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1 Introduction

In this chapter oligopoly theory and population dynamics are combined
to describe the exploitation of a living resource under imperfect competition.
This requires an interdisciplinary approach, because profit maximization ar-
guments must be combined with the biological laws which regulate the nat-
ural growth of living resources in order to determine the long-run behavior
of the natural system. The results obtained are often characterized by com-
plex behavior and bifurcation phenomena, because the interaction of human
economic decision making with ecological dynamics are highly non linear
(see e.g. Rosser Jr., 2001). Indeed, resource economics is a very important
field of application of dynamic analysis. In the literature on the economics
of renewable resources, a plethora of questions has been studied using the
tools from optimal control theory, dynamic programming and the theory of
nonlinear dynamical systems. Renewable resources, e.g. grass, trees or fish,
have the capacity for reproduction and growth over time and their stock is
diminished by the harvesting activities of a sole owner or several individ-
uals. Among the problems which have been investigated extensively are:
How do (optimal) harvesting paths look like? Under which conditions is
it more likely to observe conservation or extinction of the resource? What
is the influence of the market structure? In the last 50 years considerable
progress has been made, in particular, in fishery economics (for an overview,
see Conrad 1995). To appreciate the breadth of topics which are the focus in
the economics of fisheries and for a presentation of the main economic in-
sights, the interested reader is advised to consult the book by Clarke (1990).
Furthermore, the texts of Conrad and Clarke (1987) and Conrad (1999) can
be recommended. In this chapter, we will introduce a bioeconomic model of
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commercial fishing to study the evolution of the stock of a fish population
which is subject to harvesting over time. We will focus on three points: (i)
the influence of the market structure, in particular, the role of strategic ef-
fects; (ii) the problem of extinction or conservation of the resource and the
role of harvesting costs; (iii) the influence of errors in predicting the fish
stock when determining future harvesting activities.

In order to address the first problem, we will analyze the model dynam-
ics under imperfect competition in a duopoly framework and compare it with
the dynamics under the assumption that the rights to harvest the resource are
held by a sole owner. Equivalently, we can interpret this as a situation where
the competitors form a cooperative venture. In many papers on the dynam-
ics of renewable resources it has been assumed that the sea is open access,
i.e. the fish stock is harvested by a large number of unregulated, competitive
fishermen with no barrier to entry or exit. Due to perfectly competitive mar-
kets for harvested fish, the price for fish has been taken to be constant. Here,
however, we assume that due to some form of regulation, e.g. limited entry,
access to the fishery is restricted. Furthermore, we assume that the resource
is offered on two distinct markets with downward sloping demand. The issue
of international trade has been introduced recently into commercial fishing
models by Okuguchi (1998) and Szidarovszki and Okuguchi (1998). Fol-
lowing their terminology, we will refer to the two markets in our model as
the home market and the foreign market.

With respect to problem (ii), we will try to provide some insights under
which circumstances conservation of the resource is more likely to be ob-
served and how this depends on the harvesting costs. The costs of harvesting
are crucial since they have a direct impact on the (profit-maximizing) be-
havior of the fishermen. For example, a regulator can influence the costs of
harvesting by such methods as restricting the length of the fishing season,
setting total catch limitations, and regulating the type of fishing gear used
(see Clark 1990). Furthermore, costs can be reduced by giving R&D subsi-
dies (see Okuguchi 1998). This in turn determines the level of the (optimal)
harvesting activities of the fishermen. Again, the duopoly case will be com-
pared to the cooperative venture case to see the effects of harvesting costs
and competition on conservation of the resource.

In dealing with (iii), we are studying the problem that fishermen are only
boundedly rational. When they determine their optimal level of future har-
vesting activities, they do not know the future fish stock. Instead, all they
have is an imperfect prediction, which is revised as new information be-
comes available. To be a little bit more precise, let X (¢) denote the biomass
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or number of individuals in a fish stock. Then the actual evolution of the fish
stock over time in the absence of fishing is determined by a so-called growth
function G(X), which is often expressed as G(X) = X R(X), where R is
the specific (or unitary) growth rate. A widely used form for R is the logistic
growth

R(X) = (a - 5X). M

The parameter « is referred to as the intrinsic growth rate and K = «/(3 is
called the carrying capacity. If an extra mortality term due to harvesting h(t)
is included, the dynamics of the fish stock is governed by X (¢ + 1)—X(¢) =
X (o — BX) — h(t). In resource economics it is usually assumed that fisher-
men, when they determine the level of harvesting h(t), have precise knowl-
edge of this relation. However, in the real world this will hardly be the case.
More realistically, economic agents have access to a collection of past data
about the harvested amounts of fish and some other indicators of the size
of the fish population, from which they then try to derive an estimate of the
future fish stock, X¢(¢). With every new piece of information, the estimate
X€(t) will be updated and be used to determine the future harvesting activi-
ties. Obviously, there are many ways to model how agents derive an estimate
from past data. We will assume a simple learning rule called adaptive expec-
tations, which states that the new estimate is a weighted average of the pre-
vious estimate and current data about the actual fish stock, where the weight
on the past estimate (or belief) is a measure of the inertia of the agents. This
leads to a two-dimensional dynamical system, where the dynamic variables
are the actual value and the expected value of the fish stock. The study of the
global properties of this two-dimensional system gives us some interesting
insights on the combinations of true and expected values of the fish stock
which lead to survival or extinction in the long run. As we shall see, this
information is obtained through the study of the basins of attraction, which
reveals another source of complexity, related to the complex structure of the
basins’ boundaries. This can be studied by the method of critical curves (see
Mira et al., 1996, or the chapter 3 of this book). In fact, the two dimensional
map, whose iteration gives the time evolution of the duopoly model with
adaptive expectations, is noninvertible. This feature causes the creation of
complex topological structures of the basins, such as non-connected or mul-
tiply connected sets, even if the attracting sets are very simple, e.g. stable
fixed points (on this topic see also Bischi and Kopel, 2001).

This chapter is organized as follows. First, we make some remarks on the
logistic growth model for different values of the intrinsic growth rate, since
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this has been an important topic in the literature. We then investigate the
dynamics of the fish stock under imperfect competition. We are considering
the effects of harvesting costs and adaptive expectations on the possibility of
conservation and compare the results with the case of a sole owner. We end
the chapter with some concluding remarks.

2 The logistic growth model

To begin with, we summarize some results on the dynamics of the unhar-
vested fish population. As mentioned above, in the absence of any harvest-
ing, the stock of the fish population in period ¢ is determined by the discrete
time logistic equation

Xt+1)=X(1+a-06X). )

The dynamical behavior of this equation has been studied extensively by
May (1976, 1987) and May and Oster (1976). See also Conrad and Clark
(1987).

The map in (2) is conjugate to the standard logistic map 2z’ = pz(1 — 2)
with parameter yn = 1+« through the linear transformation X = (1+«)z /0.
For any @ > 0 there are two fixed points

o
X;=0 and X]=-. (3)

g
The first represents a particular biological equilibrium, known as extinction
of the species, the second is called “carrying capacity” of the species when no
harvesting occurs. The equilibrium point X = 0 is unstable for each o > 0,
and the positive equilibrium X7 is stable for 0 < o < 2. For 2 < a < 3,
even if X7 is unstable, a bounded positive attractor exists around it, charac-
terized by oscillatory dynamics (periodic or chaotic) and trapped inside the

absorbing interval [ = [(1 +a)? (34 2a —a?) /168, (1 + ) /4[3] For
each 0 < ar < 3, the basin of attraction of the positive attractor is the interval

_ 1+a
= (0122).

Note that any initial condition out of this interval would generate a trajectory
with negative values, i.e. it leads to extinction of the fish population in finite
time (see e.g. Clarke, 1990, p.13).
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3 A Duopoly Model

In order to study the three questions stated in the introduction, namely the
interplay between harvesting costs and extinction, the impact of competitive
forces and the influence of adaptive expectations, we consider the following
model of international commercial fishing. Two countries (the duopolists
or players) harvest fish and sell it in their home market and in the foreign
market. The inverse demand functions for the markets ¢ = 1, 2 are given by
p; = a; —b;(x1;+xe;), Where xy;(t) denotes the amount of fish harvested by
player £ = 1,2 and sold in market ¢ at time period ¢. Each player’s harvesting
costs depend on the harvest rate and, additionally, on the total fish stock.
This latter assumption captures the fact that it is easier and less expensive to
catch fish, if the fish population is large. Let X (¢) be the total fish biomass
at time ¢ in the common sea and hy(t) = xx1(t) + zx2(t) the amount of fish
harvested by player k at time ¢. Then the cost function of player £ is given by
Cr=cp+ h% /X, which satisfies the common assumptions that costs are
convex in the fish stock and concave in harvest (see Clark 1990). Note that
players might be heterogeneous with respect to their costs. In such a case
the effect of cost leadership of one player on the resulting equilibrium can be
investigated. Let s;(t) = x1;(t) 4+ 2;(t) be the amount of fish supplied (and
sold) in country ¢ at time period ¢. We assume that the total fish harvested
by the two competitors equals the total fish supplied in the two markets, i.e.
H(t) = ha(t) + ha(t) = s1(t) + s2(2).

3.1 Reaction functions and Nash equilibrium

Let X (t) denote player j’s expectation at time ¢ — 1 of the fish stock
prevailing in the sea at time ¢. Furthermore, let xzjl (t),j # k be player j’s
expectation at time ¢ — 1 of the amount of fish offered for sale by rival k in
market ¢ at time ¢. Then, the expected profits are

T = |la] — € e h2(t

f(f,) [ 1—b (1‘11 + 1‘211)] xr11 + [CLQ — bg(ﬂ?lg + ZL‘212)] Tio—C1—M il((z)

T ¢ = a1 — €2 + eo h% (t)
2(t) [ 1—b (:Ell 1'21)] €21 [a2 — b2(£L‘12 + ;1722)] Tog — C2 — Y2 >~ (t)

We assume that players are only boundedly rational. They try to determine
their harvesting activities such that their current expected profit is maxi-
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mized. The first order conditions for firm 1 are:

38;?1 = @ = 2hien = by =2 )?21(2) =0
a&;ri = ag — 2bax12 — boxsh — 271;;%(2) =
from which
11 = Z—ll — (z11 +25)) — QZ—i%
T2 = Z—z — (212 + 25}) — QZ—;%

follows. Accordingly, the optimal harvesting quantities for player 1, x1;,
for the markets ¢ = 1,2 depend on the predictions player 1 makes of the
quantities offered by its rival and, additionally, on the expected fish stock.
Equivalently, from the first order conditions for player 2 we get that the opti-
mal quantities of player 2 depend on player 2’s predictions of the quantities
offered by its rival, 53 and 273, and the expected fish stock X 2.

For simplicity, we assume that the duopolists have homogeneous expec-
tations and that the players are aware of this, i.e. X1 (t) = X2(t) = X°(¢).
Furthermore, since we are interested in the equilibrium harvesting quanti-
ties, we assume that zzjl = T, 1,5,k = 1,2;5 # k. Given these assump-
tions, solving the system above would yield the optimal quantities of fish,
x5, % k = 1,2, harvested by player k and sold in country ¢ as a function of
the (current) expectation X°. Here instead, we focus on the total amount of
harvest by player k. Adding the equations above yields

By

h1 =2A— (h1+ ha) — 2
1 (h1 + h2) Xe

hy

where A = 0.5 (a1 /b1 + a2/b2) and B = (1/by + 1/b2). The parameter A
is the average of the market volumes of the two markets. The parameter B
is a measure of the (price-)sensitivity of demand. If prices in both markets
drop by 1 unit, then total demand for fish increases by B units. From this
equation, we can get the reaction function for player 1,

A 1
1+50 201+ 2n)

ha
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Analogously, we get the reaction function for player 2,

A 1

hy = -
T+ Be o1+ Bn

hi.

These two functions, represented by straight lines, are depicted in fig. 1.
Obviously, in the duopoly case the harvesting quantities are strategic substi-
tutes, i.e. if one player increases its quantity offered on the market, the other
player’s optimal reaction is to reduce its quantity.

24

(7,13

24 4 h,

Figure 1: Reaction curves

The intersection point of the two lines defines the Nash equilibrium.
From the graphical representation several properties of the Nash equilibrium
quantities can be easily derived. For example, if the market volume A in-
creases, then both reaction curves shift to the right. Accordingly, both Nash
equilibrium harvesting quantities increase. Furthermore, strategic effects can
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also be studied. If the cost parameter 5 increases, then the intersection point
of the reaction curve of player 2 with the vertical axis moves downwards. As
a consequence, the harvesting quantity of player 2 in equilibrium (optimally)
decreases. This is due to the direct cost effect. At the same time, player 1 op-
timally increases the harvesting quantity, which is a consequence of a strate-
gic effect. The harvesting quantities of the players in the Nash equilibrium
can be calculated as

1+ 2
B B
41+ 81+ 82) -1
1+2311
40+ Bmya+8ey) -1

By defining

1 1
+ .

2B 2B
1+_z’)l 1+_”Q

T

fx) =

we can rewrite these expressions as

2A
hi = 4
PO Bt (X)) @
2A

(1+22) (1 + f(X9))

hy =

Hence, the total amount of harvesting of the two players is
H*(t) = h(t) + ha(t) = 24 X0 __ (%)
L+ f(Xe(t))
(1 + (71+‘72)>
401+ 51y (1+ B2y -1

The optimal harvesting quantities of player j in (4) depend on the aver-
age of the market volumes (A), on the sensitivity measure of demand (B),
and on player j’s cost parameter ;. Note that the equilibrium activities
of the two players also depend on the player’s expectation of the fish stock
(X®). This effect is usually absent in quantity-setting duopoly models and,
hence, worth to be investigated in more detail. An increase in the (common)
expectation of the fish stock affects both players. One might be tempted to
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argue that they both extend their harvesting activities. However, in a situ-
ation where the total amount of harvesting offered in the market is already
very high, doing so would decrease the prices on the markets and would
lower profits. Accordingly, it seems reasonable that the relation between
(marginal) harvesting costs play a crucial role in determining the optimal re-
action of the players. Calculating the derivative Oh}/0X°¢, one notices that
the sign depends on the sign of the expression

(271 —72)X? + 4By172 X + 4B*y173.

Hence, for v < 27; we can be sure that the derivative is positive. On the
other hand, for 5 > 2, it turns out that the derivative is positive only if the
expected fish stock is sufficiently small (otherwise negative). An analysis of
the derivative Oh3/0X* yields the same qualitative results with the indices
of firm 1 and 2 exchanged, i.e. for v» > 0.57y; the derivative is positive;
for v < 0.571 it is positive only if the expected stock is sufficiently small.
Summing up, our analysis reveals that if the cost parameters of the duopolists
do not differ too much, i.e. 0.5y; < 72 < 271, both players increase their
harvesting activities if they predict a higher fish stock. Surprisingly, however,
if the cost advantage of one firm is considerable (y2 < 0.5y; or y1 < 0.572),
then the cost leader increases its quantity only for sufficiently small values of
the expected fish stock. If the expected fish stock is sufficiently high, then the
cost leader reduces its harvesting effort! The reason is that the cost leader’s
harvesting is already high due to the high expected fish stock and due to its
low marginal cost. In such a situation it is optimal, even if a higher fish stock
is predicted, to reduce harvesting.

3.2 Perfect foresight for both countries

Taking into account (5), the evolution of the fish stock subject to harvest-
ing by the duopolists is governed by

_ 2Af(XE())
L+ f(Xe(1))

where the parameters v;, a, 3, A and B are positive. By specifying how the
players form their common expectation X ¢, we obtain a dynamic model. To
have a benchmark available, we start from the case where both players have
perfect foresight, i.e.

Xt+1)=X@) (1+a—pX(1)) (6)

X€(t) = X(t) for each t.



10 Gian-Italo Bischi and Michael Kopel

This means that the players are able to accurately predict the fish biomass
which will prevail in the sea in the next period or, in other words, that the
players know the dynamic equation which governs the evolution of the fish
population. The model (6) becomes

X({t+1)=F(X(t)

where

f(x)

F(:L“)::L'(1+a—ﬁa:)—H(:L')::L'(1+a—6:r)—2ATf($)
with

z+ B (71 +72)
(z +2Bm) (x +2By2)

f(z)=2x

The fixed point X5 = 0 always exists, and positive fixed points, if any, are
obtained as solutions of the equation

(7

a— Pz = H(x)
x
With respect to the one-dimensional map of the logistic growth function,
which describes the unharvested population, the presence of harvesting H (z)
makes the unimodal curve lower and an inflection point may exist. This im-
plies that the map may have three fixed points, say X5 = 0 < X7 < X3,

with Xj and X stable and X| unstable.

If the players have equal cost parameters, v; = 72 = 7p, then total
harvesting becomes H (x) = 4Az/(3z+2B~p) and the equation to find the
positive fixed points becomes

362% 4+ (28ypB — 3a) x4+ 2 (2A — Bayp) =0

Hence, if the common cost parameter is sufficiently large, namely

YD > Ba’ ®)

the unique positive fixed point

3a —287pB + 1/ (3a + 287pB)* — 4848
65

* —_
Xop =

©)



Competition in Commercial Fishing 11

exists. Two positive solutions of the quadratic equation existif yp < 24/Ba
and 48A8 < (3a + 206vpB)?*. No positive fixed points exist if 48A3 >
(3a 4 28vpB)>.

Given the results on the local stability of the steady states in the case of
homogeneous players, we can derive some preliminary conclusions concern-
ing the conservation of the renewable resource. Obviously, conservation or
extinction of the resource depends on the relative magnitude of the intrinsic
growth rate « of the renewable resource in comparison with the market vol-
ume, the price sensitivity of the consumers, and the cost parameter vp. From
a regulator’s point of view, « and (3 are biologically given, and A and B are
the given market conditions (of course, they could be influenced by the firms’
marketing activities). Accordingly, only the parameter vp can be influenced
by a regulator in order to achieve conservation of the fish population. If the
value of the cost parameter is sufficiently high (yp > 2A/Ba), extinction of
the resource can be prevented (see fig. 2a). Note that the lower the intrinsic
growth rate or the larger the market volume, the higher the cost parameter
has to be in order to achieve conservation. If yp < 2A4/Ba, extinction can
occur. However, the situation depends on the interplay between the biologi-
cal and the market parameters. If two fixed points X7 and X exist (see figs.
2b and 2d), then conservation results only if the stock of the renewable re-
source is in an intermediate range (larger than X7}, but smaller than X f(_l)).
For smaller or larger sizes of the population, extinction occurs either asymp-
totically (see fig. 2b) or in finite time (see fig. 2d). Observe that if the fish
stock is larger than X i“(_l), then natural mortality due to overpopulation to-
gether with the harvesting activities reduce the fish stock below the level X7
Finally, if the parameter of the harvesting costs is sufficiently small, then no
fixed point exists, and the resource is driven extinct independent of the fish
stock (see fig. 2c).

Several remarks should be made concerning our results. First, it makes
sense that extinction does not occur if costs are sufficiently high. This effect
has been observed before in bioeconomic models of the fishery (see Neher
1990, Pearce and Turner 1990, Clark 1990). It might be surprising, how-
ever, that for 7p < 24/ Ba extinction occurs despite the fact that harvesting
costs increase for a decreasing fish stock. The reason is simply that in this
situation for small sizes of the fish stock the optimal harvest (which is about
2A/B~p) is greater than the internal growth rate « of the resource. Fi-
nally, observe that a fish population can be viewed as a capital asset (see e.g.
Dawid and Kopel, 1997, or Neher, 1990). The owners of the resource expect
the asset to earn dividends at the normal rate of return; otherwise they would
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be tempted to dispose the asset. With respect to the fish stock, the owners
compare the intrinsic growth rate of the resource with the rate of return of
harvesting the resource and investing the proceeds. Extinction occurs, when
the intrinsic growth rate is not sufficiently high. Looking at the local sta-
bility results, apparently the owners in our model behave according to this
view (see figs. 2a-c). However, note that viewing the fish stock as a capital
asset is an inherently intertemporal issue, i.e. the decision is made by con-
sidering the trade-off between harvesting now (and investing the returns) or
let the resource grow (at the internal growth rate) and harvest in the future.
The owners in our model are, in contrast to this, not forward-looking. They
determine the harvest such that the expected profit of the current period is
maximized. In doing this, they do not take into account the effects of their
decision today on the fish stock and their opportunities tomorrow.

A - _—‘fc
X
. IC ; ........
710 (@) O,l\ " —|0 (b) 0»1\ "
o >2A/By, 2A/By, - 1 <a <2A/By,
o > A/Byg A/Bys - 1<a <A/Byg
A A
<l [ 0.} > S [6) >
©) N @
2A/By, - 1 <a <2A/By, o <2A/By, -1
A/Byg - 1<a <A/Byy a <A/By, - 1

Figure 2: One dimensional map F(x) whose iteration gives the dynamics with
perfect foresight.
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If the players are heterogeneous with respect to their cost parameters,
conditions for the existence of the positive fixed points are harder to come
by. However, conditions for the stability of the origin can be easily found
and a qualitative description of the resulting dynamics can be given. For
a = A(m + 7v2)/By17y2, we have F’(0) = 1, and a transcritical bifurcation
occurs. For

Y1+ 72

a>A ,
By17v2

we have F’(0) > 1. The fixed point X is unstable and only a positive
fixed point X exists, where X3 < «/f. The positive equilibrium may be
stable or unstable and surrounded by a bounded attractor, as in the case of
the unharvested resource. For

A71+72 1 <a<AV1+V2
B2 Byiva

we have 0 < F’(0) < 1. The fixed point X is stable and two situations
are possible. First, a pair of positive fixed points exists, X| < X3, unstable
and stable, respectively. X7 is the boundary which separates the basin of X
and that of X . Second, no positive fixed points exists and all the bounded
trajectories converge to X (in finite or infinite time). For values of the
intrinsic growth rate slightly smaller than A(v; + 72)/B71y2, we expect
that the situation with three fixed points occurs. For A(vy1 + v2)/By1v2 —
1 > a, there exists a neighborhood around X such that F'(X{) is negative.
This can be interpreted in saying that extinction is reached in finite time, as
X is not an equilibrium in the biological sense, because the species goes
extinct before reaching it (see also Clark 1990, p. 13). Observe that the set
B of initial conditions which generate positive and bounded trajectories is
given by B = (0,0_;) ,where O_; < (1 + «)//3 is obtained by solving the
equation

H(z)

x

l+a—pPz=

4 Comparison with the cooperative venture case

For the sake of comparison, let us assume that the two players agree
to form a cooperative venture. Equivalently, we might think of this as a
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situation where the property rights for the resource are in the hands of a
sole owner, which may be imagined either as a private firm or a government
agency that owns complete rights to the exploitation of the fish population.
The sole owner harvests fish and sells it not only in its home market, but
also in a foreign market. The inverse demand functions for the markets ¢ =
1,2 are given by p; = a; — bjz;, where x;(t) denotes the amount of fish
harvested and sold in market 7 at time period ¢. Let X (¢) be the total fish
biomass at time ¢ in the common sea and h(t) = z1(t) + x2(t) the amount
of fish harvested (and sold) at time ¢. Then the cost function is given by
C = c + vgh?/X. Furthermore, let X¢(t) denote the owners prediction at
time ¢ — 1 of the fish stock prevailing in the sea at time ¢. Then, the expected
profit in period ¢ reads

h3(t)
- s Xe(t)

We(t) = [al — bliL‘l] 1 + [CLQ — bzl‘z] To —C

If we assume that the sole owner is only boundedly rational in the sense that
he determines the harvesting activities such that the expected profit of the
subsequent period is maximized, it is easy to see that the optimal harvesting
quantity is

A

= B
L+ %y

h*(t) (10)

where A and B are defined as before. The optimal harvesting quantity
of a sole owner can be compared with the total harvesting quantity of the
duopolists. If we assume that the cost parameters of both players are equal,
i.e. 71 = 72 = 7p, then the total amount of harvesting in equilibrium in
the duopoly case is H*(X¢) = 4A/(3 + 2Bvyp/X®), according to (4). It
is easy to see that the following holds: If v > 0.5yp, then for each level
of X¢, H*(X¢) > h*(X¢). In other words, competition has the effect that
the resource is exploited more heavily for each level of expected fish stock.
This has been noticed before in the literature, for example, in connection
with open-access exploitation (see Clark 1990), and also in the context of a
differential game model of fishing (see Levhari and Mirman 1982, and also
Dutta and Sundaram 1993). Note, however, that this result does not give any
information on the relation between the harvesting activities in the long run,
i.e. in the long run steady state.

If we put the logistic growth function and the expression (10) for optimal
harvesting together, then the dynamics of the fish stock subject to harvesting
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by a sole owner is determined by

A
-
]- + Xe(?)
If we assume that the owner can accurately predict the level of the fish stock
in period ¢, i.e. X¢(t) = X(t) V¢, we obtain a one-dimensional dynamical
system. The time evolution of the fish population is then described by the
iteration of the map

X(t+1)=X(t) (1+a—B8X(t) (11)

AX

(12)

The steady states of this dynamical equation are the non negative fixed points
of the map (12). They are given by X5 = 0 and the positive solutions of the
equation

X% - (a— BysB) X + A— aysB =0.

If

A
a>—, 13
o~ (13)

holds, then the slope at X is DF'(0) =1+ o — A/ygB > 1. Hence, X is
unstable and there is a unique positive equilibrium given by

o — B1sB + /(o + B1sB)* — 4AB
20
which may be stable or unstable (with an attractor around it). The equilib-

rium lies inside the absorbing interval [c1, ¢] (like in the situation shown in
fig. 2a) with basin of attraction (O, O(_y)). If

X35 = (14)

< A <a+1

a< — <«

Vs B

then 0 < DF(0) < 1, and no positive equilibria existif A > (o + By5B)? /473
On the other hand, two positive equilibria 0 < X7 < X3 exist, where X3

is given by (14), if A < (a+ 8vsB)? /46 and BysB < a. In this case,
X7 is unstable. The other equilibrium, X3, is stable with basin given by
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B = (Xf, Xi“(_l)>, where Xf(_l) is the rank-1 preimage of X} (compare
fig. 2b). When X3 is unstable, then B is the basin of the absorbing interval
[c1, ] around X, provided that ¢ < X f(_l). Finally, if

o< Ay (15)
Vs B
then we have a right neighborhood of Xj = 0 where F'(X) is negative.

We can now make a comparison between the stability conditions for
the duopoly case and the case of a sole owner in order to see the effects
of harvesting costs and competition on the conservation of the fish popu-
lation. First, note that the threshold (8) for the duopolists’s common cost
parameter ~yp resulting in conservation of the resource independent of the
fish stock is twice as large as for the case of a sole owner, see (13). If
we consider, for example, the existence and stability of the fixed points for
A =55 B=2,0=1,a = 3, then conservation of the resource indepen-
dent of the fish stock is achieved if 71 = vo = vp > 1.833, whereas in the
case of a sole owner, the value of the cost parameter only needs to be half
as large. If we consider, for example, vg = 1, a sole owner with perfect
foresight would achieve conservation of the resource, whereas competition
between only two players leads to extinction of the resource. Interesting
insights can be gained if we look at the long run evolution of the fish pop-
ulation in the two cases. Let us assume that ¢ = 1 and vp = 2. Recall,
that in such a situation, for each level of X¢, H*(X€) > h*(X¢). In other
words, a sole owner would harvest a smaller quantity than the duopolists
together. However, for the particular set of parameters we are consider-
ing, in the steady states X3 ¢ and X3 1, the relation between the harvesting
quantities is reversed: The 'sole owner achieves a higher permanent catch,
H*(X5p) =2 < h*(X5g) = 2.24, where X5 ¢ = 1.37 > X5 , = 1. So,
competition between the duopolists may lead td overconsumptién, with less
left for future periods.

With respect to conservation, in the case of homogeneous costs, it is easy
to see that a more general statement can be made. If n firms harvest the re-
source, then their common cost parameter must be n times as large in order
to achieve conservation of the resource, i.e. 7o > nA/Ba (the subscript
‘O’ stands for oligopoly). Hence, this is another indication that competition
between players might have a detrimental effect on the resource, unless the
costs of the rivals are considerably higher than the corresponding costs of
a sole owner. This is of particular interest if we discuss the effect of mar-
ket entry (see also Szidarovszki and Okuguchi 1998). Imagine a situation in
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which a sole owner harvests fish and offers it on the two markets. Due to
economies of scale and learning effects, the sole owner’s value of the cost
parameter is quite low, e.g. 7s = 1. Despite such low costs, no matter what
the actual fish stock, conservation of the resource results. In this situation a
potential entrant is considering market entry. If entry is accommodated by
the incumbent (the sole owner), then we are dealing with a duopoly situa-
tion just analyzed. The remarkable effect is that even if the new firm has
considerably higher costs, e.g. y2 = 5, extinction will result.

In the heterogeneous case, the cost parameters of both players play a cru-
cial role, as the following simple example demonstrates. Let us assume that
A=1,B=1,8=1,a=2. Now consider the situation of a sole owner and
assume that the value of the cost parameter is v = 1. Since vg > A/Ba =
0.5, it follows that the fish population survives independent of the initial fish
stock. Consider, on the other hand, a duopoly situation where the players are
heterogeneous with respect to costs. Suppose player 1 has a value of the cost
parameter of 41 = 1. Then A(y1 + 72)/B7y172 = 1 + 1/72, and conserva-
tion of the resource depends on the value of the cost parameter of player 2.
If player 1 is the cost leader, i.e. y2 > 3 = 1,then 1 + 1/v2 < o = 2, and
the resource is preserved no matter what the initial fish stock is. However, if
player 2 is the cost leader, then conservation of the fish stock depends on the
initial stock of fish. If player 2’s cost advantage is considerable (2 less than
about 0.23), then extinction occurs for all initial stocks of the resource. The
higher optimal harvesting activity by player results, in this case, in extinction
of the resource no matter what the initial stock of fish is!

5 Duopoly and Adaptive expectations

We now drop the assumption that the players can precisely predict the
evolution of the fish stock. Instead, we assume that the duopolists form
their common beliefs by using the adaptive expectations scheme. The model
describing the evolution of the actual and the expected fish stock becomes
two-dimensional:

{ X(t+1)=X (1) (1+a - BX (1)) — 24 L5500 -
XO(t+1) = (1— A) X(£) + AX (1)

where

x4+ B(y+72)

) = 2 S B (@ 1 2B)
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Hence, for each ¢ the duopolists have homogeneous expectations, where
A € (0,1] denotes the inertia in revising expectations. A higher value of
A coincides with a higher willingness to take new information into account.
Note that the limiting case A = 1 means that the competitors have naive
expectations. The time evolution of realized and expected values is ob-
tained by the iteration of the two-dimensional map 7" : (X (t), X¢(¢)) —
(X(t+ 1), X¢(t+1)). On the horizontal axis of the state space the actual
(or realized) values of the fish stock are measured, whereas along the vertical
axis the expected values are measured at each time period. Hence, points in
a neighborhood of the diagonal X = X° represent good estimates of the fish
stock, whereas the points in the region above (below) the diagonal represent
situations where the fish stock is over- (under-) estimated. From the second
component of (16) it follows that the fixed points must be located along the
diagonal X¢ = X. This implies that in equilibrium the expectations coincide
with the actual size of the fish stock. In other words, in equilibrium expec-
tations are fulfilled and are, hence, rational. Accordingly, we have “Rational
Expectations Equilibria” (REE), whose coordinates, obtained from the first
equation in (16) with X® = X, are the same as for the model with perfect
foresight, namely the fixed point O = (0, 0) and those obtained by solving
equation (7).

For the local stability of the REE, we now have to consider the two-
dimensional Jacobian matrix

_ oA f1X)
L+a—-20X —24- 050

DT(X, X¢) =
A 1-\

computed at the fixed points. For example, for the equilibrium O = (0, 0),
the range of stability is

1-A
’71+’72<1_a

a< A
By1y2 A

and, hence, smaller with respect to the case of perfect foresight (v < A(y1 +
~v2)/Bvy17y2). This set is non-empty only if « < 1 — a(1 — X))/, i.e.

o < A

Of course, if & > 1 then a < A is never satisfied, and O is always unsta-
ble. This result, which is based only on a local stability argument, seems
to suggest that extinction is less probable with adaptive expectations than
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with perfect foresight. However, in the two-dimensional adaptive expecta-
tion case, extinction might even occur if the fixed point (0,0) is unstable.
Looking at (16), we realize that as long as the fish stock and the expected
size of the fish population are positive, the expectation remains positive. On
the other hand, due to natural mortality and harvesting, the fish stock may
become negative. Even if (0,0) is a fixed point, i.e. an equilibrium of the
dynamical system, it might not be a biological equilibrium, because trajec-
tories starting close to it take on negative values for the fish stock. Such a
situation has to be interpreted as extinction in finite time (see Clark (1990)).
Only a rigorous study of the basins of the equilibria give further information
if and when this occurs.

For the study of the basins it is important to notice, first, that the map (16)
is a noninvertible map, because given (X (¢ + 1), X¢(¢ + 1)) several distinct
preimages can be obtained by solving (16) with respect to (X (¢), X¢(t)). As
the map 7' is continuously differentiable, it is easy to obtain the equation of
LC_4, since it is included in the set of points at which the determinant of the
Jacobian vanishes, i.e.

det DT (X, X¢) = (1= A) (1 +a—28X)+AH'(X)=0. (17)

It is also easy to obtain the image of LC_; by applying 7, i.e. LC =
T (LC_;). These sets constitute the so called critical curves, which sep-
arate the phase plane into regions Z; whose points have k preimages, or,
equivalently, where k distinct inverses of I" are defined (see e.g. Mira et al.,
1996, or chapter 3 of this book). It is interesting to note that for A < 1 the
curve LC_; can be expressed as

A piixee
—% 1+a+mH(X) s

X
whereas if A = 1 (i.e. in the case of naive expectations), then det DT never
vanishes, since det DT = H'(X¢) = 2Af(X¢)/[1+ f(X¢))* > 0 for
each X¢. So, for A\ = 1 no critical curves exist. As we shall see in the
following, the presence of critical curves may have important consequences
on the structure of the basins’ boundaries and on the occurrence of global
bifurcations which cause qualitative changes in the structure.

We have seen that in a situation where the duopolists have perfect fore-
sight, as harvesting becomes cheaper, the danger of extinction of the resource
grows. A similar result seems plausible for the model (16) with adaptive ex-
pectations. In the remainder of this section, we give a more rigorous study
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of the relation between harvesting costs and the dynamics of the resource
if fishermen have adaptive expectations. We also compare the results with
the benchmark case of perfect foresight. In particular, as before, we are in-
terested in the effects of changes in harvesting costs on the probability of
conservation (or extinction). Again, we assume that the players are homo-
geneous with respect to their cost parameters, i.e. 71 = 72 = yp and, in
order to show some numerical simulations, we consider the following set of
parameter values: « = 3, 6 =1, A = 5.5, B = 2. Recall that, in the case of
a sole owner with perfect foresight, for v¢ = 1 conservation of the resource
occurs independent of the initial size of the fish stock. In the duopoly case,
conservation of the resource is achieved if player’s cost parameters are such
that yp > 1.833, i.e. the value of the cost parameter has to be at least 83.3%
higher. Accordingly, if we assume yp = 2, then in the duopoly case under
perfect foresight the resource is conserved no matter what the initial size of
the fish population is. Moreover, the results on the existence of two positive
fixed points X7 and X3 show that as long as yp > 1.812, conservation is
achieved at least from some initial values of the resource stock (to be more
precise, for initial stock sizes in the interval [ X7, Xf(q)])- How does the
situation change when players have adaptive expectations? The first thing to
notice is that for vp = 2, extinction of the resource occurs for all initial val-
ues of the actual and the predicted fish stock. Hence, errors in the prediction
of the fish stock lead to extinction unless costs are higher than in a situation
with perfect foresight. For adaptive expectations with A = 0.3, we show the
basin of the positive equilibrium (X5, X3) for vp = 4 (fig. 3a), yp = 2.6
(fig. 3b), yp = 2.575 (fig. 3¢c), yp = 2.573 (fig. 3d) and vp = 2.56 (fig.
3e). Observe that the basin of the equilibrium (X3, X3), which for this set
of parameters is the only stable steady state, is represented by the white re-
gions, whereas the grey points denote the set of initial conditions leading to
extinction. Also note that the horizontal axis represents the actual level of
the fish stock, whereas the vertical axis represents the expected fish stock.
Obviously, conservation of the resource depends both on the initial sizes of
the fish stock and the expected fish stock. For example, for a high value of
the cost parameter, if the player’s prediction of the fish stock is roughly accu-
rate (i.e. the initial condition is taken from a neighborhood of the diagonal)
then conservation results except in the cases where the (the actual and the
predicted) resource stock is quite high (see fig. 3a). On the other hand, if the
players initially overestimate the size of the fish stock (i.e. the initial con-
dition is chosen above the diagonal, with X¢(0) > X (0)), then this might
result in extinction of the resource. Roughly speaking, the evolution is as
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follows. Since the player’s expectation of the fish stock is high, harvesting
effort is high. This, subsequently, results in a reduction of the actual fish
population. Since A is small, the prediction of the future fish stock remains
high, and this leads to a further reduction of the fish stock. This, taken to-
gether with the small reproduction of the resource due to its small size, leads
to extinction in finite time. Note, however, that the evolution of the trajecto-
ries might crucially depend on the initial values of stock and expectation. As
an example, consider a situation where both the expected and the actual fish
stock are small. Due to low harvesting activities, the fish stock increases and
the expected value increases too. Eventually, the actual and the expected fish
stock are rather large. Now, due to overpopulation and the increase in har-
vesting activities, the actual fish stock is severely diminished. The evolution
of trajectories is about the same, no matter if extinction results or not. It now
depends on the precise initial size of the fish population and the predicted
stock if extinction occurs.

Observe that, given the information on the structure of the basins and the
critical curves, we can make a qualitative prediction of the evolution of the
trajectories, since each grey tongue depicted in figs. 3a-d is the preimage of
the corresponding tongue to the right of it. This is due to the folding action of
the noninvertible mapping 7', see Mira et al. (1996), see also chapter 3 of this
book. Indeed, the global bifurcations which change the topological structure
of the basin of the positive equilibrium, from simply connected (figs. 3a-b) to
multiply connected (fig. 3¢) to the union of non connected portions (fig. 3e),
can be easily explained on the basis of the theory of critical curves in terms
of contacts between the basin boundaries and LC'. For example, the creation
of “grey holes” nested inside the white basin of the positive equilibrium are
the preimages of the small portion of the grey region, indicated by an arrow
in fig. 3c, which entered the region Z3 after a contact between LC' and the
basin boundary. Analogously, the transition from a multiply connected into a
non connected basin, i.e. from fig. 3¢ to fig. 3d, is a consequence of a contact
between the basin boundary and LC near the point indicated by the arrow
in fig. 3d. The splitting of white islands into pairs of smaller ones is due to
another contact between LC' and the basin boundary at the point indicated
by the arrow of fig. 3e. As in the benchmark model, for lower values of the
cost parameter, the probability of extinction increases in the case of adaptive
expectations (see figs. 3b-d), i.e. the set of stock-expectation-combinations
resulting in conservation of the resource shrinks.

Once harvesting costs reach a certain level, the situation changes rapidly
and drastically. In order to demonstrate the effect of adaptive expectations
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Figure 3: Some numerical computations of the basins of the positive equi-
librium (white regio). The grey region represents the set of initial conditions
leading to extinction of the fish stock.
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with a different degree of inertia, we consider the same set of parameters
as above, but with A = 0.1 and yp = 2.56 (see fig. 3f). In this case,
lower inertia in revising expectations enhance the stability of the positive
equilibrium and, consequently, make extinction of the living resource less
likely. However, it is worth noticing that the positive equilibrium is very
close to the upper boundary of its basin. Despite the fact that the system is
close to its equilibrium, a slight overestimation of the fish stock may lead to
extinction of the fish population.

6 Concluding remarks

The combination of oligopoly games and resource economics is a chal-
lenging task, since the biological law which regulates the natural growth of
the resource has to be taken into account. In fact, renewable resources, like
a fish population, grow and decline over time. Due to their inherent dynamic
nature, their evolution can only be understood using dynamic models. In
particular, when the resource is subject to harvest, the problem of conser-
vation is a complex issue. In this chapter we have proposed a discrete-time
dynamic model which describes the decisions of duopolists engaged in com-
mercial fishing, where each of the players sells the harvested fish both in a
home and in a foreign market. Within this framework we have discussed sev-
eral important topics, for example, the relation between harvesting costs and
conservation of the resource, the influence of the market structure and the
changes if agents are not able to predict the future evolution of the fish stock
accurately. We studied the duopoly case in order to stress the role of com-
petition and compared this situation with the case of a cooperative venture.
Furthermore, adaptive expectations have been proposed to stress the role of
expectations formation under bounded rationality, where we have confronted
the results with the perfect foresight case.

The assumption of adaptive expectations has led us to a two-dimensional
dynamical system in discrete time. Through a global analysis of the resulting
noninvertible map, we have shown that, even if we limited our study to a set
of parameters which give very simple attractors, namely stable fixed points,
another source of complexity arises which is due to the creation of complex
topological structures of the basins of attraction. Our analysis has been based
on a combination of analytic, geometric and numerical methods. The global
(or contact) bifurcations which causes the creation of complex structures of
the basins have been studied by the method of critical curves (see Mira et al.,
1996, Bischi and Kopel, 2001, see also the chapter 3 of this book).
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Our main findings are quite intuitive and can be summarized as follows.
Not surprisingly, higher harvesting costs tend to achieve conservation of the
resource, independent of the fact if the right to harvest is held by a sole
owner or if several players compete. Competition increases the probability
of extinction. For example, if we take the case of a sole owner as a refer-
ence point and assume that harvesting costs of the sole owner are such that
conservation is achieved, then with only two players, the harvesting costs of
the competitors have to be twice as high to achieve the same result. More-
over, the numerical example given in this paper indicates that the long run
fish stock in the duopoly case is smaller than in the cooperative venture case
and the permanent catch in the latter situation is higher. If we, additionally
(and realistically), assume that agents are not able to predict the future fish
stock accurately and instead use an adaptive expectation scheme, extinction
becomes more likely with respect to the case of perfect foresight, especially
when fishermen overestimate the fish stock.
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