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Abstract

We analyze a nonlinear discrete time Cournot duopoly game, where players have adaptive expec-
tations. The evolution of expected outputs over time is generated by the iteration of a noninvertible
two-dimensional map. The long-run behavior is characterized by multistability, that is, the presence
of coexisting stable consistent beliefs, which correspond to Nash equilibria in the quantity space.
Hence, a problem of equilibrium selection arises and the long run outcome strongly depends on
the choice of the players’ initial beliefs. We analyze the basins of attraction and their qualitative
changes as the model parameters vary. We illustrate that the basins might be nonconnected sets
and reveal the mechanism which is responsible for this often-neglected kind of complexity. The
analysis of the global bifurcations which cause qualitative changes in the topological structure of
the basins is carried out by the method of critical curves. © 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

In many economic models, multiple equilibria emerge and stability arguments are often
used to select among them. The idea behind this approach is that an equilibrium point is a
convention that might arise among players interacting repeatedly. As unstable equilibria are
unlikely to be observed as the result of such an evolutionary process, only stable equilibria
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have to be considered. If this stability argument selects a single equilibrium, we can abstract
from the process itself with its undesirable dependence on historical accident. However,
oftentimes many equilibria survive this refinement, and a situation of strategic uncertainty
prevails. The selected equilibrium is then path-dependent, and the observed equilibrium
depends on the initial condition.

To address this issue, we consider a simple Cournot-type duopoly market where com-
petitors produce goods which are perfect substitutes and offer them at discrete time periods
t = 0, 1, 2, . . . on a common market. The duopolists act in a situation of strategic interde-
pendence. Hence, at each time period each player must form an expectation of the rival’s
output in the subsequent period in order to determine the corresponding profit-maximizing
quantities for period t+1. If we denote by qi(t) the output of firm i at time period t , then the
optimization problems through which the firms determine their quantities qi(t +1) are rep-
resented by Maxq1Π1(q1, q

e
2(t + 1)) and Maxq2Π2(q

e
1(t + 1), q2), respectively, where the

functionΠi(·, ·) denotes the profit of firm i and qei (t+1) the expectation of the competitors’
output. If we assume that these optimization problems have unique solutions, then

q1(t + 1) = r1(q
e
2(t + 1))

q2(t + 1) = r2(q
e
1(t + 1))

(1)

where r1 and r2 are often referred to as Best Replies (or reaction functions).
A lot of work has been done on characterizing the dynamical properties of such a type of

system under various assumptions on the expectation formation. Cournot (1838) considered
the case of naive expectations, qei (t + 1) = qi(t), and studied the resulting dynamics of the
system (q1(t + 1), q2(t + 1)) = (r1(q2(t)), r2(q1(t))), where r1(·) and r2(·) were linear
functions. Furthermore, oligopoly models with naive expectations and monotone decreasing
reaction curves (resulting from assumptions on the demand and cost functions) have been
studied intensively in the literature, where the focus has been on local stability properties. 1

Since, these models are linear, the stability of the Nash equilibrium is then global, i.e.
independent of the initial quantities chosen by the players.

In contrast to this literature, we will focus on different issues. First, we will introduce
nonlinearities into Eq. (1) and we will analyze the global dynamical properties. In the
presence of nonlinearities, local stability of an equilibrium does not imply its global sta-
bility. Al-Nowaihi and Levine (1985) emphasize this fact: “However, the Cournot process
is an attempt at a solution under the more plausible assumption of partial information.
Near equilibrium, it can be claimed to be a reasonable approximation to a richer kind of
consistent-expectation formation, and for this reason the Cournot adjustment process is still
of interest. It has been suggested that from this argument local stability, but not global sta-
bility should be studied. However, this is incorrect. Local stability establishes the stability
of a system in some region around the equilibrium, but this region can be so small that
stability in any practical sense does not exist. Global stability in some defined finite region,

1 Theocharis (1960) solved the problem of local stability of the unique Nash equilibrium in a linear oligopoly
model with n competing firms. His stability result in linear oligopoly games has been generalized to situations
where the firms are assumed to use partial adjustment to the Best Response and form adaptive expectations. See,
e.g. (Fisher, 1961; Okuguchi, 1976; Szidarovszky and Okuguchi, 1988; Szidarovszky and Yen, 1991).
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thus, strengthens the local stability and the observability of a Cournot equilibrium” (p. 308,
emphasis added).

Second, we are interested in situations, where several (Nash) equilibria coexist and an
equilibrium selection problem arises. Although, multiple (Nash) equilibria might also occur
when the Best Replies are linear, the issue of global dynamics is still easy to analyze (see, e.g.
Rassenti et al., 1995). On the other hand, it is well-known that various economic conditions
give rise to nonmonotonic Best Replies. Among them are nonlinearities or externalities in
the cost function, demand conditions which can be captured by a constant elasticity demand
relation or the fact that competitors regard their products as strategic complements. As a
consequence, this nonmonotonicity often leads to multiple Nash equilibria (see Furth, 1986;
Puhakka and Wissink, 1995; Bulow et al., 1985a; Bulow et al., 1985b; Cooper and John,
1988). The global dynamical properties of such a nonlinear game has not been analyzed so
far. 2 Third and finally, following the criticism on the assumption of naive expectations, in
this paper we will assume that firms revise their beliefs according to the adaptive expectations
rules

qe1(t + 1) = qe1(t) + α1(q1(t) − qe1(t))

qe2(t + 1) = qe2(t) + α2(q2(t) − qe2(t))
(2)

where αi ∈ [0, 1] are referred to as the adjustment coefficients. Adaptive expectations have
been proposed in many contexts as a more sophisticated kind of learning rule with respect
to naive expectations. 3

We will introduce a nonlinear Cournot model, where several stable equilibria exist, and
demonstrate that the final outcome of the repeated game with adaptive expectations may
depend on both the values of the parameters and the starting conditions of the game. In
this sense, our work can be seen as a contribution to the equilibrium selection problem in
dynamic economic models (see, e.g. Van Huyck et al., 1990; Van Huyck et al., 1994; Van
Huyck et al., 1997). We will also show that the basins of attraction of coexisting equilibria
might have a complex topological structure. Although, the corresponding dynamics may be
simple, it will become clear that the basins of these equilibria might be quite complicated
sets. With the help of critical curves (see, e.g. Mira et al., 1996 or Abraham et al., 1997),
we study some global bifurcations which mark the route to an increasing complexity of the
basins’ structures. Our work can also be considered as a continuation and extension of the
work by Day (1994). In his contribution, Day studies multiple-phase dynamical systems
in one dimension, and regime-switching, stable, unstable and escape sets. As will become
clear later, a lot of the phenomena mentioned in Day’s work can be described and illustrated
by properties of noninvertible maps.

The organization of the paper is as follows. In Section 2, we give a specification of the
model and in Section 3, we present its equilibria. We then deal with the case where players
are homogeneous with respect to their Best Replies and their expectation formation. Section

2 Recently, the analysis of economic dynamic models has been increasingly focused on global dynamic properties.
See, e.g. (Brock and Hommes, 1997; Bischi et al., 2000a; Bischi et al., 2000b; Bischi and Naimzada, 1999; Bischi
et al., 1999; de Vilder, 1996).

3 There is empirical evidence that individuals form adaptive expectations (see, e.g. Marimon and Sunder, 1993;
Marimon and Sunder, 1994; Yen and Szidarovszky, 1995).



76 G.I. Bischi, M. Kopel / J. of Economic Behavior & Org. 46 (2001) 73–100

4 gives results on the local stability of the equilibria. Section 5 shows how to analyze the
global stability, i.e. the basins of attraction of the equilibria and their qualitative changes
as the parameters of the model change. The case of heterogeneous players is studied in
Section 6. Finally, Section 7 briefly discusses the issue of chaotic consistent expectations
equilibria. All proofs are given in the Appendix.

2. The model

If we consider the Best Replies in (1) together with Eq. (2), which describe how the
beliefs of the firms are updated as new information emerges, it seems that our model is
represented by a four-dimensional dynamical system. However, it is possible to reduce the
dimension of the system by inserting Eq. (1) into Eq. (2). We then obtain the following
two-dimensional dynamical system in the belief space 4

qe1(t + 1) = (1 − α1)q
e
1(t) + α1r1(q

e
2(t))

qe2(t + 1) = (1 − α2)q
e
2(t) + α2r2(q

e
1(t)).

(3)

The quantities chosen by the competitors are then given, for each t ≥ 0, by the transforma-
tion

q1(t + 1) = r1(q
e
2(t + 1))

q2(t + 1) = r2(q
e
1(t + 1)),

(4)

which is a mapping from the belief space into the action space. The steady states of the
dynamical system (2), defined by qei (t + 1) = qei (t), i = 1, 2, i.e.

qe1(t) = r1(q
e
2(t))

qe2(t) = r2(q
e
1(t))

(5)

are located at the intersections of the two reaction curves and are independent of the adjust-
ment coefficients α1 and α2. In other words, a steady state is a situation where beliefs are not
further revised and, hence, quantities do not change. More importantly, from Eq. (5) it now
follows that at the steady states the expected outputs coincide with the realized ones. Hence,
in belief space we are considering a situation where beliefs are in this sense consistent and
this corresponds to a Nash equilibrium in the quantity space.

In order to get a complete description of our dynamic Cournot game, we have to specify the
reaction functions. As mentioned in the introduction, we are interested in microeconomic
foundations which gives rise to nonmonotonic Best Replies. Several specifications can
be found in the literature (see, e.g. Furth, 1986; Van Witteloostuijn and Van Lier, 1990).
However, they all share the disadvantage that an analytical expression for the Best Responses
cannot be given or that it is quite complicated. Since, we want to keep the mathematical

4 Hommes (1998) has taken a similar step in order to study the dynamics of price (expectation) paths in a Cobweb
model with adaptive expectations and nonlinear supply and demand. Originally, the dynamics of the system were
described by two equations, one for the expectation formation and one for the price dynamics. This system can
be reduced to a single difference equation capturing the dynamics in belief space.
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analysis tractable, we will use the following well-known type of functions as an illustrative
example instead:

r1(q2) = µ1q2(1 − q2)

r2(q1) = µ2q1(1 − q1)
(6)

Although, the properties of the dynamical system depend on the exact specification of the
Best Replies, assuming a quadratic form has the advantage that it gives a simple framework in
which we can focus on the main points of our analysis-global dynamics, multiple equilibria
and equilibrium selection. Note that it has been shown elsewhere (Kopel, 1996) that the
functions given in Eq. (6) can be derived as Best Responses if the competitors regard their
products as strategic complements over a certain range of the set of admissible actions. The
parameters µi, i = 1, 2 then measure the intensity of the positive externality the actions of
one player exert on the payoff of the other player.

To simplify the notation, let x(t) = qe1(t) and y(t) = qe2(t). Inserting the reaction
functions specified in Eq. (6) into Eq. (3), the time evolution of the competitors’ beliefs is
obtained by the iteration of the two-dimensional map T : (x, y) → (x′, y′) defined by

x′ = (1 − α1)x + α1µ1y(1 − y)

y′ = (1 − α2)y + α2µ2x(1 − x)
(7)

where (′) denotes the unit-time advancement operator. That is, if the right hand side variables
represent the beliefs held by the competitors at time period t , then the left hand side repre-
sents the beliefs at time (t + 1). Starting from given initial beliefs (x(0), y(0)) = (x0, y0),
the iteration of Eq. (7) uniquely determines a trajectory of beliefs in the belief space

τ(x0, y0) = (x(t), y(t)) = T t (x0, y0), t = 0, 1, 2, . . . (8)

from which the corresponding sequence of realized outputs is obtained by Eq. (4). In what
follows, we will assume that the initial beliefs are chosen in the strategy space S = {[0, 1]×
[0, 1]}. Clearly, negative values of quantities or beliefs have no economic meaning, and the
reaction functions considered imply that producing more than one is a strictly dominated
strategy.

The map (7) contains four parameters: µi > 0, i = 1, 2, and the adjustment coefficients
αi ∈ [0, 1], i = 1, 2. We will focus on the case µi ∈ [1, 4], i = 1, 2. It is easy to see that if
µi ∈ [0, 4], i = 1, 2, then the region S is trapping for each value of αi . Any trajectory of
beliefs which starts inside the strategy space S remains inside for each t ≥ 0. The same is
true for the realized outputs, computed by Eq. (4) with reaction functions (6).

3. Equilibrium beliefs and Nash equilibria

Recall that the fixed points of the map (7) defined by (x, y) = T (x, y) are pairs of
consistent beliefs. They are obtained as the solutions of the algebraic system x = µ1y(1 −
y), y = µ2x(1−x), and it is easy to see that these consistent beliefs coincide with the Nash
equilibria of the duopoly game (see Kopel, 1996). So, in what follows, we will often use the
terms fixed point, consistent or equilibrium beliefs and (Nash) equilibrium interchangeably.
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A simple analytical solution can be found under the assumption that the players are
homogeneous with regard to their Best Replies, i.e.

µ1 = µ2 = µ. (9)

Throughout the paper, we will assume that Eq. (9) holds, and that heterogeneity of the
players arises only with respect to their belief formation. Under this assumption, besides
the trivial solution O = (0, 0), a positive symmetric equilibrium exists for µ > 1, given by

ES =
(

1 − 1

µ
, 1 − 1

µ

)
,

Two further equilibrium beliefs

E1 = (x̄, ȳ) and E2 = (ȳ, x̄) (10)

are created at µ = 3, where x̄ = (µ + 1 + √
ψ)/2µ, ȳ = (µ + 1 − √

ψ)/2µ and
ψ = (µ + 1)(µ − 3). For µ > 3 they are located in symmetric positions with respect to
the diagonal ∆. The corresponding Nash equilibria have the same entries. Notice that in
equilibrium E1, the beliefs are such that firm 1 will dominate the market and the realized
quantities confirm these beliefs. In the equilibrium E2 firm 2 dominates.

As mentioned in the introduction, in the presence of multiple Nash equilibria the problem
of equilibrium selection arises (see Van Huyck and Battalio, 1998), and this naturally leads
to the question of stability (see Van Huyck et al., 1994; Van Huyck et al., 1997). The dynamic
process becomes path-dependent, i.e. which equilibrium is chosen in the long run depends
on the initial beliefs of the players. In the remainder of the paper we will study the impact
of homogeneous and heterogeneous beliefs on the long run properties of the game. We will
try to answer the question how the global dynamic properties of the system — structure of
the basins in the strategy space S = [0, 1]2 — depend on the extent of the heterogeneity of
the players’ beliefs.

4. Homogeneous adaptive expectations

In this section, we will study the local stability of the equilibria under the assumption
that players are homogeneous with respect to their expectation formation. Local stability of
some equilibrium beliefs means that if the initial beliefs are not too far from the equilibrium,
as the game with boundedly rational players is played repeatedly it will eventually reach
a situation of consistent beliefs, where no player can gain by unilateral deviation from
the realized equilibrium quantities. On the other hand, if an equilibrium is unstable, then,
even if the initial expectations are very close to it, repeated choices of the players will
move them away from this equilibrium. The trajectory of beliefs may then converge to
other equilibrium beliefs or it will fail to converge at all. In the latter situation, players
do not learn to play the Nash equilibrium assignments and expectations are consistently
wrong.
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4.1. Naive expectations as a benchmark case

As pointed out above, many authors have been interested in the dynamics of the Cournot
tâtonnement process which is obtained under the assumption that players have naive ex-
pectations. Naive expectations are obtained from Eq. (2) in the limiting case α1 = α2 = 1.
In this case, the time evolution of the expected outputs coincides with that of the realized
outputs with a delay of one period. 5 The following result provides a starting point for the
analysis which follows.

Proposition 1. For the map (7) with homogeneous Best Replies and naive expectations,
i.e. µ1 = µ2 = µ and α1 = α2 = 1, the following results hold:

• for 0 ≤ µ ≤ 4 each trajectory starting from initial beliefs inside the region S =
{[0, 1]×[0, 1]} is ultimately bounded inside the trapping squareR = [0, µ/4]×[0, µ/4] ;

• for 1 < µ < 3 the fixed point ES = (1 − 1/µ, 1 − 1/µ) is the only stable equilibrium
belief;

• for 3 < µ < 1 +√
6 three coexisting attractors exist: the stable fixed points E1 = (x̄, ȳ)

and E2 = (ȳ, x̄) , given by Eq. (10), and the stable 2-cycle C2 = (x̄, x̄), (ȳ, ȳ) .

From the viewpoint of economic dynamics, this proposition is interesting because it
states that the existence of multiple equilibrium beliefs implies the existence of 2-cyclic
beliefs as well. Moreover, if two stable equilibrium beliefs are present then necessar-
ily a stable cycle of period 2 coexists with them. Accordingly, depending on the initial
beliefs, players either learn their Nash equilibrium assignments (and beliefs are consis-
tent) or they end up in a situation where they rely on cyclic inconsistent beliefs
repeatedly.

To illustrate our results, in Fig. 1, we present the basins of attraction of the two equilibria
E1 and E2 and the 2-cycle C2 = {C(1)

2 , C
(2)
2 }. The light and dark grey regions represent the

basins ofE1 andE2, respectively, the white region represents the set of points which generate
trajectories converging to the 2-cycle. The reason why the basins obtained in this case have
such a particular structure is explained in Bischi et al. (2000b). Fig. 1 reveals that learning is
path-dependent: if the initial beliefs of the players are in the set of light grey points around
E1 (immediate basin), then beliefs converge toE1 and play converges to a Nash equilibrium
in which firm 1 dominates the market. Similarly, if the players hold initial beliefs which are
situated in the immediate basin of E2 then play converges to E2 , where firm 2 dominates
the market. In contrast to this, if initial beliefs are in the set given by the white region around
the 2-cycle, then the learning process fails to converge to consistent beliefs and players fail
to learn equilibrium assignments. In this case, in the long run players predict situation C(1)

2 ,

but instead situationC(2)
2 is materialized. Subsequently, they predictC(2)

2 , but insteadC(1)
2 is

realized, and so forth. It should be noted that each immediate basin — the larger connected
portion of a basin which includes the attractor itself — is given by a rectangle. Accordingly,

5 The iterated map under naive expectations, Φ : (x, y) → (r1(y), r2(x)), has been analyzed by, e.g. (Rand,
1978; Dana and Montrucchio, 1986; Bischi et al., 2000b), where it is shown that the resulting dynamical system
has some peculiar properties. These are due to the fact that the second iterate is a decoupled map: Φ2(x, y) =
Φ(r1(y), r2(x)) = (F (x),G(y)), where F(x) = r1(r2(x)) and G(y) = r2(r1(y)).
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Fig. 1. For µ1 = µ2 = 3.4 the duopoly game with quadratic reaction functions and naive expectations has
two stable steady-states (Nash equilibria) E1 and E2 and a stable cycle C2 of period two. These attractors are
represented in the strategy space S = {[0, 1] × [0, 1]}. The light and dark grey regions represent the basins of E1

and E2, respectively, the white region represents the basin of C2.

it is not the distance from the initial belief to the equilibrium which determines the conver-
gence properties: there are initial beliefs relatively close to a Nash equilibrium for which
the learning process fails to converge. This becomes even more apparent if we consider
not only the immediate basin, but the whole basins of attraction, i.e. the set of all white,
dark grey and light grey points. Observe that the structure of the basins is quite complicated
and these sets are nonconnected, despite the fact that the dynamics of the belief paths is
simple.

Up to now, the literature on this kind of nonlinear Cournot games was mainly concerned
with the analysis of the complex long-run behaviors, i.e. the existence of chaotic attracting
sets (see Rand, 1978; Dana and Montrucchio, 1986; Kopel, 1996). Instead, here we focus
on another kind of complexity which clearly appears in Fig. 1: it is related to the complex
topological structure of the basins, even if the corresponding long-run dynamics are very
simple, like the equilibria and the cycle of period 2. Indeed, it has been proven in Bischi
et al. (2000b) that the coexistence of many attracting sets with rather complicated basins is
an important feature of Cournot models with nonlinear reaction functions. Note that these
properties can only be revealed by a global analysis of the dynamic economic model. Later
on we will study the transition from simple to complicated basins, and we will reveal the
mechanism which causes it.
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4.2. Analysis of local stability

We first present a brief analysis of the local stability of the fixed points of the map (7)
with the assumption of identical Best Replies (9). We further assume that the two firms
are also homogeneous with regard to their expectations formation, i.e. they use the same
adjustment coefficients

α1 = α2 = α (11)

in their adaptive expectations rule. Taken together, these two assumptions imply that the
two competitors behave identically. In other words, if the firms start with equal beliefs
x(0) = y(0) and behave identically over time, then beliefs are equal for each t ≥ 0, i.e.
x(t) = y(t) (and consequently q1(t) = q2(t)). Mathematically speaking, the map (7) has
the following symmetry property: it remains the same if the variables x and y are swapped,
i.e. T (P (x, y)) = P(T (x, y)), where P : (x, y) → (y, x) is the reflection through the
diagonal ∆ = {(x, x), x ∈ R}. This symmetry property implies that the diagonal ∆ is a
trapping subspace for the map T , i.e. T (∆) ⊆ ∆. It is worth mentioning that the belief
trajectories embedded in ∆ are governed by the restriction of the two-dimensional map T

to ∆, f = T |∆ : ∆ → ∆, where the map f , obtained by setting x = y and x′ = y′ in
Eq. (7), is given by

x′ = f (x) = (1 + α(µ − 1))x − αµx2. (12)

This map may be interpreted as a simple one-dimensional model of a “representative firm”,
because the evolution of its beliefs reflects the common behavior of the two competitors. 6

For the case of homogeneous players, a complete characterization of the stability of the
equilibria can be easily obtained for values of the parameters µ and α in the set Ω =
{(µ, α)|µ > 0, 0 ≤ α ≤ 1}. The following result is presented in detail to make a precise
statement about the regions of the parameter space for which equilibria exist and are stable.
The proof of this statement is based on a standard analysis of the eigenvalues of the Jacobian
matrix.

Proposition 2 (local stability). Consider the case of homogeneous players, i.e. let Eqs. (9)
and (10) hold. Then

• the equilibrium ES = {1 − 1/µ, 1 − 1/µ} exists for each (µ, α) ∈ Ω and it is locally
asymptotically stable for (µ, α) ∈ Ωs(ES) , where

Ωs(ES) = {(µ, α) ∈ Ω | 1 < µ < 3}; (13)

• the equilibria E1 = (x̄, ȳ) and E2 = (ȳ, x̄) , given by Eq. (10), exist for µ ≥ 3 and are
both locally asymptotically stable for (µ, α) ∈ Ωs(Ei), where

Ωs(Ei) =
{
(µ, α) ∈ Ω |µ > 3, 0 < α < αh(µ) = 2

µ2 − 2µ − 3

}
; (14)

6 The question when it makes sense to focus the analysis on the model of a representative player instead of the
higher-dimensional model with two players is investigated in Kopel et al. (2000); Bischi et al. (1999).



82 G.I. Bischi, M. Kopel / J. of Economic Behavior & Org. 46 (2001) 73–100

• in the subset of Ωs(Ei) given by

Ωs(Ei, C2) =
{
(µ, α) ∈ Ωs(Ei) |α > αp(µ) = 6 − √

12µ(µ − 2)

3 + 2µ − µ2

}
(15)

the two stable equilibria Ei , i = 1, 2, coexist with the stable cycle of period two

C2 = {(p1, p1), (p2, p2)} ∈ ∆ (16)

where p1 = (α(µ − 1) + 2 −
√
α2(µ − 1)2 − 4)/2αµ and p2 = (α(µ − 1) + 2 +√

α2(µ − 1)2 − 4)/2αµ

The results given in Proposition 2 are illustrated in Fig. 2. It can be observed that a wide
range of parameter values exists which gives coexistence of stable equilibria (the shaded
region in Fig. 2). Moreover, for sufficiently high values of the adjustment coefficient α,
namely for α > αp(µ), also a stable cycle of period 2 coexists with the two stable equilibria.
Hence, looking at these results two questions might be raised: first, if the criterion of local
stability does not select a unique equilibrium, can we give a global analysis which provides
us with more information about the link between initial beliefs and long run outcomes?
It should be stressed again that in situations of multistability the local stability properties

Fig. 2. Space of the parameters Ω = {(µ, α) |µ > 0, 0 ≤ α ≤ 1} for the map T under the assumption of
homogeneous players. Ωs(O) represent the set of parameters such that the fixed point O is asymptotically stable,
Ωs(ES) represent the set of parameters such that the fixed point ES is asymptotically stable, Ωs(Ei) represents
the common stability region of E1 and E2, Ωs(Ei, C2) represents the subset of Ωs(Ei) where the stable cycle
C2 coexists with the two stable Nash equilibria E1 and E2. The portion of the curve of equation α = 1/(µ + 1)
included inside Ωs(Ei) represents the set of parameters at which the transition between simply connected and
nonconnected basins of the stable Nash equilibria E1 and E2 occurs.
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are not sufficient to solve the question of equilibrium selection, and the delimitation of the
basins of attraction becomes important in order to forecast the long-run evolution of any
economic dynamic system. Second, if equilibria are only learned when initial beliefs are
chosen from a certain subset of S and otherwise learning does not occur, it becomes crucial
to get information on the relative size of the set of initial beliefs from which players can
eventually coordinate their actions (see Mailath, 1998; Fudenberg and Levine, 1998). If
initial beliefs from which learning does not occur dominate, then we should be concerned
about the robustness of the model. Notice that the results of Section 4.1 are obtained in the
limiting case, α = 1.

5. Basins of coexisting equilibria in the case of homogeneous adaptive expectations

Stability arguments are often used to select among multiple equilibria (see, e.g. Cox and
Walker, 1998). However, when several coexisting stable equilibria are present, each with
its own basin of attraction, the initial conditions become crucial to deduce the outcome of
the learning process. Recall that the basin of attraction of an attractor A is the (open) set of
points which generate trajectories converging to A:

B(A) = {(x, y)|T t (x, y) → A as t → +∞}. (17)

Fig. 3 shows two different structures of the basins of the two coexisting equilibria E1
and E2.

Fig. 3. Representation of the basins of the equilibriaE1 andE2 in the case of homogeneous behavior. The meaning
of the colors is the same as in Fig. 1. (a) With parametersµ1 = µ2 = µ = 3.4 andα1 = α2 = α = 0.2 < 1/(µ+1),
the fixed pointO = (0, 0) belongs to the regionZ2 between the two branches LC(a) and LC(b) of the critical set LC,
and the basins ofE1 andE2 are simply connected sets. (b) With parametersµ = 3.5 and α = 0.5 > 1/(µ+1), the
fixed point O = (0, 0) belongs to the region Z4 bounded by LC(b), and the basins of E1 and E2 are nonconnected
sets.
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In Fig. 3a, obtained with µ1 = µ2 = µ = 3.4 and α1 = α2 = α = 0.2, the basins
have a simple structure. If we assume that initial beliefs are chosen randomly from the
strategy set S, then our analysis reveals that none of the equilibria is more likely to be
observed, as the extent of both basins is equal. This is not a very surprising result, as we
study a situation with homogeneous players. However, if we would have information which
would allow us to infer that for some reason qe1(0) > qe2(0) holds for the player’s beliefs,
then we could conclude that this property of the initial beliefs holds throughout and play
converges to the equilibrium E1. In this case, players learn the equilibrium quantities and
eventually play the corresponding Nash equilibrium. On the other hand, if the inequality
holds the other way round, then play converges to the equilibriumE2. In economic terms this
means that an initial difference in the expectations of the competitors uniquely determines
which of the equilibria is selected in the long run. The expectations of the players become
self-fulfilling: if qe1(0) > qe2(0)(q

e
1(0) < qe2(0)) then qe1(t) > qe2(t)(q

e
1(t) < qe2(t)) for any

t and equilibrium E1, where firm 1 dominates the market (equilibrium E2 at which firm 2
dominates the market) is eventually selected.

In contrast to this, the situation shown in Fig. 3b, is quite different. It is obtained with
the same value of the parameter µ, but with higher values of the adjustment coefficients,
namely α1 = α2 = 0.5. In this case, the basins are no longer simply connected sets, and
many portions of each basin are present both in the region above and below the diagonal.
When initial beliefs are chosen randomly, we still can say that both equilibria are equally
likely to be observed. However, as the basins are now nonconnected sets, the learning
process of our dynamic game starting with initial beliefs qe1(0) > qe2(0) (or qe1(0) < qe2(0))
may lead to convergence to either of the equilibria. Hence, the monotonicity property of
beliefs described above is lost, and we would need far more detailed information about the
initial beliefs of the players in order to decide which of the equilibria is reached.

The following proposition makes a precise statement about the global bifurcation which
causes the change from simply connected to nonconnected basins. In the subsequent para-
graphs we only give an intuitive explanation of the mechanism responsible for this structural
change. For more rigorous arguments we refer to the Appendix A.

Proposition 3. If the players are homogeneous with respect to their Best Replies and their
expectation formation, i.e. Eqs. (9) and (11) hold, and (µ, α) ∈ Ωs(Ei) with α < αp(µ),
then the belief trajectories of Eq. (7) converge to one of the stable equilibriaE1 orE2, given
by Eq. (10). The common boundary ∂B(E1)∩∂B(E2)which separates the basinB(E1) from
the basin B(E2) is given by the stable set Ws(ES) of the saddle point ES . If α(µ+ 1) < 1
then Ws(ES) ⊂ ∆ and the two basins are simply connected sets. If α(µ + 1) > 1 then
the two basins are nonconnected sets, formed by many simply connected components. At
α(µ + 1) = 1 a global bifurcation occurs caused by a contact between the cusp point K
and the point O.

In order to understand the structure of the basins, and the bifurcation that cause their
qualitative changes as the parameter α in the adaptive expectation rule is varied, a study
of the global dynamical properties of the dynamical system is necessary. In this context,
‘global’ refers to an analysis which is not based on the linear approximation of the map
(7). In particular, the properties of the inverses of the map become important in order to
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understand the structure of the basins. This is due to the fact that if A is an attractor of the
map and U(A) is a neighborhood of A whose points generate trajectories converging to it,
then the basin of A is the set of all points which are eventually mapped by T into U(A)

after a finite number of iterations. In the following, we shall see that the basins may have a
complex topological structure if the map T is noninvertible (or “many-to-one”), that is, if
distinct points p1 �= p2 exist which have the same image, T (p1) = T (p2) = p. This can
be equivalently stated by saying that points p exist which have several rank-1 preimages,
i.e. the inverse relation T −1(p) is multivalued.

As the point (x′, y′) varies in the strategy set S, the number of its rank-one preimages,
computed by solving the algebraic system (7) with respect to the unknowns x and y, can
change. According to the number of distinct rank-1 preimages associated with each point,
the set S can be subdivided into regions whose points have k distinct preimages. These
regions will be denoted by Zk . Generally, pairs of real preimages appear or disappear as the
point (x′, y′) crosses the boundary separating these regions. Accordingly, such boundaries
are characterized by the presence of two coincident (merging) preimages. This leads to the
definition of critical curves (see Gumowski and Mira, 1980; Mira et al., 1996), where the
critical curve of rank-1, denoted by LC (from the French “Ligne Critique”) is defined as
the locus of points having two, or more, coincident rank-1 preimages. These preimages
are located in a set called critical curve of rank-0, denoted by LC−1. Geometrically, the
action of a noninvertible map T can be expressed by saying that it “folds and pleats” the
plane, so that two or more distinct points are mapped into the same point, or, equivalently,
that several inverses are defined which “unfold” the plane. So, the backward iteration of
a noninvertible map repeatedly unfolds the phase space and this implies that a basin may
be nonconnected, i.e. formed by several disjoint portions. This becomes obvious when we
consider the relation B(A) = ⋃∞

n=0T
−n(B0(A)), where B0(A) is the immediate basin and

T −n(B0(A)) represents the set of rank-n preimages, which may include sets disjoint from
B0(A) due to the unfolding of the plane.

A thorough understanding of these properties is important because global bifurcations
which give rise to complex topological structures of the basins can be explained in terms
of contacts of basins boundaries and critical sets. In fact, if a parameter variation causes a
crossing between a basin boundary and a critical set which separates different regions Zk so
that a portion of a basin enters a region where an higher number of inverses is defined, then
new components of the basin may suddenly appear. This is the basic mechanism which
causes the creation of more and more complex structures of the basins, as we shall see
below.

We remark that the role of critical points (relative maxima and minima) in the dynamical
properties of one-dimensional iterated maps, also in relation with the problem of the struc-
ture of one-dimensional basins, has been already stressed in the economic literature (see,
e.g. Lorenz, 1992; Lorenz, 1993; Day, 1994). However, very rarely these methods have
been extended to the study of economic models with dimension greater than one (some
exceptions are Gardini, 1993; Delli Gatti et al., 1993; Bischi and Naimzada, 1999; Bischi
et al., 2000a; Bischi et al., 2000b). Indeed, the set LC is the two-dimensional generalization
of the notion of critical value (local minimum or maximum value) of a one-dimensional
map, and LC−1 is the generalization of the notion of critical point (local extremum point).
As in the case of differentiable one-dimensional maps, where the derivative necessarily
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vanishes at the local extremum points, for a two-dimensional continuously differentiable
map the set LC−1 belongs to the set of points in which the Jacobian determinant vanishes:

LC−1 ⊆ {(x, y) ∈ R2|det DT = 0} (18)

(see, e.g. Gumowski and Mira, 1980; Mira et al., 1996). Once the set LC−1 is determined,
LC is simply obtained as the image of LC−1, i.e. LC = T (LC−1).

As we show in the Appendix A, the map T defined in Eq. (7) is a noninvertible map
and the strategy set S can be subdivided into the regions Z4, Z2, and Z0, separated by
branches of critical curves LC. The branch LC(a) separates the region Z0, whose points
have no preimages, from the region Z2, whose points have two distinct rank-1 preimages.
The other branch, LC(b), separates the region Z2 from Z4, whose points have four distinct
preimages. The cusp point K of LC(b), whose coordinates can be easily computed in the
case of homogeneous players, plays a crucial role in the analysis for the following reason.
When K enters the set S for α(µ + 1) > 1, suddenly points of S have a higher number of
preimages then before. The unfolding process described above then causes the creation of
nonconnected components of the basins. The bifurcation occurring at α(µ + 1) = 1 is a
global bifurcation, i.e. it cannot be revealed by a study of the linear approximation of the
dynamical system. It is characterized by a contact between the stable set of ES and a critical
curve. Accordingly, such a type of bifurcation has been called contact (or nonclassical)
bifurcation in Mira et al., 1996.

With regard to these changes, two interesting issues have to be considered. First, the
occurrence of the bifurcation which transforms the basins from simply connected to non-
connected sets causes a loss of predictability about the long-run outcome of the dynamic
game. In fact, the presence of the many disjoint components of both basins causes a sensi-
tivity with respect to the initial beliefs, in the sense that a small perturbation of the initial
expectations may lead to a crossing of the boundary which separates the two basins and,
consequently, the belief trajectory may converge to a different equilibrium. Second, for in-
creasing values of the adjustment coefficient α, as the line ∆−1 in Fig. 3b moves upwards,
certain connected parts of the basins of the equilibria come (relatively) close to the corre-
sponding other equilibrium. That is, initial beliefs which eventually lead to convergence to
Ei are located closely to equilibrium Ej , i �= j . Note, however, that a local analysis would
not have been able to provide us with information on the size of the neighborhood around
the equilibria from which convergence to the corresponding equilibrium is achieved.

Our analysis so far has shown situations where, given their initial beliefs in S, firms learn
to coordinate their actions over time. Although, it can happen that the basins of the two
equilibria are nonconnected sets and the equilibrium which is eventually chosen depends
on the location of the initial beliefs of the players, their beliefs are eventually consistent
and players choose their equilibrium assignments. This changes drastically for (µ, α) ∈
Ωs(Ei, C2), i.e. if we take the parameter values of (µ, α) inside the small set of the shaded
region in Fig. 2 above the curve αp(µ). In this case, three coexisting attractors are present,
and the boundaries which separate the basins of Ei and C2 are given by the stable sets of the
two (saddle) cycles which exist for α > αp. The basins are similar to the regions presented
in Fig. 1. However, the rectangles which make up the basins of Ei and C2 are replaced by
rounded shapes. If the adjustment coefficient α is further increased until the limiting value
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α = 1 is reached, the situation shown in Fig. 1 is obtained. Here the boundaries of the
basins belong to horizontal and vertical lines, as proven in Bischi et al. (2000b).

6. Heterogeneous adaptive expectations

In this section, we relax the assumption of homogeneous beliefs of the players. We still
assume that players have the same Best Replies, i.e. that Eq. (9) holds. However, we now
consider a situation where the assumption (11) of identical adjustment coefficients does not
hold. In this sense, the competitors are heterogeneous with respect to their belief formation
process. The first point to note is that the steady-states for this generalized case are the same
as those computed in Section 2, because they do not depend on the adjustment coefficients
αi . Analytical expressions of their stability conditions can still be obtained. In contrast
to the previous section, it is no longer possible to obtain analytical expressions of the
parameter values at which contact bifurcations occur that cause changes of the topological
structure of the basins. However, such global bifurcations can be studied by geometrical and
computer-assisted proofs based on the method of critical curves, as will be demonstrated
below.

The stability regions of the equilibria in the 3-dimensional space of parameters Ω3 =
{(µ, α1, α2)|µ > 0, 0 ≤ αi ≤ 1, i = 1, 2} are defined by the following proposition. The
proof is again based on a standard analysis of the eigenvalues of the Jacobian.

Proposition 4. Let the players be heterogeneous with respect to their adaptive expectations,
i.e. let Eq. (9) hold. Then

1. the steady-state ES = (1 − 1/µ, 1 − 1/µ) is stable for (µ, α1, α2) ∈ Ωs
3(ES), where

Ωs
3(ES) = {(µ, α1, α2) ∈ .3|1 < µ < 3} (19)

2. the fixed points Ei , i = 1, 2, given in Eq. (10), are both stable for (µ, α1, α2) ∈ Ωs
3(Ei),

where

Ωs
3(Ei) =

{
(µ, α1, α2) ∈ Ω3|3 < µ < 1 +

√
4 + 1

α2
+ 1

α1

}
. (20)

Proposition 4 shows that, as in the case of homogeneous beliefs, there exists a rather large
set of parameter values for which two stable equilibria exist. Accordingly, like before, an
equilibrium selection problem arises and the study of the corresponding basins becomes
crucial. Note that the stability regions in Ω3 must be such that their intersections with the
two-dimensional submanifold ofΩ3 defined by the equationα1 = α2 give the corresponding
stability regions for the homogeneous case as described in Proposition 2.

It is easy to see that slight differences between the two adjustment coefficients do not
introduce significant changes in the local stability properties (i.e. in the modulus of the
eigenvalues). In contrast to this, as will be demonstrated below, even small heterogeneities
between the players may cause remarkable effects with regard to the structure of the basins.
The main difference between the homogeneous and the heterogeneous case lies in the fact
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that the diagonal∆ is no longer invariant. Even if the fixed points remain the same, the basins
are no longer symmetric with respect to∆. Nevertheless, many of the arguments given in the
previous section for the study of the boundaries of the basins and their global bifurcations
continue to hold in the case of heterogeneous beliefs. For example, for (µ, α1, α2) ∈ Ωs

3(Ei)

the boundary which separates the basin of equilibrium E1 from that of E2 is still formed
by the whole stable set W s(ES), but in the case α1 �= α2 the local stable set W s

loc(ES) is not
along the diagonal ∆. The contact between W s(ES) and LC(b), which causes the transition
from simple to complex basins, does not occur atO (since nowO /∈ W s(ES)) and no longer
involves the cusp point of LC(b). So, the parameter value at which such contact bifurcation
occurs cannot be computed analytically. In what follows, we will demonstrate, however,
that the occurrence of these bifurcations can be detected by computer-assisted proofs, based
on the knowledge of the properties of the critical curves and their graphical representation
(see, e.g. Mira et al. 1996). This “modus operandi”, which is typical in the study of the
global bifurcations of the two-dimensional maps, has been recently employed by Brock
and Hommes (1997) in the analysis of dynamic economic models.

In Fig. 4a, obtained with µ = 3.6, α1 = 0.55 and α2 = 0.7, the two equilibria E1 and
E2 are stable, and their basins are connected sets. The introduction of an asymmetry in the
expectation formation process has a negligible effect on the local stability properties of the
equilibria, since the eigenvalues of the two fixed points are exactly the same and are very
close to the ones obtained in the homogeneous case with the same value for µ and with
α = (α1 + α2)/2. However, it causes a significant asymmetry in the basins of attraction.
As shown in Fig. 4a, when α2 > α1 the extension of B(E2) is greater than the extension

Fig. 4. Basins of E1 and E2 when players are heterogeneous with respect to their adaptive expectation rules. The
colors have the same meaning as in the previous figures. (a) With µ1 = µ2 = 3.6 and α1 = 0.55, α2 = 0.7
the stable set of the saddle point ES, which constitute the boundary between the two basins B(E1) and B(E2), is
entirely included in the regions Z2 and Z0. The basins are connected sets. (b) For µ1 = µ2 = 3.6 and α1 = 0.59,
α2 = 0.7 a portion of the stable set of the saddle point ES belongs to the region Z4, hence the preimages of the
portion H0 of B(E1) inside Z4 constitute nonconnected portion of B(E1) nested inside B(E2).
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of B(E1). This property holds in general: numerical explorations show that the equilibrium
Ei dominates the equilibrium Ej in terms of the extension of the basin if αi > αj . In
economic terms, this means that in a situation with heterogeneous beliefs (α2 > α1) of the
two players the set of initial beliefs such that E2 is learned is larger than the set of initial
beliefs for E1 and asymmetric with respect to the diagonal. Since E2 is the equilibrium
where player 2 dominates in terms of market share, it follows that the player who puts more
weight on the most recent observation when updating its belief, eventually “wins” the game
in terms of market share in equilibrium. This property even holds when initially the beliefs
are such that the firms expect firm 1 to dominate the market, where these initial beliefs are
taken from a relatively large set below the diagonal (see Fig. 4a). This shows that even in
situations characterized by a simple structure of the basins’ boundaries where both basins are
connected sets, the statement that the initial ordering of the expectations is maintained along
the whole belief trajectory is no longer true. In fact, in the case of heterogenous adaptive
learning with αi > αj , the typical occurrence is that the smaller basin B(Ej ) is surrounded
by points of B(Ei). Hence, the repeated Cournot game may lead to convergence to Ei in
the long run, even if players start out with beliefs which are closer to the equilibrium Ej .

However, the situation is not always as simple as in Fig. 4a. The symmetric equilibrium
ES is a (saddle) fixed point which belongs to the boundary, given by the whole stable set
W s(ES), which separates the two basins. It can be noticed that in the simple situation shown
in Fig. 4a, the whole stable set W s(ES) is entirely included inside the regions Z2 and Z0.
The fact that a portion of W s(ES) is close to LC suggests that a contact bifurcation may
occur if the adjustment coefficients are slightly changed. In fact, if a portion of B(E1)

enters Z4 after a contact with LC(b), new rank-1 preimages of that portion will appear near
LC(b)

−1 and such preimages must belong to B(E1). This is the situation illustrated by Fig. 4b,
obtained after a small change of α1. The portion of B(E1) inside Z4 is denoted by H0. It has
two rank-1 preimages, denoted by H

(1)
−1 and H

(2)
−1 , which are located at opposite sides with

respect to LC(b)
−1 and merge on it (the set H0 is unfolded by the action of the inverses and, by

definition, since it is bounded by a segment of LC(b) its rank-1 preimages must merge along
LC(b)

−1; see Appendix A). The set H−1 = H
(1)
−1 ∪ H

(2)
−1 constitute a nonconnected portion

of B(E1). Moreover, since H−1 belongs to the region Z4, it has four rank-1 preimages,
say H

(j)

−2 , j = 1, . . . , 4 (only two of them are entirely contained in the strategy space
shown in Fig. 4b) which constitute other “islands” 7 of B(E1). Points of these “islands”
are mapped into H0 after two iterations of the map T . Indeed, many higher rank preimages
of H0 exist, thus, giving smaller disjoint “islands” of B(E1). Hence, again at the contact
between W s(ES) and LC the basin B(E1) is transformed from a simply connected into
a nonconnected set, constituted by many disjoint components. The whole basin is given
by the union of the preimages of B0(E1) inside the strategy space S = [0, 1]2, where
B0(E1) is the immediate basin. Our numerical results suggest that even if the introduction
of small differences between the adjustment coefficients have, in general, small effects on
the properties of the attractors, they may cause remarkable asymmetries in the structure of
the basins, which can only be detected when the global properties of the economic model
are studied.

7 We follow the terminology introduced in Mira et al. (1994).
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7. Discussion

In the last two decades the literature on dynamic modeling of economic and social sys-
tems was mainly concerned with the study of the attracting sets and the bifurcations which
lead to more and more complex asymptotic dynamics. However, when several coexisting
attractors are present — a situation often met in dynamic models of economic and social sys-
tems — another route to complexity is related to more and more complex boundaries which
separate the basins of attraction. Generally, these two different routes to complexity are not
correlated, in the sense that simple attractors may have complex basins and complex attrac-
tors may have simple basin boundaries. For Cournot duopoly games with nonmonotonic
reaction curves many authors have shown that attracting sets which are more complex than
Nash equilibria may occur, characterized by periodic or even chaotic oscillations around the
Nash equilibria (see, e.g. Rand, 1978; Dana and Montrucchio, 1986; Puu, 1991; Puu, 1998;
Kopel, 1996). On the other hand, the study of the complexity related to the structure of the
basins has been rather neglected in the economic literature. In this paper we have analyzed
a Cournot Duopoly game in which the players form their expectations adaptively and the
Best Replies of the players are nonmonotonic. We have analyzed its dynamical properties
in the belief space, and we have shown that for the nonlinear model multiple (locally) stable
(expectation) equilibria can be observed for a large set of parameter values. Accordingly,
an equilibrium selection problem and a situation of strategic uncertainty arises. Since sta-
bility arguments cannot be used to select one of the two equilibria, information about the
basins of the equilibria becomes crucial (see Mailath, 1998; Fudenberg and Levine, 1998).
In contrast to the existing work, we have studied global bifurcations that cause qualita-
tive changes of the basins of attraction. We have shown that, despite the local stability of
coexisting Nash equilibria, the situation might become quite complicated because basins
with complicated topological structures (such as nonconnected sets formed by many dis-
joint portions) emerge as the adjustment speed (i.e. the extent of inertia of the players)
changes.

There is a strong relationship between our work and Day (1994), in particular chapters 6
and 9. Day’s multiple-phase dynamical systems are defined on regimes, which are subsets of
the phase space. The trajectories of these systems switch from one regime to another if they
enter so-called escape sets. On the other hand, if a regime is trapping then it is called stable.
Similarly, in our study of the nonconnected basins of the Cournot model (see for examples,
Figs. 3 and 4b) the immediate basins are trapping and, hence, stable. The nonconnected
portions of the whole basins are the escape sets of properly defined other regimes. Trajec-
tories switch from regime to regime until they finally converge to one of the equilibria and
might exhibit various qualitative evolutions depending on the initial conditions. As we have
demonstrated, it is important to notice that regime switching is often due to nonconnected
basins, where the latter is caused by a global bifurcation. Here, we focused on the transition
which creates nonconnected basins, whereas Day did not mention by which mechanism
escape sets are created. Furthermore, Day studied only one-dimensional systems, whereas
our example is two-dimensional. In this sense, the insights presented here are a continuation
and extension of the results given in Day’s work.

The final question which we would like to discuss here is “Are the steady states the
only consistent belief equilibria?” The motivation for our interest in this topic stems from
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a recent paper by Hommes (1998), where he studies the consistency of backward-looking
expectations like naive or adaptive expectation rules (see also Hommes and Sorger (1998)).
The duopoly model considered in this paper is an expectations feedback system: the ex-
pectations of the competitors affect the actual outcomes, as can be seen in Eq. (1), and
the actual outcomes affect the expected outcomes through the belief formation process
(2). If the firms are assumed to be rational, this requires that (eventually) some kind of
consistency between expected and actual outcomes emerges. As has been demonstrated
above (see Eqs. (4) and (5)), this is the case when play converges to one of the equi-
libria. However, it is not the case when play converges to an emerging cycle of period
two. Since the expectations of the players are consistently wrong and forecasting errors
exhibit a systematic pattern, rational agents would recognize these (cyclic) patterns and
revise their expectations accordingly. However, things might be different if the trajec-
tory of expected outputs of the two firms (together with the realized quantities) evolves
along a chaotic attractor. Although, we excluded these cases from the analysis above,
we now consider exactly such a situation. Hommes’ argument starts with the observa-
tion that chaotic time series can have zero autocorrelations at all lags (see, e.g. Bunow and
Weiss, 1979; Sakai and Tomaru, 1980). The importance of this result for dynamic eco-
nomic models is that expectational errors (i.e. the differences between the expected and
the realized quantity) of simple backward-looking expectation rules may also have zero
autocorrelations at all lags. Accordingly, agents using such predictors would not see any
reason to change their beliefs, since their linear statistical techniques they employ cannot
distinguish the error of their predictors from white noise. Hommes calls such predictors
consistent expectations. Since emerging patterns are very hard to detect in a situation where
expectational errors exhibit (close to) zero autocorrelation, he argues that simple expecta-
tion rules need not be inconsistent with rational behavior, in particular in the presence of
noise.

We have used this idea to investigate if, in addition to the consistent equilibria given
above, chaotic consistent expectations equilibria occur in our model. As a representative
example of the situations we have analyzed we refer to Fig. 5 (with parameter values
µ1 = µ2 = 3.8, α1 = 0.85, α2 = 0.8). As can be seen, two chaotic attractors A1 and
A2 around the (unstable) equilibria E1 and E2 coexist, where the basins B(A1) and B(A2)

are represented by light and dark grey regions, respectively. Starting from initial beliefs
in the basin B(Al), l = 1, 2, a belief trajectory is generated by Eq. (3) which, after a
short transient period, evolves along the chaotic attractor Al, l = 1, 2. The expectational
errors of firm j on the corresponding chaotic attractor can then be easily derived using (4):
et+1 = qi(t + 1) − qei (t + 1) = ri(q

e
j (t + 1)) − qei (t + 1), i, j = 1, 2, i �= j . In order

to check if adaptive expectations are consistent in the sense of Hommes (1998), we have
computed the (empirical) autocorrelation coefficients ρk of lag k of the expectational errors
which are given by

ρk =
∑n−k

t=1 (et − e)(et+k − e)∑n
t=1(et − e)2

where e is the sample mean and n the length of the time series (in our experiments we have
chosen n = 250).
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Fig. 5. With µ1 = µ2 = µ = 3.8 and α1 = 0.85, α2 = 0.8, the equilibria E1 and E2 are unstable. Two
chaotic attractors A1 and A2 coexist, with basins B(A1) and B(A2), represented by light and intermediate grey,
respectively.

We were not able to find any evidence for the occurrence of chaotic consistent expectations
equilibria. For all parameter settings we have tried, the autocorrelation coefficients were
significantly different from zero (at a 5% confidence level), in particular for small lags. Even
in the presence of (small additive or multiplicative) dynamic noise some autocorrelation
of the expectational errors remained. Hence, given this evidence, in situations like the one
depicted in Fig. 5 rational decision makers should realize that there is (linear) structure in
the expectational errors and should revise their beliefs accordingly. We conclude from this
that, in the model considered in this paper, the steady states are the only equilibria in which
expectations are consistent.
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Appendix A. Proofs of Propositions 1, 2, 4

In order to prove Proposition 1, we need the following Lemma, which is a particular case
of a more general statement given in Bischi et al. (2000b).
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Lemma. Let Φ be a map defined as Φ : (x, y) → (r1(y), r2(x)). If P = (xp, yp) and
Q = (xq, yq) are fixed points of the map Φ then

1. C2 = {(xp, yq), (xq, yp)} is a cycle of period 2 of Φ;
2. C2 is an attracting cycle if and only if P and Q are both stable.

Proof of Proposition 1. Under the assumptions of the proposition the map (7) assumes the
form (x′, y′) = (µy(1 − y), µx(1 − x)). If 0 < x < 1 and 0 < y < 1 then it is immediate
to see that 0 < x′ < µ/4 and 0 < y′ < µ/4. If x > 1 then y′ < 0 and all the images of
higher rank are negative and divergent. The results on the stability of the fixed points follow
from the study of the eigenvalues of the Jacobian matrix. As Tr = 0, the modulus is given
by |z1|2 = |z2|2 = |Det| = µ2(1 − 2x)(1 − 2y). Then, in O we have |zi | = µ, hence O is
stable for 0 < µ < 1; inES we have |zi | = |2−µ|, henceES is stable for 1 < µ < 3. InE1
and E2 we have |zi | = |4 + 2µ−µ2|, so that Ei , i = 1, 2, are stable for 3 < µ < 1 + √

6.
The existence and the stability of C2 follow from the Lemma given above. �

Proof of Proposition 2. Under the assumptions (9) and (11) the Jacobian matrix becomes

DT(x, y) =
[

1 − α αµ(1 − 2y)

αµ(1 − 2x) 1 − α

]
(A.1)

In the points of the diagonal ∆, DT assumes the structure

DT(x, x) =
[
A B

B A

]
(A.2)

with A = 1 − α and B = αµ(1 − 2x). Such a matrix has real eigenvalues, given by

z‖ = A + B with eigenvector r‖ = (1, 1) along∆

z⊥ = A − B with eigenvector r⊥ = (1,−1) perpendicular to∆.

It is easy to see that the product of matrices with the structure (A.2) has the same structure.
Hence, all the fixed points and the cycles embedded in the invariant diagonal ∆ have real
eigenvalues with eigenvectors along ∆ and perpendicular to ∆, respectively.

For the symmetric equilibrium ES = (1 − 1/µ, 1 − 1/µ)

z‖(ES) = 1 + α(1 − µ) and z⊥(ES) = 1 + α(µ − 3)

Being

−1 < z‖(ES) < 1 for 0 < α(µ − 1) < 2;
−1 < z⊥(ES) < 1 for − 2 < α(µ − 3) < 0

ES is a stable node in the region (13).
At µ = 3, z⊥(ES) = 1, ES loses stability in the direction transverse to ∆ through a

supercritical pitchfork bifurcation (see the remark below) at which the equilibria E1 and
E2 are created for µ > 3 and are stable just after the bifurcation. After such bifurcation ES
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becomes a saddle point with unstable set in the direction transverse to ∆ and local stable
set along the invariant diagonal ∆. At α(µ − 1) = 2, a flip bifurcation along ∆ occurs at
whichES becomes a repelling node and a saddle cycleC2 of period 2, whose periodic points
(16) can be easily computed from the restriction of T to ∆, is created along the diagonal
∆, with stable set along ∆ and unstable set transverse to it. The eigenvalues of C2 are the
eigenvalues of the matrix DT(p1, p1) · DT(p2, p2), given by

z‖(C2) = (1 − α + αµ(1 − 2p1))(1 − α + αµ(1 − 2p2)) = 5 − α2(µ − 1)2

and

z⊥(C2)= (1 − α − αµ(1 − 2p1))(1 − α − αµ(1 − 2p2))

= (3 + 2µ − µ2)α2 − 12α + 13

We have −1 < z‖(C2) < 1 for (2/(µ − 1)) < α < (
√

6/(µ − 1)), and 0 < z⊥(C2) < 1
for 0 < α < (6 − √

12µ(µ − 2))/(3 + 2µ − µ2).
Notice that

√
6/(µ−1) > 1 forµ < 1+√

6. At α = αp(µ) = (6−√
12µ(µ − 2))/(3+

2µ − µ2) we have z⊥(C2) = 1 and at α = αp it holds that (∂z⊥(C2))/(∂α) =
−2

√
12µ(µ − 2) < 0.

So, C2 becomes a stable node for α > αp and two saddle cycles of period 2 are created
through a subcritical pitchfork bifurcation (see the remark below).

In the fixed points E1 and E2 the Jacobian matrix (A.1) is given by

DT(E1) =
[
A B1

B2 A

]
and DT(E2) =

[
A B2

B1 A

]
,

respectively, with B1 = −α(1 −√
(µ + 1)(µ − 3)) and B2 = −α(1 +√

(µ + 1)(µ − 3)).
It is easy to see that E1 and E2 have the same characteristic equation because the two
matrices DT(Ei), i = 1, 2, have the same trace and determinant. Being Tr2 − 4Det =
4α2(4 + 2µ−µ2) the eigenvalues are real for µ ≤ 1 + √

5 and complex for µ > 1 + √
5.

It is easy to verify that at α(µ2 − 2µ − 3) = 2 the eigenvalues, exit the unit circle, so that
the region of stability of both equilibria Ei , i = 1, 2, is Eq. (14). Furthermore, the two fixed
points are transformed from stable to unstable foci through a supercritical Neimark–Hopf
bifurcation at which two stable closed orbits are created around the two unstable Nash
equilibria E1 and E2. �

Remark. A rigorous proof of the supercritical or subcritical nature of a Neimark–Hopf,
or Pitchfork, bifurcation requires a center manifold reduction and the evaluation of higher
order derivatives, up to the third order (see, e.g. Guckenheimer and Holmes, 1983). This
is rather tedious in a two-dimensional map, and we claim numerical evidence in order to
ascertain the nature of such bifurcations.

Proof of Proposition 4. Under assumption (9), the Jacobian matrix becomes

DT(x, y) =
[

1 − α1 α1µ(1 − 2y)

α2µ(1 − 2x) 1 − α2

]
(A.3)
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The system of inequalities (see, e.g. Gumowski and Mira, 1980, p. 159)

P(1) = 1 − Tr + Det > 0; P(−1) = 1 + Tr + Det > 0; 1 − Det > 0

gives necessary and sufficient conditions for the two eigenvalues to be inside the unit circle
of the complex plane.

AtES = (1−1/µ, 1−1/µ), we have Tr2−4Det = α2
1 +α2

2 +14α1α2+4α1α2µ(µ−4) ≥
(α1 −α2)

2 ≥ 0, being µ(µ−4) ≥ −4. So the eigenvalues are always real at the fixed point
ES, and the stability conditions reduce to

P(1) = α1α2(−µ2 + 4µ − 3) > 0 for 1 < µ < 3;

P(−1)= α1α2µ
2 − 4α1α2µ + 3α1α2 + 2(α1 + α2) − 4 > 0 for µ < 2

+
√

1 + 2
2 − (α1 + α2)

α1α2
.

Then, ES is a stable node in the region (19).
At µ = 1 a transcritical bifurcation occurs at which O and ES exchange stability, and at

µ = 3 a pitchfork bifurcation of ES occurs at which the fixed points E1 and E2 are created.
Since

DT(E1) =
[

1 − α1 −α1(1 − √
(µ + 1)(µ − 3))

−α2(1 + √
(µ + 1)(µ − 3)) 1 − α2

]

and

DT(E2) =
[

1 − α1 −α1(1 + √
(µ + 1)(µ − 3))

−α2(1 − √
(µ + 1)(µ − 3)) 1 − α2

]

it is easy to realize that E1 and E2 have the same characteristic equation. The fixed points
Ei are transformed from stable nodes into stable foci when

Tr2 − 4Det = −4α1α2µ
2 + 8α1α2µ + 14α1α2 + α2

1 + α2
2 = 0,

i.e. at µ = 1 + √
(9/2) + (α1/4α2) + (α2/4α1). In this case, since P(1) = α1α2(µ +

1)(µ − 3) > 0 for µ > 3 and P(−1) = 4 − 2(α1 + α2) + α1α2(µ + 1)(µ − 3) > 0 for
µ > 3, the stability conditions for Ei , i = 1, 2, reduce to

Det − 1 = α1α2µ
2 − 2α1α2µ − 3α1α2 − α1 − α2 < 0

which is satisfied in the region Ωs
3(Ei) of the parameters space Ω3. The equation

µ = 1 +
√

4 + α1 + α2

α1α2

defines a bifurcation surface through which a supercritical Neimark–Hopf bifurcation occurs
(see the remark given above). �



96 G.I. Bischi, M. Kopel / J. of Economic Behavior & Org. 46 (2001) 73–100

Appendix B. Critical curves and proof of Proposition 3

In this appendix, we first describe some properties of the critical curves of the map T and
then we prove Proposition Eq. (3). The map T defined in Eq. (7) is a noninvertible map. In
fact, given a point (x′, y′) ∈ R2 its preimages are computed by solving the following
algebraic system obtained from Eq. (7) with respect to x and y:{

(1 − α1)x + α1µ2y(1 − y) = x′

(1 − α2)y + α2µ1x(1 − x) = y′ (B.1)

This is a fourth degree algebraic system, which may have four or two real solutions or no real
solution at all. For example, let us consider the origin O = (0, 0). Under the assumptions
(9) and (11) its rank-1 preimages can be analytically computed by solving the algebraic
system (B.1) with x′ = y′ = 0. If 0 < α < 1/(µ + 1) there are just two rank-1 preimages
of O, both belonging to ∆: one is O itself (being O a fixed point) the other one is

O
(1)
−1 =

(
1 + α(µ − 1)

αµ
,

1 + α(µ − 1)

αµ

)
(B.2)

which can be easily computed by using the one-dimensional restriction f (x) = (1+α(µ−
1))x−αµx2 of T to the diagonal. If α > 1/(µ+ 1) then other two rank-1 preimages exist,
because O ∈ Z4. These two further preimages, O(2)

−1 and O
(3)
−1, are located on the line ∆−1

of equation 8

x + y = 1 + 1

µ

(
1 − 1

α

)
. (B.3)

in symmetric positions with respect to ∆. Hence

O
(2)
−1 =

(
α(µ + 1) − 1 +

√
α2µ2 + 2αµ(1 − α) − 3(α2 + 1) + 6α

2αµ
,

α(µ + 1) − 1 −
√
α2µ2 + 2αµ(1 − α) − 3(α2 + 1) + 6α

2αµ

)
(B.4)

and the symmetric point O(3)
−1 is obtained from O

(2)
−1 by swapping the two coordinates.

For the map (7) LC−1 coincides with the set of points at which det DT = 0, i.e.(
x − 1

2

)(
y − 1

2

)
= (1 − α1)(1 − α2)

4α1α2µ1µ2
(B.5)

This equation represents an equilateral hyperbola, so LC−1 is formed by the union of two
disjoint branches, say LC−1 = LC(a)

−1 ∪LC(b)
−1, see Fig. 6a. Also LC = T (LC−1) is the union

of two branches: LC(a) = T (LC(a)
−1) and LC(b) = T (LC(b)

−1). The branch LC(a) separates
the region Z0, whose points have no preimages, from the region Z2, whose points have two

8 This can be seen by setting x′ = y′ in Eq. (B.1) and adding or subtracting the two symmetric equations.



G.I. Bischi, M. Kopel / J. of Economic Behavior & Org. 46 (2001) 73–100 97

Fig. 6. (a) Critical curves of rank-0, obtained as the locus of points such that det(DT(x, y)) = 0. (b) Critical curves
of rank-1, obtained as LC = T (LC−1). These curves separate the plane into three regions, denoted by Z4, Z2 and
Z0 whose points have four, two or no rank-1 preimages, respectively. (c) Riemann foliation of the plane. With
each point of the region Z4 four distinct inverses are associated, each defined on a different sheet of the foliation,
whereas points of Z2 are associated with two sheets. The projection on the phase plane of the folds connecting
different sheets are the critical curves LC.

distinct rank-1 preimages. The other branch LC(b) separates the region Z2 from Z4, whose
points have four distinct preimages (see Fig. 6b). Following the terminology of Mira et al.
(1994), we say that the map (7) is a noninvertible map of Z4 > Z2 − Z0 type, where the
symbol “>” denotes the presence of a cusp point in the branch LC(b).

The coordinates of the cusp point of LC(b) can be easily computed in the symmetric case,
i.e. when Eqs. (9) and (11) hold. In fact, in any point of LC−1 at least one eigenvalue of DT
vanishes. In the point

C−1 = LC(a)
−1 ∩ ∆ = (c−1, c−1)with c−1 = α(µ − 1) + 1

2αµ

the eigenvalue z‖ with eigendirection along ∆ vanishes, and its image

C = LC(a) ∩ ∆ = (c, c)with c = f (c−1) = (α(µ − 1) + 1)2

4αµ
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is the point at which LC(a) intersects ∆. This point corresponds to the unique critical point
of rank-1 (maximum value) of the restriction f (x) of T to ∆. At the other intersection of
LC−1 with ∆, given by

K−1 = LC(b)
−1 ∩ ∆ = (k−1, k−1)with k−1 = α(µ − 1) − 1

2αµ

the eigenvalue z⊥ vanishes and the curve LC(b) = T (LC(b)
−1) has a cusp point (see, e.g.

Arnold et al., 1986)

K = LC(b) ∩ ∆ = (k, k)with k = f (k−1) = (α(µ + 1) − 1)(αµ + 3(1 − α))

4αµ
(B.6)

In order to give a geometrical interpretation of the “unfolding action” of the multivalued
inverse relation T −1, it is useful to consider a regionZk as the superposition of k sheets, each
associated with a different inverse. Such a representation is known as Riemann foliation of
the plane (see, e.g. Mira et al. 1996). Different sheets are connected by folds joining two
sheets, and the projections of such folds on the phase plane are arcs of LC. The foliation
associated with the map (7) is qualitatively represented in Fig. 6c. It can be noticed that the
cusp point of LC is characterized by three merging preimages at the junction of two-folds.

Proof of Proposition 3. Let us assume that (µ, α) ∈ Ωs(Ei) and α < αp(µ), i.e. the two
equilibria E1 and E2 are the only attractors. The boundary separating B(E1) and B(E2)

contains the symmetric equilibrium ES as well as its whole stable set W s(ES). In fact, just
after the bifurcation occurring at µ = 3, at which the two stable fixed points E1 and E2
are created, the symmetric equilibrium ES ∈ ∆ is a saddle point, and the two branches of
the unstable set W u(ES) departing from it reach E1 and E2, respectively. Hence, since a
basin boundary is backward invariant (see Mira et al., 1994; Mira et al., 1996), not only
the local stable set W s

loc(ES) belongs to the boundary that separates the two basins, but
also its preimages of any rank: W s(ES) = ⋃

k≥0T
−k(W s

loc(ES)). Because of the symmetry
property of the system (7) with homogeneous players, the local stable set of ES belongs to
the invariant diagonal ∆. Indeed, as long as α(µ + 1) < 1, the whole stable set W s(ES)

belongs to ∆ and is given by W s(ES) = OO(1)
−1, where O(1)

−1 is the preimage of O located

along ∆. In fact, if α(µ + 1) < 1 holds, the cusp point K of the critical curve LC(b) has
negative coordinates and, consequently, the whole segment OO(1)

−1 belongs to the regions
Z0 and Z2. This is the situation shown in Fig. 3a.

This implies that the two preimages of any point of OO(1)
−1 belong to ∆ (they can be

computed by the restriction (12) of T to the invariant diagonal ∆). This proves that the
segment OO(1)

−1 is backward invariant, i.e. it includes all its preimages. The structure of the
basins B(Ei), i = 1, 2, is very simple: B(E1) is entirely located below the diagonal ∆ and
B(E2) is entirely located above it (see Fig. 3a). Both of the basins B(E1) and B(E2) are
simply connected sets.

Their structure becomes a lot more complex for α(µ + 1) > 1. In order to understand
the bifurcation occurring at α(µ + 1) = 1, we consider the critical curves of the map
(7): at α(µ + 1) = 1 a contact between LC(b) and the fixed point O occurs, due to the
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merging between O and the cusp point K . For α(µ + 1) > 1 the portion KO of W s
loc(ES)

belongs to the region Z4 where four inverses of T exist. This implies that besides the
two rank-1 preimages on ∆ the points of KO have two further preimages, located on the
segment O(2)

−1O
(3)
−1 of the line ∆−1. Since OO(1)

−1 = W s
loc(ES) ⊂ ∂B(E1)∩ ∂B(E2), also its

preimages of any rank belong to the boundary which separates B(E1) from B(E2). So the
rank-1 preimages of the segment O(2)

−1O
(3)
−1, which exist because portions of it are included

in the regions Z2 and Z4, belong to W s(ES) as well, being preimages of rank-2 of OO(1)
−1.

This repeated procedure, based on the iteration of the multivalued inverse of T , leads to the
construction of the whole stable set W s(ES). �
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