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Abstract

A dynamic rent seeking game with two boundedly rational players is analyzed.
The game is modeled as a discrete dynamical system of the plane, represented by
the iteration of a noninvertible map with a denominator which vanishes in a one-
dimensional subset of the plane and this gives rise to basins of attraction with
particular structures, called lobes and crescents in [1]. These structures are related
to the presence of a focal point, i.e. a point where the map assumes the form 0/0.
We show that the focal point of this map has some peculiar properties which lead
to situations not included in the cases described in [1].

Key words: Discrete dynamical systems, games, stability, noninvertible maps,
basins of attraction

1 Introduction

Many interesting economic situations can be considered as rent-seeking con-
tests, in which the contestants expend effort to win a prize. For example, firms
compete to obtain a procurement contract from the government or by spending
R&D expenditures to win a patent. See [2] for a survey of various applications.
The basic rent-seeking contest considers N agents which are confronted with
the opportunity to win a fixed prize R. If we let z; denote the expenditure of
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agent 4 (in units commensurate with the rent), then the probability that agent
i wins the rent is p;(z, ..., n), where Y% ; p; = 1 and p; is nondecreasing in
z; and nonincreasing in z;,j # ¢. A commonly used form of the probability
functions in rent-seeking games is the logit type (see e.g. [3]), which specifies
that agent ¢’s probability for winning the rent is

_ fil=s)
P fi(e)

where f;(z;),7 = 1,...N may be interpreted as the likelihood that agent ¢ wins
the contest when he expends effort ;. It is usually assumed that f;(z;) is twice
differentiable, increasing and concave with f;(0) = 0. If all the contestants do
not expend any effort, we just simply define p; = 1/N Vi. The agents try to
choose their efforts z; to maximize their expected utility V;. If we assume that
the rent R is normalized to 1 and that all rent-seekers are risk-neutral, then

Vi=pi(l—m:) + (1 —pi)(—2:) = pi — i = ——Ef}iﬁij) - ;.

Using the simple transformation ¢; = f(z;), we can write the net rent of agent
1as w; = —9~q— — Ci(g;),where C; is the inverse of f;. Note that both model
J

formulations lead to identical analytical and qualitative results.

The literature on rent-seeking games has been primarily concerned with the
existence and characterization of Nash equilibria — a situation, where no player
can improve his/her expected profit by unilateral deviation from his/her equi-
librium strategy — the effect of asymmetry in rent-seeker’s characteristics and
the relationship between total rent-seeking outlays in equilibrium and the
value of the contested rent. See e.g. [3-6]. Less attention has been paid to dy-
namic issues which arise when the contestants are assumed to be only bound-
edly rational (for the notion of bounded rationality, see e.g. [7-9]). In fact,
only recently issues like learning or adaptive behavior of the rent-seekers have
been considered, where the focus has been on the issue of local stability. See
[10-13]. However, no results concerning global stability or the delimitation of
the basins of attractions of the stable Nash equilibria are given.

In this paper we try to move a step towards filling this gap. We consider a
discrete time dynamic rent-seeking game where the agents compete repeatedly
for the same prize each period. We assume that rent-seekers behave boundedly
rational and adjust their efforts over time proportionally to their marginal
profits, i.e.

¢ = g+ () {am(fh,;; ...,(IN)] , i=1,..,N (1)
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where «;(g;) are positive functions. The unit-time advancement operator is
denoted by ’, i.e. if the right hand side includes variables at period ¢, then the
left hand side represents the state variables at period (£ 4+ 1). An adjustment
mechanism similar to (1) has been recently proposed by some authors (mainly
in continuous-time formulations; see [13,11]).

A primary question in the literature on dynamic games is if the repeated in-
teraction between the players will eventually lead to a Nash equilibrium in the
long run despite the fact that these players act (only) boundedly rational in
the short run. Traditionally, answers to this question have been given in terms
of the local stability of Nash Equilibria. However, in the presence of other at-
tracting sets (at finite or infinite distance), local stability is not enough. In a
nonlinear model the basin of attraction of a locally stable equilibrium may be
so small that any practical meaning of stability is lost. Consequently, only a
study of the extension of the basin of a stable equilibrium can give information
about its robustness with respect to exogenous perturbations. This requires a
global analysis of the dynamical system (1), i.e. a study not based on linear
approximations. Since for general higher-dimensional systems such results are
hard to come by, we will limit ourselves to the case of two contestants. Hence,
in what follows we will focus on a discrete dynamical system of the plane,
represented by the iteration of a noninvertible map with denominator. This
will give us the opportunity to apply some of the methods recently introduced
in [1]. There the concepts of focal points and prefocal curves have been intro-
duced to explain the creation of particular structures of the basins called lobes
and crescents. As we will demonstrate, in our dynamic game such structures
determine the qualitative properties of the basins. The focal point which is
responsible for their appearance has some peculiar properties which lead to
situations not included in the cases described in [1].

The paper is organized as follows. In Section 2 we give a brief summary of the
local stability analysis. We turn to the global analysis of the dynamical system
in section 3. We introduce the concept of critical curves (section 3.1) and
focal points and prefocal sets (section 3.2). Finally, we apply these concepts
to explain the structure of the basin of attraction in section 3.3.

2 Local stability analysis for a game with two players

We consider a model (1) with two players, where we assume linear costs, i.e.
Ci(¢;) = ¢iq;, and linear functions o; (¢;) = viq;, 2 = 1, 2. The latter assumption
captures the fact that relative effort variations are proportional to marginal
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G —G (57T z)
= ’Ui
q; 0g;

where v; is a positive constant which will be called speed of adjustment. With
these assumptions (1) assumes the form (q'l, q'z) = T (g1, g2), where the map
T is given by

net rents, i.e.

4= a(l-an+vgts)
T 2
o _ q
g2 = @2 (1 C2V2 + ’Uzm)

Map T is not defined along the line ¢; +go = 0 (line of non-definition §,). Since
the state variables g, g2 represent the agents’ efforts, we are only interested
in the dynamics of (2) in the region R2 = {q1,¢|q1 >0, g2 > 0}. The only
point of R2 belonging to the line §, is (0,0). However, as we shall see in the
next section, the presence of this point may have a crucial influence on the
structure of the basins in R3.

A Nash equilibrium, if it exists, is also a stationary point of the dynami-
cal system (1), located at the intersection of the reaction curves defined by
Om;/0g; = 0, i = 1, 2. The steady states of the game are the non-negative fixed
points of the map (2). It is immediate to see that a unique fixed point E* ¢ &,
exists,

Co 1
E* = *7 *) , ,
(ql q2) <(C1 + C2)2 (Cl + 62)2>

which is also the unique Nash equilibrium of the game. Following a standard
stability analysis, a sufficient condition for the stability of E* is that the
eigenvalues of the Jacobian matrix DT(g1,¢z) of (2), computed at E* are
inside the unit circle of the complex plane. This is true if and only if the
following conditions hold (see e.g. [14], p.159).

.
1 —Tr* + Det* = vyv9¢1¢9 > 0

§ 1+ Tr* + Det* = cicomyvg — 4-32 (v +v3) +4> 0 (3)

ci1te2

* _ __9_¢cie
{ Det* —1 = cieamvy 2#;(1)1 + ’02) <0
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where Tr* and Det* represent the trace and the determinant of DT (E*)
respectively. The first condition is always satisfied, whereas the other two
define a bounded region of stability in the parameter space. Given the uni-
tary costs ¢; and ¢y, the stability region can be represented in the plane
V = {v1,v2|v1 > 0,v > 0}, as shown in fig. 1. This region is symmetric with
respect to the diagonal v; = v, and bounded by the positive branches of two
equilateral hyperbolae whose equations are obtained from the second and the
third condition of (3). The coordinates of the vertices of this region are

A, = (2 2) A2=<3,z) Bl___<cl+C2’0) B2___(O’C1+c2>.
Cy Co Cy C1 C1Cg C1C2

The rectangle [0,2/c1] % [0,2/co] represents the region where only bounded
trajectories can be obtained,i.e. no attractors at infinite distance exist (see
the Appendix).

Bal—

2/c, .

Figure 1.

The eigenvalues are complex conjugate if (cave — c191) (civ2 —cov1) < 0, a
condition which can be visualized in V as the region between the two lines
Vg = J2~'v1 and vy = —21)1 . If P = (v1,v2) crosses the boundary of the
stability region along the arc A 1Az (belonging to the hyperbola of equation
Det* = 1) then the fixed point E* changes from a stable focus to an unstable
focus via a Neimark-Hopf bifurcation, whereas if P exits the stability region by
crossing one of the arcs By A; or By Az (both belonging to the other hyperbola,
given by equation 1 + T'r* 4+ Det* = 0) then the fixed point E* changes
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from an attracting node to a saddle point through a period doubling (or flip)
bifurcation.

We observe that if ¢; = ¢, then A; = As, i.e. the region of stability in the space
V becomes a square bounded by the branches of a degenerate hyperbola, and
no Hopf bifurcations can occur. On the other hand, if the difference between
the marginal costs of the two firms is increased, then the arc A; A, representing
the curve where Hopf bifurcations occur, becomes larger. This confirms an
observation made in [13] (for dynamic rent-seeking games in continuous time)
that only in the presence of a dominant agent the creation of limit cycles via
Hopf bifurcation can occur. We finally remark that an increase of the speeds
of adjustment has, in general, a destabilizing role. This property of adaptive
adjustment processes has been observed before; see e.g. [15-17]). However, in
our model with ¢; # ¢2, the stability analysis reveals that, given E* is unstable,
stability of E* can be obtained by increasing one (or both) parameters v;. This
happens when the point P = (v, vs) belongs to one of the regions denoted by
R; or R, in fig. 1. Furthermore, if the point P moves from region R; (or R;) to
the region Rs due to a change in v; (or v2), we obtain two bifurcations, which
cause a transition from instability to instability separated by a “window” of
stability.

3 Global study of the basins

The arguments given so far are based on local stability results. However, such
insights may lead to misleading conclusions if they are not supported by an
analysis of the basins of attraction. To illustrate, we present a situation where
the Nash Equilibrium is locally stable, but the corresponding basin of at-
traction is quite small, as shown in fig. 2, where the white region represents
the (numerically computed) basin of E* and the grey region represents the
basin of infinity ! . The global dynamic properties of (2) and, in particular, the
structure of the basins are strongly influenced by the following two features:

i) the map T is a noninvertible map of the plane, so its global geometric
properties can be characterized by the method of critical curves (see [14,18])

ii) the map T has denominators which vanish along a one-dimensional subset
of the plane, on which a focal point exists (see [1]).

! From an economic point of view, diverging trajectories do not represent interesting
evolutions. As they can be interpreted as an irreversible departure from optimality,
they might be excluded from the analysis of the economic model.
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3.1 Critical curves

A map T is noninvertible if distinct points exist which have the same image.
The geometric action of a noninvertible map can be expressed by saying that
it folds and pleats the phase space. Equivalently, we can say that a point
may have several rank-1 preimages. The inverse relation 7! may be multi-
valued, given by the union of several inverse maps which “unfold” the phase
space. The map T defined in (2) is noninvertible: calculating (¢, ¢2) in terms
of a given (qi,d,) leads to a third degree algebraic system. So, as the point
(¢}, gb) varies in R?, the number of its rank-one preimages can be one or three.
Accordingly, the plane can be subdivided into two regions, denoted by Z; and
Z3 (we follow the notations introduced in {18] and [19]) where one or three
distinct inverses are defined respectively. Generally, pairs of real preimages
appear or disappear as the point (g, ¢}) crosses the boundary separating the
regions Z;. Such boundaries are characterized by the presence of two coincident
preimages. This leads to the definition of the critical curves. The critical curve
of rank-1, denoted by LC), is defined as the locus of points having two (or more)
coincident rank-1 preimages, which are located on a set called LC ;. LC is the
two-dimensional generalization of the notion of critical value (local minimum
or maximum value) of a one-dimensional map, LC_; is the generalization of
the notion of critical point (local extremum point). Arcs of LC separate the
regions of the plane characterized by a different number of real preimages.
When the map T is continuously differentiable, LC'_; is included in the set of
points where the determinant of the Jacobian of T’ vanishes (i.e. in the set of



5316 Third World Congress of Nonlinear Analysts 47 (2001) 5309-5324

points where T is not locally invertible):

LC.1 C {x € R?| det DT = 0}.

For (2) the points at which the determinant of the Jacobian vanishes can be
easily computed, and LC' = T(LC_,) separates the region Z3, where three
distinct inverses, say Ty *, T5 " and T3 ', exist, from Z;, where only T3 is
defined.

8.2 Focal point and prefocal set

Our dynamical system which is obtained by the iteration of T is defined on the
plane deprived of the line of non-definition d,, as well as all their preimages
of any rank, i.e. on the set

A= R?\n"go T (6,)

In fact, only points belonging to the set A generate feasible trajectories by the
iteration of the map T : A — A. Notice that, being §, a curve of R?, the set
UnsoT ™" (6) has zero Lebesgue measure in R?. The structure of the basins of
(2) is strongly influenced by the presence of a so-called focal point @), where
the map assumes the form 0/0 (for our game, Q = (0,0)).

Definition (see [1]). A point Q=(zq,y0) is a focal point if at least one compo-
nent of the map T takes the form 0/0 in Q) and there exist smooth simple arcs
v(t), with v(0)=Q, such that lim,_,, T (7y (7)) is finite. The set of these finite
values, obtained with different arcs (t) through Q, is the prefocal set 8.

In [1] a map in the form (2',y") = (F(z,y), N(z,y)/D(z,y)) is considered. It
is shown that if a focal point Q is simple, i.e. N;D, — N, D, # 0, where the
terms with subscripts denote partial derivatives evaluated in (zg, yo), then the
whole line z = F'(Q) is the corresponding prefocal curve §g. Furthermore, it
is proven that a one-to-one correspondence exists between the slope m of an
arc v through @ and the point (F(Q),y) in which its image crosses §g. This
correspondence is given by

- +mN,

+mD, )

m— (F(@),y(m)), with  y(m)=

S5
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or, equivalently

(FQ)y) »m(y) with my)==—=" (5)

The proof is based on considering a smooth simple arc  transverse to ds,
represented by

Vhy{w&%=%+&r+§¥+n- 2o

y (1) =yo+m7+ 7 +...

crossing through @, and assuming that N(z,y) and D(z,y) are smooth func-
tions, so that

N (z,y) = N, (z — z0) + Ny (y — %) + Oz
D(z,y) = Dz (z — z0) + Dy (y — yo) + O

where O, , O} represent terms of higher order. If @ is a simple focal point
then

_]\L 1+ Nyﬂl
D& + Dymy

e N
=D (1(r))

from which (4) and (5) follow, where m = 1, /¢, is the slope of vy in Q.

This can also be stated by saying that at least one inverse of the map exists
which maps any arc crossing &5 in y into an arc crossing through ¢ with slope
m(y). So, roughly speaking, a prefocal curve is a set of points for which one
inverse exists which maps (or “focalizes” ) the whole set into the corresponding
focal point. One conclusion here is of particular interest: if we consider the rank-
1 preimage of an arc crossing 8¢ in two points (F(Q),y1) and (F(Q), y2), then
at least one rank-1 preimage forms a loop with a knot in @), with the two
branches issuing from @ having slopes m(y:) and m(ys).

These properties are crucial for the global dynamical properties of a map T
of the plane for the following reason. The boundary F of a basin is backward
invariant, i.e. T~!(F) = F, where here T~! represents the set of all the inverses
of T. Hence, if w is a portion of F, then all its preimages of any rank must
belong to F. This implies that if a portion w of F has a tangential contact
with a prefocal curve §g and then it crosses §g as some parameter is varied,
the boundary F must contain a loop issuing from () as well as loops issuing
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from the preimages of @) of any rank. The portions of the basins inside these
loops have been called lobes in [1].

This mechanism which we described verbally causes the creation of the “finger-
shaped” structure of the basin shown in fig. 2. Observe the lobes issuing from
the focal point @ = (0,0). However, in our case the situation is a bit more
intricate than the one analyzed in [1]. In particular, the correspondence be-
tween slopes of arcs through () and points of §g is two-to-one. This is due
to the fact that both components of the map (2) become 0/0 in @, and Q
is not simple. In fact, all the first partial derivatives of N (g1,¢2) = ¢1¢2 and
D (g1,2) = (g1 + g2)° vanish in Q. Hence, the correspondence is obtained by
considering second order terms in the expansions of N and D. This leads to

lim T (7 (7)) = (vru(m), vau(m))
Ngg +2Nggm + Nogygom?® __m
—D—quzl + 23:1192“1 + _ﬁqzqzm2 (1+m)?

with u(m) =

where (—o0, 1/4] is the range of the function u(m). This expression defines a
two-to-one correspondence between a point (u, %u) along the line ¢ = g
and the slopes of arcs through @,

(v1 — 2u) £ 4/v? — dvyu ©)

2u ’

my (u) =

provided that u < %. Thus, the point @ is a focal point with prefocal set §q

given by the half-line g, = %2, where ¢; < % with endpoint in C = (%, ).
Really, 6 may be considered as a line “folded into itself” in the point C as
it appears from the analysis of the critical curves of (2). In fact, the points of

the line ¢ = 2g, above C belong to Z;, so that they have only one rank-one

preimage by T; ', whereas the points of that line located below C belong to
Z3, so they have three rank-one preimages, two of which are “focalized” in
the focal point (), namely those obtained by 77 and T !, whereas the third
one, given by T3, belongs to the line g3 = 8__2—;’;)%@. The properties of the
focal point () and the set of focal values §g are summarized by the following

proposition:

Proposition. Any arc n “crossing” 6¢g in a point jgu, Z—Zlu), u< 3, u#0,
has two distinct rank-one preimages “crossing” the focal point Q with slopes
my (u) given in 6). In particular, any arc n crossing 8g in the focal point Q
has two distinct rank-one preimages which are tangent to the coordinate azes
in Q (i.e. with slopes m =0 and m = ).

It is plain that if we consider an arc 7 crossing d¢ in two points, then its
rank-one preimages include two loops issuing from (). The second part of the
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proposition strésses another peculiarity of the map (2): the fact that Q € dg.
This gives rise to the following

Corollary. Any arc transverse to 6o has infinitely many preimages which are
arcs through @ with slopes 0 and o0 in Q.

Proof. Two preimages of an arc which crosses §g are arcs through Q. But
since (J € §g, any arc through () and transverse to §g can be considered as
a generic arc crossing g, and thus it has two rank-1 preimages again across
8¢ in Q. According to the relation (6) any arc through @ has two preimages
through ¢} again, with slopes 0 and co respectively, and so on, iteratively. [J

This has important consequences on the structure of the basins of the dynam-
ical system (2), as we shall see in the next section through some numerical
explorations.

3.3 Lobes and crescents of B(co).

We now study one particular case, obtained with values ¢; = 3 and c; = 5 (as
in fig. 1) and v; = 0.2. If vo < 2/¢; = 0.4, then the fixed point E* attracts
almost all the points of the phase space A. If v, is increased and the bifurcation
value 2/¢; is crossed, also infinity becomes an attractor.

Hence, diverging trajectories can be obtained (see the Appendix). The basin
of E*, B(E*), is then given by a subset of the phase space A. We start our
numerical exploration just after this bifurcation: the situation shown in fig. 3a
is obtained for ¢; = 3, c2 = 5, v1 = 0.2, vg = 0.401.

As in fig. 2, we represent B (E*) by white points and B (00) is represented by
the grey-shaded region.The boundary 98 (o) separating B (E*) from B (c0)
is given by the g¢;-axis (denoted by wq in fig. 3) and its preimages of any
rank, denoted by w_, , n > 0 (in particular the set of rank-1 preimages
w_1 can be analytically computed, belonging to the parabola of equation
(1 — cawa) {z +y)* + voz = 0). Indeed, each coordinate axis is a trapping set,
i.e. the points of a coordinate axis are mapped in the same axis by T, and
the restriction of T' to a coordinate axis is a linear unidimensional map. If we
consider the ¢;-axis, we have T (g1,0) = (¢},0) = ((1 — c1v101) , 0). For the go-
axis we have T (0,¢;) = (0,45) = (0, (1 — covage)). Thus the point Q = (0, 0)
can be seen as a fixed point for both of the restrictions, which are attracting
if 0 < ¢v; < 2,1 =1,2. The union of the coordinate axes and all their preim-
ages forms a trapping set: Fy, = U2, T " ({g: = 0}) may be considered as
the local stable set of the point @ for 0 < ¢;v1 < 2 and the local stable set
of the point E; = (£o00,0) on the Poincaré Equator when ci;v; > 2 (see the
Appendix). Equivalently, Fy, = U;2y T~" ({¢1 = 0}) can be considered as the

n=0
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local stable set of @ if 0 < cove < 2 and of the point E,, = (0,300) on the
Poincaré Equator when covs > 2.

v; =02 vy;=0401 ¢,=3 ¢ =5

Figure 3.

In the situation shown in fig. 3a, the critical curve LC, together with 6¢g
and w_;, bounds a small region, labeled by A. This region has three rank-1
preimages. The union of two of the three preimages of A, namely 777 }(A) and
T5'(A), forms a lobe issuing from the focal point @ = (0,0) and entering
inside the positive quadrant of the phase space, denoted by A_; in fig. 3a. In
the enlargement shown in fig. 3b the lobe A_; = T7H(A)U T35 (A) is clearly
visible, together with two lobes, which are rank-1 preimages of the region
labelled by S. As @ € §p, infinitely many gray lobes, as well as infinitely
many white lobes, must issue from the focal point Q), as stated by the corollary
given above. However, it is very difficult to display this complex structure
graphically, because all these lobes are tangent to the coordinate axes (since
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m = 0 or m = oo are the slopes associated with u = 0 in (6)). If the parameter
vy is increased, the existence of these infinitely many lobes becomes more
evident, as can be seen in fig. 3c. In this figure other new phenomena are
evidenced: whenever a lobe A_;, crosses LC, its preimage A_j_; includes the
merging of two lobes on LC_,. This can be seen by comparing the figures
3c and 3d, where the contact of the lobe indicated by the arrow with LC
causes the merging of its preimages, with the accompanying creation of other
particular structures of the basins called crescents in [1]. This causes a further
restriction of the basin of E*. This is even more obvious in fig. 4, where
another evident merging of lobes related to a contact of a lobe with LC and
a corresponding creation of a big crescent is shown. As the parameter v, is
further increased, more and more lobes of B (co) have a contact with LC, and
this leads to an intermingled structure of “white and grey” regions. As a final
remark, we mention that the creation of crescents, as the result of merging
of lobes, is a peculiarity of noninvertible maps with focal points. In fact, it
requires that a portion of the basin boundary cross a prefocal curve located
in a region Z; with & > 1, followed by a contact with a critical curve which
causes the merging of the lobes.

N \
\\i\\\\\\

)

W

4 Appendix. Study of the map on the Equator of Poincaré

'The method of the “Poincaré Equator”, commonly used in the study of ordi-
nary differential equations of the plane (see [20]) can also be used for the study
of divergent trajectories of two-dimensional maps (see [14]). Let M = (g1, ¢o)
be a point of the phase plane o of the map (2) and M*(u, v) the corresponding
point on the plane o* tangent to the Poincaré Sphere and perpendicular to
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the ¢ axis (see e.g. [14] p.232, or [20

=

p-219). The transformation

(7)

allows us to obtain the map whose trajectories are the projections of the
trajectories of the map (2) on the plane o*. After substitution of (7) into (2)
we have

' (Ltu)®
r=Z (l—e1v1)(1+u) % +v1uz

®)

(1—covs) (14u)>+vaz
(1—e1v1)(1Hu)? +viuz

The points of the Poincaré Equator, of equation z = 0, represent the locus of
points at infinity (or improper points) of the plane a. From the first of (8) we
deduce that the Poincaré Equator is invariant, since z = 0 implies 2’ = 0. The
only fixed point on the Poincaré Equator is X = (0,0), which corresponds to
the direction of ¢; axis. The Jacobian matrix of (8), evaluated on the Poincaré
Equator, is the following triangular matrix

1
1—v1c1 0
S (O, ’LL) = (9)
u(va(l—vici)—viu(l—vaca)) 1—woco
(1+u)(1—vier) 1-vic1

which becomes diagonal at the fixed point X, with eigenvalues (=vac2) 5pd

(1-vier)

ET—UT The transformation (7) does not allow us to study the points at infinity
in the direction of the g» axis. This difficulty is overcome by considering the
transformation ¢; = %, ¢o = 1 (see [20]) which gives the projection on the
plane & tangent to the Sphere of Poincaré and perpendicular to the ¢, axis.
The transformed map has the same form as (8) with the variable u substituted
by v and by exchanging indexes 1 and 2. Also this map has the unique fixed
point Y = (0, 0), that represents the direction of the ¢, axis.

The nature of the fixed point X is determined by the eigenvalues of (9), that

is, A%y = m, associated to the direction of the z axis, and \} = %ﬁz
associated to the direction of the u axis (tangent to the Poincaré Equators

Analogously the nature of the fixed point Y is determined by the eigenvalues,
Ay = Iu—c7 associated to the direction of the z axis, and Ay, = 1—“3;% asso-
ciated to the direction of the v axis (tangent to the Poincaré Equator). For
example the fixed point X is a stable node if c;v; > 2 and |1 —cov2| < |1—c1v4].

Analogous conditions, obtained by exchanging the indexes, hold for the fixed
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point Y. Of course we are mainly interested in the direction z, indicating
towards the interior of the Poincaré Equator. If

avr <2 and cvp <2 (10)

both the fixed points are repelling in the z direction, i.e. toward the interior
of the Poincaré Equator. Furthermore, even if cycles of period & > 1 exist on
the Poincaré Equator, these are repelling in z direction if conditions (10) hold
true. In fact the Jacobian matrix evaluated at a k-cycle, say Cy, located on
the Poincaré Equator, is given by the product of k triangular matrices (9),
which is a triangular matrix whose eigenvalue associated to the 2 direction is

Agk=( ! )k (11)

1—c¢u;

where the value of ¢ is 1 or 2 depending on the transformation considered. Thus
we can state that when conditions (10) are satisfied the Poincaré Equator is
repelling.
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