig. 5. For λ1B ≤ 3 (corresponding to µ ≤ 4), we

can deduce that bounded trajectories along the x1 axis are obtained, as long as the initial

conditions are taken inside the segment ω1 = OO
(1)
−1. The point O

(1)
−1 is the rank-1 preimage
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of the origin O computed for the one-dimensional restriction f1 (see fig. 11a), i.e.

O
(1)
−1 =

(

1 + λ1B

λ1
, 0

)

. (22)

Divergent trajectories along the x1 axis are obtained starting from an initial condition out

of the segment ω1. Analogously, when λ2B ≤ 3, bounded trajectories along the invariant

x2 axis are obtained provided that the initial conditions are taken inside the segment ω2 =

OO
(2)
−1. In this case the point O

(2)
−1 is the rank-1 preimage of the origin computed for the

restriction f2, i.e.

O
(2)
−1 =

(

0,
1 + λ2B

λ2

)

. (23)

Divergent trajectories along the x2 axis are obtained starting from an initial condition out

of the segment ω2. Consider now the region bounded by the segments ω1 and ω2 and their

rank-1 preimages ω−1
1 = T−1 (ω1) and ω−1

2 = T−1 (ω2). Such preimages can be analytically

computed as follows. Let X = (p, 0) be a point of ω1, i.e. 0 < p < 1+λ1B
λ1

. Its preimages are

the real solutions of the algebraic system obtained from (18) with (x′
1, x

′
2) = (p, 0):























x1

(

1 + λ1B
x

β1

1

x
β1

1
+kx

β2

2

− λ1x1

)

= p

x2

(

1 + λ2B
kx

β2

2

x
β1

1
+kx

β2

2

− λ2x2

)

= 0

(24)

It is easy to see that the preimages of the point X are either located on the same invariant

axis x2 = 0 (in the points whose coordinates are the solutions of the equation f1(x1) = p)

or on the curve of equation

x1 =

[

kxβ2

2

(

λ2B − λ2x2 + 1

λ2x2 − 1

)]
1

β1

. (25)

Analogously, the preimages of a point Y = (0, q) of ω2, i.e. 0 < q < 1+λ2B
λ2

, belong to the

same invariant axis x1 = 0 (in the points whose coordinates are the solutions of the equation

f2(x2) = q), or lie on the curve of equation

x2 =

[

xβ1

1

k

(

λ1B − λ1x1 + 1

λ1x1 − 1

)

]
1

β2

. (26)

It is straightforward to see that the curve (25) intersects the x2 axis in the point O
(2)
−1 given

in (23), the curve (26) intersects the x1 axis in the point O
(1)
−1 given in (22), and the two

curves (25) and (26) intersect at a point O
(3)
−1 interior to the positive orthant (see fig. 11a).

The point O
(3)
−1 is another rank-1 preimage of the origin. The four preimages of the origin

are the vertexes of a “quadrilateral” OO
(1)
−1O

(3)
−1O

(2)
−1, whose sides are ω1, ω2 and their rank-1
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preimages ω−1
1 and ω−1

2 , which are located on the curves of equation (25) and (26). All

the points outside this quadrilateral cannot generate feasible trajectories. In fact, points

located on the right of ω−1
2 are mapped into points with negative x1 coordinate after one

iteration, as can be easily deduced from the first line of (18). Points located above ω−1
1 are

mapped into points with negative x2 coordinate after one iteration, as can be deduced from

the second line of (18).

The boundary of B is given, in general, by the union of all preimages (of any rank) of

the segments ω1 and ω2:

∂B(∞) =
(
⋃∞

n=0T
−n (ω1)

)

∪
(
⋃∞

n=0T
−n (ω2)

)

. (27)

As long as λ1B ≤ 3 and λ2B ≤ 3 the boundary of B has the simple shape shown in fig.

11a, because no preimages of higher rank of ω1 and ω2 exist. This is due to the fact that

ω−1
1 and ω−1

2 are entirely included inside the region Z0 of the plane whose points have no

preimages. The situation is different when the values of the parameters are such that some

portions of these curves belong to the regions Z2 or Z4 whose points have two and four

preimages respectively. In this case preimages of higher order of ω1 and ω2 exist, say ω−k
1

and ω−k
2 , which form new portions of ∂B. Such preimages of ω1 and ω2 of rank k > 1 bound

regions whose points are mapped out of the feasible set B after k iterations. In such a case

the shape of the boundary of B becomes far more complex. This change is due to a global

bifurcation that can be explained by using the critical curves.
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If λ1 or λ2 are increased so that the bifurcation value λb = 3/B is crossed by at least

one of them, then ∂B changes from smooth to fractal. To see this, we fix the parameters

B, k, β1, β2 and λ1 and vary the speed of adjustment λ2. As λ2 is increased, the branch

LC(b) of the critical curve that separates Z0 from Z2 moves upwards, and at λ2 = 3/B it

has a contact with ω−1
1 at the point O

(2)
−1. After this contact, a segment of ω−1

1 enters the

region Z2, so that a portion S1 of the infeasible set, bounded by LC(b) and ω−1
1 , now has

two preimages (see fig. 11b). These two preimages, say S
(1)
0 and S

(2)
0 , merge in points of

LC
(b)
−1 (as the points of LC(b) have two merging preimages belonging to LC

(b)
−1) and form a

“grey tongue” issuing from the x2 axis (denoted by S0 in fig. 11b, with S0 = S
(1)
0 ∪S

(2)
0 ). S0

belongs to the “grey set” of points that generate infeasible trajectories because the points

of S0 are mapped into S1, so that negative values are obtained after two iterations. Again,

it is important to recall the fact that along the axes the dynamical behavior is governed by

one-dimensional maps which are conjugate to the logistic map. We already know that the

logistic map undergoes a global bifurcation at µ = 4, where a contact between the critical

point and the basin boundary occurs. This global bifurcation changes the structure of the

basin for the one-dimensional map. A similar mechanism is at work here. To see this, look

at the intersection of the “main tongue” S0 with the x2 axis. This gives a set I0 around the

critical point c2 of the restriction f2. Of course, I0 corresponds to the “main hole” of the

logistic map with µ > 4 (see fig. 5b). We know already, however, that I0 has an infinite

sequence of further preimages, I
(1)
−1 and I

(2)
−1 , and so on. Accordingly, the set S0 is only the

first of infinitely many preimages of S1. Preimages of S1 of higher rank form a sequence

of smaller and smaller grey tongues issuing from the x2 axis, whose intersection with the

x2 axis correspond to the infinitely many preimages I−k of the main hole I0 (see again fig.

5b). Only some of them are visible in fig. 11b, but smaller tongues become numerically

visible by enlargements, as it usually happens with fractal curves. The fractal structure of

the boundary of B is a consequence of the fact that the tongues are distributed along the

segment ω2 of the x2 axis according to the structure of the intervals I−k described in section

3, whose complementary set is a Cantor set. In the situation shown in fig. 11b the main

tongue S0 has a wide portion in the region Z4. Hence, besides the two preimages along

the x2 axis (denoted by S
(1)
−1 and S

(2)
−1 in fig. 11b) issuing from the intervals I

(1)
−1 and I

(2)
−1 ,

two more preimages exist. Hence, in the two-dimensional case the structure of the basin

is even more complex. The additional preimages are denoted by S
(3)
−1 and S

(4)
−1 in fig. 11b,

and are located at opposite sides with respect to LC
(a)
−1 . The tongues S

(3)
−1 and S

(4)
−1 belong

to Z0, hence they do not give rise to new sequences of tongues. On the other hand, S
(1)
−1

and S
(2)
−1 have further preimages, since they are located inside Z4 and Z2 respectively. If the

preimages are two, as in the case of S
(2)
−1 , they form two tongues issuing from the x2 axis.

In the case of four preimages, as in the case of S
(1)
−1 , two of them are tongues issuing from

the x2 axis and two are tongues issuing from the opposite side, i.e. ω−1
2 .
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As λ2 is further increased, LC(b) moves upwards, the portion S1 enlarges and, con-

sequently, all its preimages (i.e. the infinitely many tongues) enlarge and become more

pronounced. This causes the occurrence of another global bifurcation, that changes the set

B from simply connected to multiply connected (or connected with holes). The mechanism

is similar to the one described in Mira et al. [24], [22] and Abraham et al. [1]. This second

global bifurcation occurs when a tongue, belonging to Z2, has a contact with LC(a) and

subsequently enters the region Z4. If such a contact occurs out of the x2 axis, it causes the

creation of a pair of new preimages. These preimages merge along LC
(a)
−1 and their union is

a hole (or lake, following the terminology introduced in Mira et al. [22]) inside the feasible

set B. Accordingly, a set of points that generate infeasible trajectories has been created, and

this set is surrounded by points of the feasible set B. Such a situation is shown in fig. 12a,

where a tongue has crossed LC(a) and the set H1 is now in Z4. The hole H0 of infeasible

points is the preimage of the set H1, and is completely included in the feasible set. As λ2

is further increased, other tongues cross LC(a) and, hence, new holes are created, giving a

complicated structure of B like the one shown in fig. 12b, where many holes inside B are

clearly visible.

To sum up, the transformation of the set B from a simply connected region with smooth

boundaries into a multiply connected set with fractal boundaries occurs through two types

of global bifurcations, both due to contacts between ∂B and branches of the critical set LC.

In fig. 12b it can be noticed that also the attractor inside B changed its structure. For low

values of λ2, as in fig. 11a, the attractor is the fixed point E∗, to which all the trajectories

starting inside the set B converge. As λ2 increases, E∗ loses stability through a flip (or

period doubling) bifurcation, at which E∗ becomes a saddle point, and an attracting cycle

of period 2 is created near it. As λ2 is further increased, a sequence of period doublings

occurs, similar to the well-known Myrberg (or Feigenbaum) cascade for one-dimensional

maps, which creates a sequence of attracting cycles of period 2n followed by the creation

of chaotic attractors, which may be cyclic chaotic sets or a connected chaotic set. So, both

kinds of complexities can be observed in this model, even if there are no relations between

them (for more details see Bischi, Gardini and Kopel, [9]).
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5 Conclusions

In this paper we have emphasized that there are two different routes to complexity. The

literature on dynamic games has mainly focused on only one route. This route is related to

the complexity of the attracting sets that characterize the long run evolution of the dynamic

process and describe the evolution of players’ actions over time. Unfortunately, it has

neglected the second – for game theoretic considerations more important – route, namely the

complexity of the boundaries which separate the basins when several coexisting attractors are

present. As we have shown, these two kinds of complexity are not related, in the sense that

complex attractors may have simple basins, whereas simple attractors like fixed points may

have basins with very complex structure. We have used examples taken from the economics

literature to illustrate how to perform a global analysis of a dynamic game. With the help of

geometrical and numerical methods, the concepts of critical sets and basin boundaries, one

can uncover the mechanism which gives rise to complex basins. During the last years, these

tools have been used to analyze successfully the long run outcomes of dynamic economic

models. Beside the papers we have mentioned above, there are applications in evolutionary

game theory (Bischi et al., [12], [13]), fishery economics (Bischi and Kopel, [8], Bischi et al.,

[14]) and dynamic oligopoly games with three competitors (Agiza et al., [2], Bischi, Mroz

and Hauser, [11]). It is our hope that with the present paper we have challenged the reader

enough to join this dynamic game.
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