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In this paper a repeated game is proposed to model competition among firms, with
profit maximizing resource allocation. The proposed model differs from the usual com-
petition models because efforts that players exert are not seen as sunk costs, but they
accumulate to form a stock of knowledge that has a cost-reducing effect. In modelling
knowledge accumulation, we also consider the (knowledge) spillovers, that is, involun-
tary leakage of useful technological information. The game with n boundedly rational
agents is modelled by a 2n-dimensional discrete dynamical system, whose state variables
are the R&D efforts and the stock of accumulated knowledge of each firm involved in
the competition. The model is characterized by some counteracting forces: Efforts are
costly but can increase future profits; immediate expenditures of each firm can have
cost-reducing effects in the long run, since accumulated knowledge can decrease both
own costs and competitors’ ones, because of spillover effects. In the case of two homoge-
neous firms we prove the existence of a unique equilibrium and its stability. Starting from
these analytic results, numerical simulations are performed in order to study the effects
induced by heterogeneities between the players on stability and transient dynamics, as
well as the influence of the main parameters on the basins of attraction.
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oscillations.
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1. Introduction

Among the applications of mathematical modelling in economics, the description of
marketing and industrial competition has a prominent place. In this setting, firms
engage in profit maximizing resource allocation, and competitive (i.e., strategic)
effects arise because the effectiveness of each firm’s efforts is related to the efforts
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of its rivals. Typical situations described within this framework include brand com-
petition for market share [see e.g., Monahan (1987), Hibbert and Wilkinson (1994),
Cooper and Nakanishi (1988), Bischi et al. (2000)]. Stylized models of profit maxi-
mizing competitive resource allocation are often expressed in terms of effort xi that
firm i, i = 1, . . . , n, decides to exert. As result of this efforts, in fact, firm i is able to
obtain a revenue that is proportional to its own effort xi and inversely proportional
to the total efforts of all the competing firms. Formally, the profit of firm i can be
expressed as

πi = B
aixi∑n

j=1 ajxj
− Ci(·) (1)

where B denotes the (fixed) sales potential of the market, the term si =
aixi/

∑
ajxj represents the market sharea of brand i, with weights ai > 0 whose

values depend on the units used to measure efforts,b and Ci is the cost associated
with effort xi.

When firms compete for the production of high tech goods, their efforts are
mainly devoted to gain knowledge, intended in a broader meaning, ranging from
basic notions to information about new technologies and skills in their adoption and
employment. In many situations, such efforts can be identified with expenditures
in Research and Development (R&D) activities. Indeed, a firm’s optimal resource
allocation in R&D is often necessary for introducing innovations before rivals or
obtaining patents, with consequent competitive advantages or market shares greater
than rivals. This kind of competition has been denoted as “R&D with rivalry”
[e.g., Reinganum (1981, 1982)].

As stressed by many authors, when dealing with this kind of exertion some pecu-
liar effects should be considered, such as the “knowledge capital stock” created by
firms, that is, their gradually accumulated knowledge as a result of past efforts
[see e.g., Nelson (1982), Confessore and Mancuso (2002)]. In addition, knowledge
may spill from one firm to its competitors, due to the difficulty of protecting intel-
lectual properties (Spence (1984), D’Aspremont and Jaquemin (1988), Bischi and
Lamantia (2002), just to cite a few).

In this paper we propose a discrete-time competition game taking into account
these issues, i.e., we model competition with profit maximizing effort decisions
occurring over time, together with an associated process of knowledge accumulation
and spillover effects. We assume that efforts are not “sunk costs”, as they can be,
at least partially, “capitalized” by each agent in the form of knowledge stock that
tends to depreciate itself as time goes on, according to the obsolescence rate of
information and technology.

For its particular set-up, the model could be employed to describe the dynamics
of industrial sectors, such as the drug or the software industry, characterized by

aIf none of the competitors expend any effort, i.e., xi = 0 for each i, we just simply define
si = 1/n ∀i.
bMany authors set ai = 1 for each i, without loss of generality.
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high R&D costs and consequently by many inventions and patents. Consider, for
instance, the drug industry where R&D costs are considerable, often outweighing
the production costs altogether and consequently inventions are protected by
patents. In this framework, R&D efforts could be measured in terms of scientific
staff or expenditures in research activities, the stock of knowledge for a drug pro-
ducer could be measured in terms of patents owned and its depreciation could be
measured in terms of expiring patents.

Furthermore in our model the knowledge stock has a “cost reducing” effect, a
quite common assumption in the literature [see e.g., Petit et al. (2000), Spence
(1984)]. Another important feature of the proposed model is connected with the
private and public nature of information and the related asymmetries of players in
taking advantage from competitors’ knowledge and/or in protecting their private
knowledge. Following the idea of our previous example the causes of this leakage
of knowledge could range from former employees who are hired by rival firms to
industrial espionage. All in all the model is characterized by some counteracting
forces: as usual, we have that efforts are costly but they can increase future profits;
besides, indirect effects exist, since immediate costs can be recovered in the long
run through the cost reducing effects of accumulated knowledge, and they can also
decrease competitors’ costs because of spillover effects.

The model is expressed as a repeated competition game, that takes the form
of a discrete dynamical system, whose dynamic variables are efforts and knowledge
accumulated by each competitor. In fact, the mechanism of knowledge accumulation
with spillover effects is represented as a recursive process, so that its time evolution
is represented by the repeated application of a map. In order to study the dynamic
properties of the model, such as existence and stability of equilibria or more complex
attractors, as well as questions related to transient dynamics and role of initial
conditions, we shall consider the case of two competitors and the associated four-
dimensional discrete dynamical system. For this system, we first consider the case of
identical (or homogeneous) competitors, whose symmetry properties allow us to get
complete analytic results on existence, stability and localization of the unique steady
state. This benchmark case constitutes an useful guide for the numerical exploration
of the effects induced by heterogeneities, and allows us to compare the cases of
homogeneous and heterogeneous competitors. For example, heterogeneities may
introduce oscillations in the long run behavior of the system, whereas oscillatory
dynamics are completely ruled out with homogeneous players.

However we do not consider, at least in an explicit way, actual production of
goods, which are sold in an oligopolistic market, but competition takes place in
an abstract setting. In this way we can derive a model that is still tractable and
represents a first step toward a full understanding of a more complete model.

The paper is organized as follows. In Sec. 2 we introduce the model, describing
both the mechanism of knowledge accumulation and its embedding in an abstract
model of competition. In Sec. 3 we study the dynamic properties of the duopoly, first
under the assumption of homogeneous players, then, mainly by numerical methods,
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investigating the effects induced by the presence of heterogeneities. In Sec. 4 we
describe the main economic interpretations of the results. Section 5 concludes.

2. The Set-Up

2.1. A dynamic representation of accumulated

knowledge with spillovers

In this section we first propose a general model for the accumulation of knowledge
over time, which can be expressed by a recursive formula, then we embed it in an
abstract competition game.

Assume that there are n firms, indexed by i = 1, . . . , n. Let xi(t) be a measure
of the effort that firm i, at time period t, decides to make in order to increase its
knowledge. The knowledge gain for firm i during time period t is assumed to be
[see e.g., Spence (1984)]

Xi(t) = xi(t) +
∑
j �=i

ϑijxj(t) (2)

where the parameters ϑij ∈ [0, 1] are intended to capture knowledge spillovers from
firm j to firm i (intra-industry spillovers). If ϑij = 1, then knowledge gained by
firm j, via its own R&D efforts, is fully shared by firm i (the case of ϑij = 1 for
each i �= j corresponds to the assumption of public domain knowledge). At the
other limiting situation, ϑij = 0, no knowledge from firm j is transferred to firm i

(the case of ϑij = 0 for each i �= j corresponds to the assumption of private
companies that have proprietary rights to avoid any knowledge diffusion among
competitors).

This is an extension of the model of knowledge gain proposed by Spence (1984).
In fact, Spence assumes the same spillover parameter for all firms, i.e., ϑij = ϑ for
each i �= j, as a parameter that characterizes the whole industrial system, whereas
our formulation allows one to consider heterogeneity (i.e., asymmetries) among
the firms with respect to spillovers. In other words, we may consider situations
where some firms are more efficient than others in spilling knowledge for free from
competitors, or where some firms may be more efficient than others in avoiding the
diffusion of the knowledge they gained as a result of their own efforts.

As argued above, we also want to consider that knowledge accumulates over
time. This means that, at each time period, the knowledge of firm i is not only
increased by the last period knowledge gain Xi(t), but it also benefits of the
(discounted) knowledge gains of the past. To model this, we represent the knowledge
accumulated by firm i, up to period t, by

zi(t) =
t∑

k=0

ρt−kXi(k) (3)
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where the parameter ρ ∈ [0, 1] represents a discount factor which “exponentially dis-
counts older information”. This captures the idea that the knowledge accumulated
by firm i, zi(t), includes not only the current gain Xi(t), but also the knowledge
gained by past efforts. However, the stock of knowledge may depreciate as well,
as outlined by several authors [see e.g., Nelson (1982), Confessore and Mancuso
(2002)]. The value of ρ gives a measure of how rapidly information becomes obso-
lete: values close to 1 represent a system where even the results of very old efforts
are important at time t, whereas values close to 0 imply that only very recent efforts
give significant contributions to the present knowledge.

Starting from (3), the knowledge capital stock of each firm i at time period t

can be obtained recursively (i.e., inductively) as

zi(t) = Xi(t) + ρ

t−1∑
k=0

ρt−1−kX(k) = xi(t) +
∑
j �=i

ϑijxj(t) + ρzi(t − 1). (4)

This recursive formula can be interpreted as follows the accumulated knowledge
at time t is the sum of the knowledge Xi(t), acquired during last round, and a
discounted fraction of the knowledge capital stock of the previous period (t − 1).

2.2. The competition game with cost externalities

We consider an abstract model (i.e., without explicitly considering actual
production) where n firms, labelled by i, i = 1, . . . , n, at each time period t choose
their R&D expenditures in order to maximize their expected next period profit

πe
i (t + 1) =

aixi(t + 1)
aixi(t + 1) +

∑
j �=i ajxe

j(t + 1)
− Ct+1

i (5)

where xe
j(t + 1) represents the effort that firm i expects that the competing firm j

will exert at time (t + 1), and Ct+1
i represents the cost at time t + 1. Our key

assumption is that the cost at time t + 1 for player i, Ct+1
i , is a (differentiable)

function of both the current efforts and the knowledge accumulated up to period t,
i.e., Ct+1

i = Ct+1
i (xi(t+1), zi(t)), with (see e.g., Spence, 1984; Petit and Tolwinski,

1999)

∂Ct+1
i

∂xi(t + 1)
≥ 0;

∂Ct+1
i

∂zi(t)
≤ 0.

These assumptions capture the idea that R&D efforts are an investment with an
immediate negative effect, given by the cost of current effort xi, and a delayed
beneficial one given by more knowledge, which enhances the skillfulness and makes
technology advance. This last fact can be restated by saying that more knowledge
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implies that R&D results are obtained more efficiently, i.e., with lower unitary
costs.c Moreover it is natural to assume that [see Spencer and Brander (1983)]

∂2Ct+1
i

∂xi(t + 1)∂zi(t)
< 0

i.e., increasing the stock of knowledge lowers the marginal cost of the R&D effort.
A simple functional form that satisfies these assumptions can be obtained by

assuming that Ct+1
i is linear in the current efforts xi(t+1) and inversely proportional

to zi(t), i.e., knowledge accumulated up to period t,

Ct+1
i (xi(t + 1), zi(t)) =

αixi(t + 1) + βi

λizi(t) + ζi

However, for sake of simplicity, in the following we shall consider a particular
form for the cost function, that still maintains the above described features [see
Petit et al. (2000) for a similar specification], given by

Ct+1
i (xi(t + 1), zi(t)) =

xi(t + 1)
1 + λizi(t)

(6)

where the parameters λi ≥ 0, i = 1, . . . , n, can be interpreted as a measure of
efficiency in the use of the knowledge stock (and the related technology) to decrease
costs for further innovation.

With cost function (6) the expected profit (5) becomes

πe
i (t + 1) =

aixi(t + 1)
aixi(t + 1) +

∑
j �=i ajxe

j(t + 1)
− xi(t + 1)

1 + λizi(t)
(7)

where, without loss of generality, we set B = 1, i.e., a unitary market size. The
expected share per unit effort is ai/

(
aixi +

∑
j �=i ajx

e
j

)
, whereas the expected profit

margin per unit investment is

πe
i

xi
=

ai

aixi +
∑

j �=i ajxe
j

− 1
1 + λizi

At each time period t, every firm i decides the effort for the next period,
xi(t + 1) ≥ 0, by maximizing the expected net profit πe

i (t + 1), i.e., xi(t + 1) =
argmaxxi(t+1)π

e
i (t + 1), i = 1, . . . , n. Assuming interior optimum, simple

cThis is a common sense statement: An agent that already has a stock of accumulated knowledge,
because she/he already performed a given job in the past, will obtain the same results at a lower
cost with respect to competitors that have no background knowledge.
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differentiation gives

∂πe
i (t + 1)

∂xi(t + 1)
=

ai

∑
j �=i ajx

e
j(t + 1)[

aixi(t + 1) +
∑

j �=i ajxe
j(t + 1)

]2 − 1
1 + λizi(t)

= 0 i = 1, . . . , n

(8)

at the optimum. This gives a quadratic equation for xi(t + 1), from which the
optimum is easily obtained as a function of the expected efforts of the competitors
xe

j(t + 1), j �= i, and the accumulated knowledge zi(t):

xi(t + 1) =
1
ai


−

∑
j �=i

ajx
e
j(t + 1) +

√
ai(1 + λizi(t))

∑
j �=i

ajxe
j(t + 1)


 (9)

Notice that, according to (2) and (3), zi(t), the knowledge accumulated by firm i

up to period t, depends on past efforts both of firm i itself and of its competitors,
because of the presence of spillover effects. So, besides the interdependence caused
by the term aixi/

(
aixi +

∑
j �=i ajx

e
j

)
, as in standard competition models, another

source of interdependence is present, due to the positive cost externalities induced
by accumulated knowledge with spillover effects. In fact, while in a standard com-
petition game (i.e., λi = 0, i = 1, . . . , n) effort xi represents a sunk cost for firm i,
according to Eq. (6) effort is a retrievable investment in the sense that it increases
the knowledge stock thus allowing future costs reduction.

Notice also that, as the solution of the optimization problem for firm i depends
on xe

j(t + 1), an assumption on how firm i forms expectations about competitors’
choices is necessary in order to close the model. One may assume that xe

j(t + 1) =
xj(t + 1), i.e., every firm is able to know in advance the competitors’ decisions
(perfect foresight assumption). However, this is often considered a too demanding
assumption, and a lower degree of information is assumed by using some adaptive
learning scheme such that xe

j(t+1) is computed on the basis of the values observed in
the past. In the following, for sake of simplicity, we shall assume naive expectations
(or expectations á la Cournot), i.e., xe

j(t + 1) = xj(t). This can be interpreted by
saying that, due to the lack of information about competitors’ choices, each player
guesses that in the next time period the competitors will exert the same effort as
in the current period. Of course, this is a quite trivial assumption, even if it is
very common in the literature on dynamic oligopoly games [since Cournot (1838),
see also Okuguchi (1976), Puu and Sushko (2002)], on dynamic brand competition
models [e.g., Bischi et al. (2000), Bischi and Kopel (2003)], on dynamic rent-seeking
games [e.g., Okuguchi and Szidarovszky (1999), Xu and Szidarovszky (1999)].

In order to investigate the effects, on the existence and stability of the equilibria,
of the parameters of the model, as well as the kind of convergence (monotonic or
oscillatory) and the dynamic behavior obtained when no stable steady states exist,
in the following we shall restrict our analysis to the case of only two competing firms
(n = 2), i.e., a duopoly dynamic game. We consider Eq. (9) with naive expectations
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and a1 = a2 = a, together with the recursive relations (4) which describe the time
evolution of knowledge accumulated by each firm, and we get a discrete dynamical
system in the four dynamic variables (x1, x2, z1, z2) ∈ R

4




x1(t + 1) = −x2(t) +
√

x2(t)(1 + λ1z1(t))

x2(t + 1) = −x1(t) +
√

x1(t)(1 + λ2z2(t))

z1(t + 1) = −x2(t) +
√

x2(t)(1 + λ1z1(t))

+ ϑ12

( − x1(t) +
√

x1(t)(1 + λ2z2(t))
)

+ ρz1(t)

z2(t + 1) = −x1(t) +
√

x1(t)(1 + λ2z2(t))

+ ϑ21

( − x2(t) +
√

x2(t)(1 + λ1z1(t))
)

+ ρz2(t)

(10)

with initial conditions that, according to the definition (3) of the variables zi, are
given by

x1(0); x2(0); z1(0) = x1(0) + ϑ12x2(0); z2(0) = x2(0) + ϑ21x1(0) (11)

i.e., the initial conditions of the four-dimensional dynamical system (10) must be
taken in a two-dimensional submanifold (a plane) of R

4 in order to obtain trajecto-
ries of the process we are modelling. This means that if each firm selects an initial
level of effort xi(0), i = 1, 2, then the sequence of successive efforts is obtained
inductively by iterating (10) starting from initial conditions (11). It is plain that
only non negative values of the dynamical variables xi are economically meaningful.
Moreover, the dynamical system (10) is defined only for non negative values of xi,
i = 1, 2. So, starting from a given initial condition (11), a feasible time evolution
of the system is obtained only if the sequence (x1(t), x2(t)), t = 0, 1, 2, . . . along a
trajectory of (10) is entirely contained in the non negative orthant of R

4. Accord-
ingly, we shall call feasible trajectory a trajectory with the property stated above,
and feasible set the set of points x1(0), x2(0) such that the corresponding initial
conditions (11) generate feasible trajectories.

3. Local and Global Analysis

As usual in the study of nonlinear dynamical systems, the first analysis step is the
localization of the fixed points (or steady states) and the analysis of their stability.
The fixed points of (10) are the solutions of the algebraic system obtained from
(10) with xi(t + 1) = xi(t) and zi(t + 1) = zi(t), i = 1, 2. Of course, we are only
interested in the fixed points with positive coordinates. After some simple algebraic
manipulations, the equations which give the equilibrium values of the two efforts
become 


x2

1 +
(

1 − λ1ϑ12

1 − ρ

)
x2

2 +
(

2 − λ1

1 − ρ

)
x1x2 − x2 = 0

(
1 − λ2ϑ21

1 − ρ

)
x2

1 + x2
2 +

(
2 − λ2

1 − ρ

)
x1x2 − x1 = 0

(12)
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and the corresponding equilibrium values for the knowledge capital stocks are given
by z1 = (x1 +ϑ12x2)/(1−ρ) and z2 = (x2 +ϑ21x1)/(1−ρ). Equations (12) represent
two conic-sections (ellipses, parabolas or hyperboles, according to the parameters)
whose intersections in the positive orthant of the (x1, x2) plane correspond to the
equilibrium points of the game. In general, a study of existence, uniqueness and
stability of the equilibria of the model (10) is not an easy task. However, a particular
case with a complete analytic characterization is obtained by assuming homogenous
firms, in the sense that they are characterized by identical values of the parameters

λ1 = λ2 = λ; ϑ12 = ϑ21 = ϑ. (13)

This symmetric situation can be considered as a benchmark case, since the ana-
lytical results that we shall obtain under assumption (13) will constitute an useful
starting point for the study of the discrete dynamical system (10) with hetero-
geneities in knowledge spillovers, i.e., ϑ12 �= ϑ21 and/or in cost reducing parameters,
i.e., λ1 �= λ2.

3.1. Existence and stability of the steady state

with homogeneous firms

Under assumption (13) the system (12) is symmetric, and the analysis of existence
and stability of equilibria can be carried out analytically. In fact, it is straightfor-
ward to see that a unique positive solution of (12) exists, given by

E = (x∗, x∗, z∗, z∗) with x∗ =
1 − ρ

4(1 − ρ) − λ(1 + ϑ)
and

z∗ =
1 + ϑ

4(1 − ρ) − λ(1 + ϑ)
(14)

provided that

λ(1 + ϑ) < 4(1 − ρ). (15)

This condition states that an equilibrium exists only if the parameters λ, ϑ and ρ

are sufficiently small, i.e., the accumulated knowledge does not cause a too strong
reduction of unitary cost and past knowledge does not accumulate too much. Notice
that condition (15) is never satisfied if λ(1 + ϑ) > 4, and if λ(1 + ϑ) < 4 then it is
satisfied for sufficiently small values of the parameter ρ, i.e., ρ < 1 − λ(1 + ϑ)/4.
This is quite intuitive, because the process we are describing can have a steady
state, characterized by constant values of xi and zi, only if the rate at which new
knowledge is gained equals the rate at which old knowledge is dissipated, so that
stationariety is impossible without sufficiently high knowledge dissipation.

In order to study the stability properties of the equilibrium E, we must evaluate
the eigenvalues of the Jacobian matrix of the map (10) computed at the equilibrium
(see Appendix). Under assumption (13) of homogeneous players, the computation
of the eigenvalues gives η1 = 0; η2 = 0; η3 = 0.25(1 + ϑ)λ+ ρ; η4 = 0.25(1−ϑ)λ+ ρ.
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It is easy to see that if E exists, i.e., condition (15) holds, then 0 ≤ ηi < 1 for each
i = 1, . . . , 4. So, the following proposition can be stated (see Appendix):

Proposition 1. If (13) and (15) hold, then the unique equilibrium (14) exists and
is asymptotically stable.

Condition (15) clearly shows that the existence of E is favored by decreasing val-
ues of λ, ϑ and ρ, and if the existence condition (15) is satisfied, then the symmetric
equilibrium value x∗

1 = x∗
2 = x∗(ρ, λ, ϑ) given in (14) is an increasing function of the

parameters ρ, λ and ϑ, i.e., if one or more of these parameters are increased, then at
the equilibrium the firms will exert more effort. Moreover, smaller values of λ and ρ

increase the speed of convergence to the stable equilibrium, since both η3 and η4

decrease if λ and ρ are decreased. In this sense, it may be said that decreasing val-
ues of the parameters λ and ρ reinforce the stability of the equilibrium E. Notice
also that the convergence is nonoscillatory around E, because the eigenvalues are
real and non negative.

However, Proposition 1 only concerns local asymptotic stability of the unique
positive equilibrium in the case of homogeneous firms, where local, as usual, is
referred to trajectories that start from initial conditions sufficiently close to E.
Indeed, convergence cannot be obtained for every initial condition, i.e., E cannot
be globally stable, because if xi(0) is too high then from (10) one gets a negative
xj(1), that is, an unfeasible trajectory is obtained. Moreover, if (15) is not satisfied,
then no positive steady state exists, and all the initial conditions generate unfeasible
trajectories.

It is interesting to compute numerically the extension of the set of initial con-
ditions that generate feasible trajectories converging to E, and how it is influ-
enced by the parameters of the model. For example, in Fig. 1(a), obtained with
parameters λ = 0.2, ϑ = 0.2 and ρ = 0.5, the white region represents the set of
points that generate feasible trajectories converging to E, whereas the grey region
represents the unfeasible set. The projectiond in the (x1, x2) plane of a typical
trajectory that converges to E is shown in the Fig. 1(a), starting from initial condi-
tion (x1(0), x2(0)) = (0.1, 1), denoted by “i.c.” in the figure. The convergence to E

appears to be very fast. Indeed, for the set of parameters used to obtain Fig. 1(a),
the nonvanishing eigenvalues are η3 = 0.56 and η4 = 0.54, so the dominant eigen-
valuee is 0.56. The situation shown in Fig. 1(a) can be compared with the one in
Fig. 1(b), obtained with the same λ and ρ and with a greater value of the spillover
parameter ϑ, namely ϑ = 0.8. In this case, the dominant eigenvalue is η3 = 0.59,
i.e., we have a slightly slower convergence, but we can notice that the basin of

dThe trajectories of the dynamical system (10) evolve in the four dimensional space R
4, so the

figures we propose represent projections on the two-dimensional subspace (x1, x2) where the time
evolution of efforts is represented.
eThe dominant eigenvalue is defined as the eigenvalue with greatest modulus. If its modulus, say
|z|, is less than one, a small displacement from the equilibrium reduces at a rate proportional to
|z|t, i.e., 1/|z| gives an estimate of the speed of convergence.
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(a) (c)(b)

x2 x2 x2

x1 x1 x1
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E

i.c.
i.c.

i.c.

Fig. 1. Duopoly model with homogeneous firms. The white region represents the set of points
that generate feasible trajectories converging to E, the grey region represent the unfeasible set.
(a) λ = 0.2, ϑ = 0.2 and ρ = 0.5. The equilibrium E is represented together with the projection in
the (x1, x2) plane of the trajectory starting from initial condition “i.c.” (x1(0), x2(0)) = (0.1, 1).
(b) Parameters λ and ρ are the same as in (a) and ϑ = 0.8. (c) Parameters ϑ and ρ are the same
as in (a) and λ = 1.5.

attraction of E has a larger extension. This suggests that an increase of the overall
(homogeneous) spillover parameter may give two contrasting effects about the so
called “relative stability” of the equilibrium E: a weaker stability, in the sense of
a slower convergence, and a stronger stability, in the sense of a greater basin of
attraction [on this point, see the definitions and the discussion in Bischi and Mari-
mon (2001)]. This twofold effect is even more evident if, starting from the set of
parameters of Fig. 1(a), we increase the parameter λ. This is shown in Fig. 1(c),
obtained with parameters λ = 1.5, ϑ = 0.2 and ρ = 0.5. In this case, the set of
points that generate feasible trajectories converging to E (white region) is greatly
enlarged, and the dominant eigenvalue is close to one, being η3 = 0.95, so that the
convergence to E is very slow. This is confirmed by the plot, shown in Fig. 1(c), of
the trajectory that starts from the same initial condition (x1(0), x2(0)) = (0.1, 1)
as in Figs. 1(a) and 1(b). It is evident that in this case the convergence requires
much more iterations. This is confirmed by many other numerical explorations, from
which we can conjecture that even if decreasing values of λ favors the existence of E

and also the speed of convergence, an opposite effect is obtained on its robustness
measured in terms of the extension of the basin. A similar effect is observed for
the parameter ϑ, whereas changes in the parameter ρ seem to have no remarkable
effects on the basin.

So, putting together analytic and numeric results, we can say that in the case
of two homogeneous firms a unique locally stable equilibrium exists if the condition
(15) holds, the convergence to it is always nonoscillatory (no overshooting), with
increasing speed of convergence and smaller basin of attraction for decreasing values
of the parameters λ and ϑ. However, as we shall see in the next section, quite
different dynamic scenarios can be observed in the case of heterogeneous firms,
that is, if the two firms are characterized by different parameter values.
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3.2. Numerical simulations in the case of heterogeneous firms

If assumption (13) of identical competitors is relaxed, the computation of the steady
states requires numerical methods, because the analytic solution of the fourth degree
algebraic system (12) does not give compact expressions in terms of elementary
functions. The same holds for the computation of the eigenvalues of the Jacobian
matrix (A.1). So, numerical simulations of the discrete dynamical system (10) are
necessary in order to investigate the effects of heterogeneities, i.e., λ1 �= λ2 and/or
ϑ12 �= ϑ21, on the dynamic behavior of the repeated competition game.

We now propose some sequences of numerical explorations, starting from the
benchmark case of homogenous players, and then we introduce different kinds of
heterogeneities between the players in order to study their effects on the long run
dynamics of the system. For example, Fig. 2(a) is obtained with λ1 = λ2 = 0.2,
like in Fig. 1(a), ρ = 0.4 and a strong heterogeneity in the spillover parameters,
namely ϑ12 = 0 and ϑ21 = 1. This means that knowledge freely spills from firm 1
to firm 2, whereas no knowledge spillovers occur from firm 2 to firm 1 (i.e., firm
2 is able to protect its efforts). Two effects can be noticed from Fig. 2(a) first,
the stable equilibrium E = (x1E , x2E) is characterized by x2E > x1E , i.e., at
the equilibrium firm 2 exerts more effort than firm 1; second, the convergence
occurs through damped oscillations, i.e., overshooting effects occur before conver-
gence [see the projection of the trajectory shown in Fig. 2(a), starting from the
initial condition (x1(0), x2(0)) = (0.2, 0.3)]. Similar effects are obtained by assum-
ing identical spillover parameters and different values of cost-reducing parameters,

(a)

x2

x10 3
0

E

i.c.

3

(b)

x2

x10 3
0

Ei.c.

3

Fig. 2. Duopoly model with heterogeneous firms. The white region represents the set of points
that generate feasible trajectories converging to E, the grey region represents the unfeasible set.
(a) λ1 = λ2 = 0.2, ρ = 0.4, ϑ12 = 0 and ϑ21 = 1. The stable equilibrium E is represented together

with the projection in the (x1, x2) plane of the trajectory starting from initial condition “i.c.”
(x1(0), x2(0)) = (0.2, 0.3) (b) The same as (a) with ϑ12 = ϑ21 = 0.3, λ1 = 4.5, λ2 = 0.7.
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i.e., λ1 �= λ2. For example, Fig. 2(b) is obtained with the same value of ρ as Fig. 2(a),
ϑ12 = ϑ21 = 0.3, λ1 = 4.5, λ2 = 0.7. Also in this case the convergence to E is oscil-
latory, and x1E > x2E , i.e., the firms that experiences more evident cost reducing
effects of efforts invests more. In Fig. 2(b) another consequence of the introduction
of differences between the parameters λ1 and λ2 can be noticed, related to the shape
of the boundary that separates the feasible set from the unfeasible set.

More evident oscillations are obtained by introducing differences both between
the parameters λ1 and λ2 and between the spillover parameters ϑ12 and ϑ21. As
heterogeneities are strengthened, the oscillations become more and more evident
(the imaginary part of two complex conjugate eigenvalues increases) until the equi-
librium loses stability via a Neimark-Hopf bifurcation (i.e., a pair of complex conju-
gate eigenvalues exits the unit circle of the complex plane) and a stable closed invari-
ant curve is created around the unstable equilibrium along which quasi-periodic self
sustained oscillations take place. This situation is shown in Fig. 3, obtained with
ρ = 0.3, λ1 = 4.5, λ2 = 0.7, ϑ12 = 0.8, ϑ21 = 0.1. As expected, the equilibrium E is
characterized by x1E > x2E , because in this case firm 1 is more capable to protect
its efforts results (being ϑ12 > ϑ21) and the cost reducing effects are stronger for
firm 1 than for firm 2 (being λ1 > λ2). However, the equilibrium E is unstable, and
the attractor to which the generic feasible trajectory converges is represented by
a stable closed orbit around it. The trajectory starting from the initial condition
(x1(0), x2(0)) = (0.2, 0.3) is represented in Fig. 3, both projected in the (x1, x2)

(a)

x2

x10 2
0

E
i.c.

2

(b)

x1

x2

0

2

0

1

0 200100 time

0 200100 time

Fig. 3. Duopoly model with heterogeneous firms, with parameters ρ = 0.3, λ1 = 4.5, λ2 = 0.7,
ϑ12 = 0.8, ϑ21 = 0.1. The white region represents the set of points that generate feasible trajec-
tories converging to a stable closed invariant orbit around the unstable equilibrium E, the grey
region represents the unfeasible set. (a) Projection in the (x1, x2) plane of the trajectory starting

from initial condition “i.c.” (x1(0), x2(0)) = (0.2, 0.3) (b) The same trajectory is represented by
showing the sequences x1(t) and x2(t) versus time.
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x10 3
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3

(a) (b)

x1

x2

0

2

0

0.5
0 200100 time

0 200100 time

Fig. 4. Duopoly model with heterogeneous firms, with parameters ρ = 0.2825, λ1 = 6.49,
λ2 = 0.5, ϑ12 = ϑ21 = 0.5. (a) Projection, in the (x1, x2) plane, of the chaotic attractor to
which the trajectories starting close to the unstable equilibrium E converge (b) The same trajec-
tory is represented by showing the sequences x1(t) and x2(t) versus time.

subspace [Fig. 3(a)] and by showing the sequences x1(t) and x2(t) versus time
[Fig. 3(b)].

To conclude we note that even chaotic attractors can be observed by increas-
ing the difference between the parameters λ1 and λ2, as shown in Fig. 4 where
ρ = 0.2825, λ1 = 6.49, λ2 = 0.5, ϑ12 = ϑ21 = 0.5.

4. Economic Interpretation of the Results

In this section we describe some economic consequences arising from the study
of the proposed model. As stressed in the introduction, there are counteracting
forces at work in the model; for example direct effects of increasing efforts are
the increment of (expected) market share and profits but also increasing values of
current costs, whereas strategic long-run effects are related to the increment of the
knowledge stock, which, in turn, induces a decrement in own (future) costs but also
in rivals’ ones through spillover effects. Hence it is important to study how these
counteracting forces act in a dynamic framework.

We proved that in the case of homogeneous players, under suitable conditions on
the parameters, a unique and locally stable steady state exists, and the convergence
is always nonoscillatory (i.e., no overshooting effects can occur). The condition on
the parameters that ensure existence and stability of the unique equilibrium in the
case of homogeneous players, essentially requires sufficiently small values of the
parameter ρ. This is quite intuitive within this context, since the process we are
describing can have a steady state, characterized by constant values of xi and zi,
only if the rate at which new knowledge is gained equals the rate at which old
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knowledge is dissipated, so that stationariety is impossible without sufficiently high
knowledge dissipation.

The fact that, for suitable values of the parameters, the repeated game has a
locally stable equilibrium, can be described by saying that if the initial condition
is not too far from the equilibrium then the game, repeatedly played by not fully
rational players who have naive expectations about the competitors’ decisions, will
converge, in the long run, to the same equilibrium as in the one-shot game obtained
under the assumption of full rationality. Moreover, in the case of homogeneous
players, they will make identical choices in the long run.

The equilibrium values at the steady state x∗
i (ρ, λ, ϑ), i = 1, 2, are increasing

functions of the three parameters, so we can say that the capacity in making a better
use of the knowledge stock (increments in λ) and/or the ability to exploit rivals’
efforts (increments in ϑ) induces an increment in efforts, hence in competitiveness
between the firms. In addition, when knowledge spillovers are present, the increase
of λ, ϑ or ρ can lead to aggregate expenditures that are higher than the value of
the rent, hence producing the effect known as “rent dissipation”. However, at least
in the homogeneous case, we proved that high parameters levels always imply the
non-boundedness of the time evolution of the system, i.e., firms tend to increment
their efforts indefinitely (divergent trajectories).

It is worthwhile to consider the role of the parameters not only for the existence
and stability of the steady state, but also in the relative stability, by studying
their influence on the speed of convergence and on the extension of the basin of
attraction, since it is possible that these two aspects of relative stability lead to
contrasting conclusions, i.e., a stronger stability in the sense of faster convergence
may be associated with a weaker stability in the sense of basin’s extension, and
vice versa. This feature of the model has been proved by numerical analysis, hence
showing that, in same cases (e.g., decreasing λ and/or ϑ), the nearer the model is
to the perfect foresight case (fast convergence to the steady state), the nearer the
initial condition should be to the equilibrium (small basin of attraction), otherwise
divergent (i.e., not economic meaningful) trajectories are obtained. The fact that
the steady state cannot be globally stable has an obvious economic explanation,
because if the costs of a firm are higher than the unitary market size, then negative
profits are expected and this will force the firm to stop efforts for the next period,
and consequently it will exit the market, as our model assumes that R&D efforts
are necessary for staying in the market.

In addition, numerical explorations of the model clearly show that the pres-
ence of heterogeneities has not only the expected effect of giving an asymmetric
steady state, where the two players have different equilibrium efforts in the long
run dynamics, but also induces oscillations during the transient before the long run
dynamics settle down to the steady state.

The results obtained in the case of two heterogenous competitors show that
the firm that is more efficient in avoiding spillovers and/or in exploiting its own
knowledge to reduce costs, will invest more in the long run. Moreover, severe
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heterogeneities may destabilize the equilibrium and cause the creation of persis-
tent self-sustained oscillations. This means that the players, due to heterogeneities
and naive expectations about competitors’ behavior, are not able to learn playing
an equilibrium, and the repeated game continues to move around the equilibrium.

5. Concluding Remarks

In this paper we proposed a repeated discrete-time competition game, where we
introduced a dynamic mechanism for the description of knowledge accumulation
over time, as effect of R&D expenditures. The model also includes other effects,
such as dissipation of knowledge and involuntary transmission of knowledge between
firms (spillover effects).

In general there is not an obvious measuring unit for the knowledge stock,
even if we may assume, for instance, that it can be measured in terms of patents
owned, and its dissipation may be due to patents expiration. As an explanatory
example we recalled that such a situation can be observed in the drug industry or
in the competition among software houses, where R&D costs often outweigh the
production costs altogether, and spillover effects are important.

By properly tuning the spillover parameters ϑij , the model allows us to study
the effects of different balances between public and private knowledge, including
cases of asymmetric spillovers, and, by tuning the memory parameter ρ, we can
simulate different degrees of knowledge depreciation. The introduction, as dynamic
variables, of the levels of accumulated knowledge of the competing firms, increases
the number of dimensions of the discrete time dynamical system, so, after a general
n-firms formulation of the model, we restricted our analysis to the case of two
competing firms, represented by a four-dimensional dynamical system. A complete
analytic characterization of the conditions for existence, uniqueness and stability
of the steady state is given with homogeneous players, whereas insights on the case
with heterogeneous players as well as on the global dynamic of the model are mainly
obtained through numerical methods.

A possible extension of the proposed model could include the concept of
absorptive capacity, introduced by Cohen and Levinthal (1989). They argue that
firm i, in order to be able to identify, assimilate, and exploit knowledge from its
rival firms, has to be endowed with its own knowledge, which in turn enhances
firm i’s absorptive capacity. This effect can be easily introduced in our model by
considering spillover parameters as functions of the accumulated knowledge, i.e.,
ϑij = ϑij(zi), instead of constant coefficients.

In this paper we referred to market share attraction models, because they have
been frequently used in empirical work [see, e.g., Bultez and Naert (1975), Naert and
Weverbergh (1981)], in theoretical research of economics, game theory, operations
research and marketing [see, for example, Monahan and Sobel (1994), Monahan
(1987), Schmalensee (1976), Case (1979, Ch. 4), Cooper and Nakanishi (1988)] and
in economic dynamics as well [see e.g., Bischi et al. (2000), Kopel et al. (2000)].
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However, our results can be easily applied to rent seeking games. In fact, the same
expression (1) of the profit function is also used in the framework of rent-seeking
games [see e.g., Pérez-Castrillo and Verdier (1993), Nitzan (1994), Okuguchi and
Szidarovszky (1999), Bischi et al., (2001)] where B represents the total rent and
si is the probability to win the rent.

We also observe that the abstract and stylized model of this paper could be
employed to study particular competition models with accumulation effects. For
example, the iterative mechanism of knowledge accumulation could be usefully
applied to the oligopoly model with market saturation described in Okuguchi and
Szidarovszky (1999, Ch. 4), where an accumulation effect of goods that customers
buy is considered, through a recursive process which is very similar to the knowl-
edge accumulation mechanism of our model. So, the model proposed in this paper
can be seen as an abstract benchmark from which further studies and applications
can be developed.
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Appendix

The study of the local stability requires the study of the eigenvalues of the Jacobian
matrix of the map (10), given by

DT =




0 1
4A2(x2,z1)

− 1 λ1A2(x2, z1) 0

1
4A1(x1,z2)

− 1 0 0 λ2A1(x1, z2)

ϑ12

“
1

4A1(x1,z2)
− 1

”
1

4A2(x2,z1)
− 1 λ1A2(x2, z1) + ρ λ2ϑ12A1(x1, z2)

1
4A1(x1,z2)

− 1 ϑ21

“
1

4A2(x2,z1)
− 1

”
λ1ϑ21A2(x2, z1) λ2A1(x1, z2) + ρ




where

A1(x1, z2) =
x1

2
√

x1(1 + λ2z2)
and A2(x2, z1) =

x2

2
√

x2(1 + λ1z1)

computed at the fixed points.
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The Jacobian matrix in the homogeneous case is given by

J =




0
√

x2(1+λz1)

2x2
− 1 λx2

2
√

x2(1+λz1)
0

√
x1(1+λz2)

2x1
− 1 0 0 λx1

2
√

x1(1+λz2)

ϑ

(√
x1(1+λz2)

2x1
− 1

) √
x2(1+λz1)

2x2
− 1 λx2

2
√

x2(1+λz1)
+ ρ λx1ϑ

2
√

x1(1+λz2)√
x1(1+λz2)

2x1
− 1 ϑ

(√
x2(1+λz1)

2x2
− 1

)
λx2ϑ

2
√

x2(1+λz1)

λx1

2
√

x1(1+λz2)
+ ρ




(A.1)

or

J =




0 1
4A2

− 1 λA2 0
1

4A1
− 1 0 0 λA1

θ
(

1
4A1

− 1
)

1
4A2

− 1 λA2 + ρ λθA1

1
4A1

− 1 θ
(

1
4A2

− 1
)

λθA2 λA1 + ρ




being Ai = xi

2
√

xi(1+λzj)
, i = 1, 2, i �= j.

In the origin E1 the map is obviously not differentiable.
In the point E2 the Jacobian reduces to

J(E2) =




0 0 λ
4 0

0 0 0 λ
4

0 0 ρ + λ
4

λϑ
4

0 0 λϑ
4 ρ + λ

4




and the eigenvalues are given η1 = 0; η2 = 0; η3 = 1
4 (1+ϑ)λ+ρ; η4 = − 1

4 (ϑ−1)λ+ρ.
The proof of Proposition 1 is then straightforward.
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