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Abstract

We propose a dynamic model for studying the time evolution of fish stocks in an environment divided into
two adjacent zones with different fishing policies. We analyze two particular harvesting methods: constant
fishing effort and profit maximization. In this case, some agents engage in competition based on maximization
of individual profit whereas others cooperate. The asymptotic behavior of the system pinpoints that, even if
the presence of a reserve area leads to higher levels of sustainability in exploiting fish stocks, attention should
be paid in properly regulating the harvesting activity in order to avoid severe depletion of the resource.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The modelling of the commercial exploitations of renewable resources represents a challenging
task, as it involves the nonlinear interaction of biological, economic and social components. The
sustainability of this exploitation is constrained by the natural growth of the resource, and over-
exploitation eventually leads to stock depletion and thus decreasing yields. Different sources of
strategic interdependence among competing agents who have access to a public natural resource
are present. First, biological externalities must be taken into account, as overexploitation of the
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resource by one agent may have important consequences on the capacity of regeneration of the
resource, thus giving a negative externality for the whole community of exploiters. Second, market
externalities may exist due to price reduction as a consequence of increasing resource harvesting.
Moreover, cost externalities may exist because decreasing stocks of available resources usually
imply increasing unitary harvesting costs. In the management of common property renewable
resources (such as fisheries, aquifers or rivers, hunting, forestry) harvested by competing individ-
uals, societies or countries, the problem known as “The tragedy of the commons” after Hardin
(1968) (see also Gordon, 1954; Clark, 1990; Mesterton-Gibbons, 1993; Conrad, 1999) must be
taken into account.

For these reasons many authors suggest that central institutions should impose forms of regu-
lation such as fishery regulations, either by imposing fishing restrictions such as constant fishing
efforts, or through taxation (see Clark), or even by stimulating cooperative behavior among ex-
ploiters.

However, the complexity of time evolutions of natural populations, due to nonlinear biological
growth functions and the ecological complexity of interactions among species, gives rise to several
difficulties in implementing suitable regulation policies that are able to combine economically
(and socially) efficient exploitation with issues of sustainable exploitation. Indeed, these severe
nonlinearities can present themselves at multiple levels and in multiple ways, due to nonlinear
interactions between ecological and economic components (see, e.g. Rosser, 2002), and present
a serious challenge to policy makers.

In this paper we consider fisheries, and we propose a discrete-time dynamic model for studying
the time evolution of fish stock in an aquatic environment divided into two adjacent zones charac-
terized by different fishing policies. Indeed, often fishing legislation divides a fishery into regions
such that each region imposes a different harvesting policy. However, fish move among regions so
that the stock of one region depends not only on harvesting and biological growth of that region,
but also on the stock and catch of the neighboring regions. This gives rise to an interdependence
that at each time period can increase the population of the zone where the fish stock is scarcer.
Such a situation may occur when different countries harvest in neighboring regions, each in its
own region according to different fishing legislation (see, e.g. Datta and Mirman, 1999). One can
also imagine that a single country makes a subdivision of a common resource pool into regions
where different fishing rules are applied, including the case of regions where fishing is forbidden
(reserve areas; see, e.g. Dubey et al., 2003).

We analyze two particular, and in some way complementary, harvesting methods: constant
fishing efforts and oligopolistic competition. The first involves a limited number of fishing units,
each of them employing a controlled technology and a constrained effort, often imposed by a
local regulator, whereas the second harvesting method is based on the free “rational” choice of
a given number of profit maximizing agents engaging a Cournot-like competition. In the latter
case we assume that the population of agents is split in two fractions, one with individual profit
maximizers and the other fraction with group profit maximizers (i.e. agents that cooperate in
maximizing the overall profit of a cooperative joint venture). Following Bischi et al. (2004) we
compute the Cournot–Nash equilibrium harvesting strategy under the assumption that cooper-
ators and competitors (also denoted as defectors) coexist, the population being subdivided into
a fraction of agents that form a cooperative venture and maximize the total profit of the set of
cooperators, and the complementary fraction that engage a Cournot competition by maximizing
their individual profits. This generalizes the harvesting functions given by Bischi et al. (2005)
because the two extreme cases of 100% cooperators or 100% defectors are obtained as limiting
cases.
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Our model moves from Okuguchi (1998) and its extensions given in Szidarovszki and Okuguchi
(1998) where a noncooperative game in continuous time is studied where n players (e.g. coun-
tries) harvest from a common pool and each of them sell harvested fish in n markets (home and
foreign markets). Szidarovszky and Okuguchi (2000) investigate the case where the players form
a coalition and maximize the total profit so that they behave like a sole owner. These two extreme
cases (individual and cooperative profit maximization) are compared in a discrete time setting by
Bischi et al. (2005), where adaptive expectations are introduced to estimate fish stock.

Our model also generalizes Dubey et al., as they consider the case of two different fishing areas
related by fish diffusion and only describe the case of one region with constant efforts and the other
one with no fishing activity. The general case of constant effort in one region and oligopolistic
competition in the other one will be analyzed in a different paper.

Even if the model proposed can be used to analyze the case of differentiated harvesting policies
in the different regions, in this paper we only consider the particular case where one of the two
zones is a protected area, that is, where no fishing activity occurs. Indeed, this case may be
particularly interesting for real world applications.

The aim of this paper is to study the effects induced by the presence of a marine reserve near
a fishery and compare the cases obtained when different harvesting policies are adopted in the
fishery. In particular we consider two different, and in some sense complementary, policies: a
regulated fishery with imposed constant effort and an oligopoly where profit maximizing agents
compete. The main result of the paper, obtained through the study of the different kinds of
asymptotic behaviors, reveals that the presence of a protected area favors the sustainability of
harvesting, but it alone does not rule out the danger of severe depletion of the resource. With
constant effort harvesting we show a sort of “continuity” in the biomass level as effort is varied,
whereas with oligopolistic competition it is possible to observe hysteresis effects and irreversibility
of the human action. Moreover, the results obtained in each particular model with a reserve area will
be compared with the dynamic evolutions obtained for the corresponding one-region model (i.e.
without any reserve, represented by a one-dimensional dynamical system). Such elementary one-
dimensional models constitute useful benchmarks for understanding, by comparison, the effects
of interdependencies between the two regions due to fish diffusion or to market externalities.

The plan of the paper is as follows. In Section 2, the general model with two regions and
diffusion is outlined, and the growth function is described. In Section 3, the two different harvesting
functions that are considered in this paper are derived: one describing an imposed harvesting
policy that forces constant fishing efforts and one characterized by profit maximizing agents that
engage a Cournot oligopoly game. In this section the properties of the one-dimensional models
that describe the time evolution of fish stocks in the case of a single fishing region are briefly
described in order to appreciate better, by comparison, the effects of interdependencies between
the two regions due to fish diffusion or to market externalities. In Section 4, two particular models
are studied, where one region is a reserve area (i.e. no fishing is allowed in it) and the other one is
characterized by one of the two harvesting policies proposed in this paper. This section studies the
existence of equilibria and gives some insight about their properties of stability and bifurcations. A
summary of the main results as well as a description of possible extensions are given in concluding
Section 5.

2. The dynamic model of two-zones fishery

Let us consider two neighboring aquatic environments, labelled as region 1 and region 2, and
let Xi(t), i = 1, 2, denote, respectively, the biomass density of the (same) fish population at time
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period t in the two regions. We denote by Gi and Hi, i = 1, 2, the growth functions and the
harvesting functions in the two regions, and we assume that the fish population can diffuse across
the boundary between the two zones. Under these assumptions the time evolution of fish stock in
the two zones can be described by the following two-dimensional map{

X1(t + 1) = X1(t) + G1(X1(t)) − H1 + σ[X2(t) − X1(t)]

X2(t + 1) = X2(t) + G2(X2(t)) − H2 + σ[X1(t) − X2(t)]
(1)

defined in the non-negative orthant {X1, X2|X1 � 0, X2 � 0}. In general G1 = G2 because we
are considering the same species of fish in the two regions; however cases with G1 �= G2 may be
considered to model situations where the two environments have different carrying capacity, for
example as a consequence of different reproduction rates (e.g. when the conformation of a zone
makes it more suitable for reproduction) or mortality rates (e.g. when a zone undergoes some
form of pollution). However, in this paper we focus mainly on the heterogeneity between regions
related to different fishing policies (i.e. different harvesting functions Hi, i = 1, 2). In particular,
we get the cases of a protected area, when Hi = 0 in one region (see Dubey et al.). The parameter
σ � 0 depends on the kind of fish considered and is proportional to the size of the border between
the different areas.

We are interested in the study of the time evolution of fish stocks in each region, particularly
how these are influenced by different harvesting policies, diffusion and market externalities.

To simplify the analysis, in the following we assume that the unharvested resource follows a
logistic growth in each zone, with Gi(Xi) = Xi(αi − βiXi), i = 1, 2, where αi and βi, i = 1, 2, are
biological parameters that characterize the fish population we are considering and the environment
where it lives: αi is the intrinsic growth rate and K = αi/βi the carrying capacity. However, the
results obtained also hold for more general growth functions that satisfy the standard assumptions
(i) Gi(0) = 0, (ii) G′

i(0) > 0, (iii) G′′
i (X) � 0 for 0 < X < K and (iv) Gi(K) = 0.

For some fish, population growth with depensation is observed, characterized by unimodal
growth functions that are convex for low values of X and concave for higher values (i.e. assumption
(iii) is replaced by G′′

i (0) > 0 and G′′
i (K) < 0). Such kinds of growth functions are typical of fish

species that form schools. We shall not consider depensation in this paper.

3. Two harvesting functions

In this section we describe the two different harvesting functions considered in the following:
imposed constant efforts, in region 1, and oligopolistic competition, in region 2. In the first case
a limited number of fishing units is present, each using a controlled technology and a constrained
effort, whereas in the second case agents choose quantity to harvest as the result of free “rational”
choices (i.e. they try to maximize some profit function engaging a Cournot oligopoly game). For
each of these harvesting functions we shall briefly recall the main properties of the corresponding
one-dimensional dynamic models

Xi(t + 1) = F (Xi(t)) = Xi(t) + Gi(Xi(t)) − Hi(Xi(t)) (2)

that describe the time evolution of fish stock Xi when only region i exists, where the fishery ex-
ploitation occurs according to the harvesting function Hi, i = 1, 2. The one-dimensional models
(2) constitute useful benchmark cases to better appreciate, by comparison, the effects of interde-
pendencies between the two regions due to fish diffusion or to market externalities.
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3.1. Constant effort harvesting

The literature on mathematical bioeconomic modelling of fisheries with constant efforts is
really huge, starting with Gordon (1954) and Shaefer (1954, 1957); see Clark and references
therein.

Here we assume that in region 1 a central authority imposes a constant total effort in fishing
activity. If we denote by E is the individual effort, n1 the number of agents (fleets of vessels) and
q is the catchability rate (linked to the adopted technology), the harvesting policy that imposes a
constant total effort En1q is represented by the linear harvesting function

H1(X1) = En1qX1. (3)

This is a very common form of controlled management of harvesting activity and very
well known in the mathematical bioeconomics literature. We just recall here some proper-
ties of the one-dimensional discrete-time dynamic model (2) with logistic growth and constant
effort:

X(t + 1) = X(t)(1 + α − En1q − βX(t)). (4)

The map (4) is conjugate to the standard logistic map z′ = f (z) = μz(1 − z) with parame-
ter μ = (1 + α − En1q) through the linear transformation X = (1 + α − En1q)z/β (see May,
1987; Devaney, 1987; Conrad and Clark, 1987; Clark, 1990). For any α > En1q, the equilibria
are

X0 = 0 and X∗ = α − En1q

β

that represent, respectively, the extinction of the species and the carrying capacity with harvest-
ing. The extinction equilibrium X0 = 0 is unstable for each α > En1q. However, the effect of
increasing the parameters q, n1 or E (i.e. increasing the level of adopted technology, the num-
ber of fishermen and/or the individual effort) is to decrease the value of X∗, and at the value
α = En1q a transcritical bifurcation occurs, after which the origin becomes a stable equilibrium.
For E > α/(n1q) the positive equilibrium no longer exists, and the only long run evolution is
towards extinctions of the fish stock.

For En1q < α < 2 + En1q, the equilibrium X∗ is stable and becomes unstable for 2 + En1q <

α < 3 + En1q, where a bounded positive attractor around it exists, with periodic or chaotic
dynamic. For values of the parameters such that En1q < α < 3 + En1q, the positive attractor
(the fixed point or a periodic or chaotic attractor) has a basin of attraction

B =
(

0,
1 + α − En1q

β

)
.

Every trajectory starting out ofB leads to negative values of X, the extinction of the fish population
in finite time (see Clark).

3.2. Competition and cooperation in a common property Cournot oligopoly

Many models in the literature on fisheries deal with Cournot competition among agents; see for
instance Levhari and Mirman (1980), Mesterton-Gibbons (1993), Sethi and Somanathan (1996)
and Okuguchi (1998).
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We now consider the harvesting function on region 2, where harvesting is not regulated by a
central management authority, and n2 agents, allowed to exploit the fishery, are free to decide
their harvesting activity by solving a profit maximization problem (i.e. they behave as Cournot
oligopolists). In this case the market generates an interdependence among the agents. In fact,
increasing harvesting leads to lower prices through a demand function. Moreover, resource de-
pletion leads to increasing unitary harvesting costs. The profit maximization problem solved by
the agents is assumed to be myopic, that is, in choosing their current harvesting, agents do not
take into account the impact of the current harvest on the future biomass trajectory. Such myopic
behavior often characterizes traditional artesanal fisheries, especially in developing countries.
As stressed in Sandal and Steinshamn (2004), several reasons for such myopic behavior can
be given: first, as long as more than one agent is present, there is always an element of “the
tragedy of the commons”, that is, “whatever I do not harvest may be harvested by others and
therefore I do not have any incentives to save fish for tomorrow”. Second, agents may simply
not have, or not believe in, information about population dynamics. As a matter of fact, the bi-
ology of many fish stocks around the world is poorly understood and many have not even been
investigated yet.

As stressed by many authors, myopic and individual profit maximization often leads to over-
exploitation, and consequently individual profits may become less and less in the long run, due
to severe resource depletion. Of course, since agents may be aware of this, they could prefer
to form cooperative ventures and maximize the overall profit of the coalition instead of their
individual profit (see Szidarovszky and Okuguchi, 2000). In the following, starting from Bischi
et al. (2004) we assume that the population of fishermen is subdivided into two fractions: one
fraction formed by agents forming a cooperative venture and the complementary fraction formed
by agents preferring an individual competition. Let us assume that n2 agents harvest fish from the
common property fish stock available in region 2 and sell the harvested fish in a market at a price
determined by a linear inverse demand function

p = a − bH (5)

where a and b are positive parameters and H is the total amount of the harvested resource that
is sold in the market. The harvesting cost for player k to catch a quantity xk, when the fish stock
is X, is given by Ck(xk, X) = ck + γk(x2

k/X), where ck is a fixed cost and γk > 0 represents a
technological parameter. This cost function can be derived from a Cobb–Douglas type “production
function” with fishing effort (labor) and fish biomass (capital) as production inputs (see Clark,
1990; Szidarovszki and Okuguchi, 1998) and captures the idea that the larger the fish population
is, the easier and cheaper it becomes to catch fish.

Moreover, even if each agent decides the quantity to harvest by solving a profit maximization
problem, we assume that a fraction s of players, 0 ≤ s ≤ 1, act as “cooperators”, forming a
cooperative venture and consequently trying to maximize the overall profit of the coalition,
whereas agents in the remaining fraction, (1 − s), behave as “selfish” profit maximizers and are
referred to as “defectors”.

These assumptions generalize those given in Bischi et al. (2005), because cooperators and
defectors are assumed to coexist and the two limiting cases of “all cooperators” and “all defectors”
considered in that paper are here obtained as limiting cases, given by s = 1 and s = 0, respectively
(see also Sethi and Somanathan).

Let hc
i and hd

k represent the quantities harvested and sold on the market, respectively, by
cooperator i, i = 1, . . . , n2s, and defector k, k = 1, . . . , n2(1 − s). Then assuming H = H2 (i.e.
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the total supply in region 2 is harvested by the n2 agents1), we have that2

H2 =
n2s∑
i=1

hc
i +

n2(1−s)∑
i=1

hd
i .

Therefore, the expected profit of ith cooperator is

πc
i = hc

i [a − bH2] − γi

(hc
i )2

X2
− ci = (6)

= hc
i

[
a − b

(
n2s∑
i=1

hc
i +

n2(1−s)∑
i=1

hd
i

)]
− γi

(hc
i )2

X2
− ci (7)

where X2 is the estimation on future fish stock in the second region.3 Similarly, the profit of the
ith defector is

πd
i = hd

i (a − bH2) − γi

(hd
i )2

X2
− ci = (8)

= hd
i

[
a − b

(
n2s∑
i=1

hc
i +

n2(1−s)∑
i=1

hd
i

)]
− γi

(hd
i )2

X2
− ci. (9)

The defectors solve the optimization problem maxxd
i
πi

d, which leads, assuming interior opti-
mum, to the condition

∂πd
i

∂hd
i

= a − b

(
n2s∑
i=1

hc
i +

n2(1−s)∑
i=1

hd
i

)
− bhd

i − 2
γi

X2
hd

i = 0. (10)

Instead, each cooperator determines hi
c by solving the optimization problem maxhc

i
πV =

maxhc
i

∑n2s
i=1 πc

i , where πV, which is a concave function in the variables hc
i , denotes the total

profit of the cooperative venture. Assuming interior optimum also in this optimization problem,
the first order conditions are

∂πV

∂hc
i

= a − 2b

n2s∑
i=1

hc
i − b

n2(1−s)∑
i=1

hd
i − 2

γi

X2
hc

i = 0. (11)

Moreover, we show below that both profit functions are always positive at the interior optimum.
Since each cooperator (defector) solves the same optimization problem, we denote by hc = hc

i

and hd = hd
i the optimal harvesting of a representative cooperator and defector, respectively.

Moreover, to stress the heterogeneity between the two groups, we assume that, in general, a repre-
sentative cooperator and a representative defector adopt different fishing technology, represented,

1 We assume this since we are here concerned with the presence of a protected area. The case H = δH1 + H2, with
δ ∈ (0, 1], will be discussed briefly in Section 5 and analyzed in a different paper.

2 Since n2 is finite, admissible values of s should be discrete (i.e. s = k/n2 with k = 0, 1, . . . , n2). However, as usual
in population dynamics, we abstract from this and we allow s to be a real number in the interval [0,1], even if we shall
consider n2s and n2(1 − s) integers that sum to n2, by assuming some approximation of n2s to the nearest integer.

3 In the following we shall assume that agents have perfect foresight on next period amount of fish stock available (for
a more realistic assumption, see Bischi and Kopel, 2002).
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respectively, by the parameters γc and γd. This assumption can be motivated as a consequence
of different attitudes of the two groups toward the environmental sustainability of harvesting:
cooperators for instance could decide to harvest according to a “precautionary approach” (e.g.
adopting particular gear restrictions) whereas defectors could be unconcerned with it (e.g. fishing
with trawls).

All in all Eqs. (10) and (11) reduce to a system of two linear equations:⎧⎪⎪⎨
⎪⎪⎩

bn2sh
c + hd

[
b (n2(1 − s) + 1) + 2γd

X2

]
= a

bn2(1 − s)hd + 2hc
[
bn2s + γc

X2

]
= a.

We can easily derive the following linear reaction functions,

hc = fc(hd) = aX2

2(bsn2X2 + γc)
− b(1 − s)n2X2

2(bsn2X2 + γc)
hd

hd = fd(hc) = aX2

b(1 + (1 − s)n2)X2 + 2γd
− bsn2X2

b(1 + (1 − s)n2)X2 + 2γd
hc,

and compute the unique positive Nash equilibrium (h∗
c , h

∗
d), located at the intersection of the

reaction functions, given by

h∗
d(X2) = X2(bsn2X2 + 2γc)a

D(X2)
(12)

and

h∗
c (X2) = X2(bX2 + 2γd)a

D(X2)
(13)

where

D(X) = (bX(bn2(2 + n2(1 − s))sX + 2γc(1 + n2(1 − s))) + 4γd(bn2sX + γc)). (14)

The total harvesting at the Nash equilibrium is given by

H∗
2 (X2) = n2[sh∗

c (X2) + (1 − s)h∗
d(X2)]. (15)

The function H∗
2 (X2) in (15) is an increasing and concave function such that H∗

2 (0) = 0. For the
main properties of h∗

d(X∗
2) and h∗

c (X∗
2) we refer to Bischi et al. (2004). By plugging expressions

(12) and (13) in (6) and (8), we have that the profit functions of a representative defector and
competitors, respectively, are always positive at the equilibrium:

πc(h∗
c , h

∗
d) = a2X2(bn2sX2 + γc)(bX2 + 2γd)2

[D(X2)]2 > 0

and

πd(h∗
c , h

∗
d) = a2X2(bn2sX2 + 2γc)2(bX2 + γd)

[D(X2)]2 > 0.

It is interesting to note that H∗
2 (X2) approaches the horizontal asymptote,

H∗
2 (+∞) = a

b

(
1 − 1

2 + n2(1 − s)

)
. (16)
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Fig. 1. Equilibria in the one-dimensional model of Cournotian oligopolistic competition with cooperators and noncoop-
erators. (a) A single positive equilibrium exists. (b) Two equilibrium exist. (c) No positive equilibrium exists.

3.2.1. Existence of equilibria
We consider now the main properties of the dynamic Eq. (2) with harvesting function (15). In

this way, we can describe the time evolution of the fish stock X in a model with a single region,
where harvesting is assumed to occur according to the Nash equilibrium of the Cournot game
described above. The steady states are the non-negative solutions of the equation

X(α − βX) = H∗
2 (X) (17)

So, for any given value of s, the equilibria are located at the non-negative intersections between
a parabola and the concave function (15) with X1 = 0. The equilibrium X0 = 0 (extinction of
the resource) always exists. Furthermore, depending on the values of the parameters, one, two,
or no positive equilibria may exist (see in Fig. 1 curves a, b and c, respectively). Indeed, we can
distinguish three different situations according to the existence of positive steady states.4

(a) A unique positive equilibrium exists, say X1 with 0 < X1 < α/β.
(b) Two positive equilibria exist, say X2 and X1, such that 0 < X2 < α/2β < X1 < α/β.
(c) No positive equilibria exist.

3.2.2. Stability analysis of equilibria
Concerning the stability of the equilibria, from the first derivative DF (X) of the map in (2) we

can deduce that in case (a), if Eq. (29) in Appendix in Supplementary data holds, then DF (0) > 1,
so the fixed point X0 = 0 is unstable. This means that if Eq. (29) in Appendix in Supplementary
data is satisfied (i.e. the number of fishermen is not too high, or prices are not too high or cost
parameters are not too small), then even if the resource stock is reduced at an arbitrary small
positive value by some exogenous shock, the endogenous dynamics of the system is such that
it spontaneously evolves to viable levels of the resource stock, close to X1. The unique positive
equilibrium X1 may be stable (i.e. |DF (X1)| < 1) or unstable (with DF (X1) < −1). In the latter

4 See the Appendix in Supplementary data.
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case, which occurs with high values of the parameter α, a more complex bounded attractor, which
may be periodic or chaotic, may exist around X1. The bounded attracting set is confined inside
the trapping set I = [c1, c] where c is the maximum value of the function F and c1 = F (c).
In any case, the basin of the bounded attractor is bounded by the unstable fixed point X0 = 0
and its rank one preimage X0

−1, that is, B = (0, X0
−1), where X0

−1 is the positive solution of the
equation

1 + α − βX = H∗
2 (X)

X
. (18)

It is straightforward to see that under assumption (29) in Appendix in Supplementary data, Eq.
(18) has a unique positive solution X0

−1 such that X1 < X0
−1 < (1 + α)/β. An initial condition

with X(0) > X0
−1 is mapped by the iterated function F to a negative value, so we consider as

unfeasible such a trajectory.5

It is worth noticing that the equilibrium value X1 is influenced by the value of s. In fact, if s is
increased, then the asymptote of H∗

2 moves downwards, and this implies that X1 increases with
s (i.e. X1(s) is an increasing function). The intuition behind this is clear: more cooperators imply
an higher resource stock at the long run equilibrium, due to a more conservative (or sustainable)
resource exploitation.

If the aggregate parameter at the left hand side of Eq. (29) in Appendix in Supplementary data
is increased (i.e. the number of fishermen and/or prices become higher compared with intrinsic
growth of the fish species in the environment considered, and/or the fishing costs are lowered by
using more sophisticated technologies), for

n2a

(
s

γc
+ 1 − s

γd

)
= 2α (19)

we have DF (0) = 1, and if n2a(s/γc + (1 − s)/γd) is further increased (or α decreased), then a
transcritical (or stability exchange) bifurcation occurs after which the equilibrium X0 = 0 be-
comes stable (i.e. −1 < DF (0) < 1), and a second fixed point X2 enters the positive orthant, thus
giving the situation (b). The new positive equilibrium X2 is unstable, being DF (X2) > 1, and it
belongs to the boundary that separates the basin of the stable equilibrium X0 = 0 from the basin
of the positive attractor. In this situation X2 constitutes a threshold population level such that
if the current population X(t) falls below X2 then the resource stock will spontaneously evolve
towards extinction. It is worth noticing that if s is increased, so that the asymptote of H∗

2 moves
downwards, then threshold value X2 moves to the left (i.e. it is a decreasing function of s). This
means that more cooperators imply not only a higher resource stock at the long run equilibrium
X1, but also an enlargement of its basin of attraction.

As usual with noninvertible maps, all the rank one preimages of X2 belong to basin boundaries,
so the basin of the positive attractor is now given by

B = (X2, X2
−1), (20)

X2
−1 being the rightmost solution of the equation F (X) = X2.
When two positive equilibria exist, let us consider given values of the biological parameters α

and β, so that the parabola in Fig. 1 is fixed. If the other parameters are varied with the consequence
that the asymptote of H∗

2 moves upwards, the two positive equilibria become closer and closer,

5 This may be interpreted as a resource extinction due to overcrowding effects.
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Fig. 2. Cournotian oligopolistic competition with cooperators and noncooperators. Bifurcation diagram as a/b is increased
and/or s decreased. The thick lines represent stable equilibria, the dashed ones unstable equilibria.

so that the basin of X0 enlarges and, therefore, the basin of the viable equilibrium X1 shrinks.
This can be obtained, for example, by increasing prices (i.e. increasing a/b) or decreasing values
of s.

Finally, the situation (c), where the extinction equilibrium X0 = 0 is the unique steady state,
may be obtained as the final effect of increasing H∗

2 (+∞). The transition from a dynamic scenario
characterized by two positive steady states to one with no positive steady states occurs via a fold
(or tangent) bifurcation, due to a progressive decrease of X1 and increase of X2 (so that the basin
B becomes smaller and smaller) until they merge with DF (X1) = DF (X2) = 1, and then they
disappear.

These different dynamic scenarios, obtained by a gradual shift of the horizontal asymptote
H∗

2 (+∞) (see (16) with X1 = 0) are summarized in the bifurcation diagram in Fig. 2, where
in the horizontal axis a parameter that moves upwards the horizontal asymptote (16) is reported
(such as increasing values of a/b or decreasing values of s). The thick lines represent stable
equilibria, the dashed ones unstable equilibria. If a is increased, or s decreased, so that the two
positive equilibria merge and disappear, the system will evolve toward extinction, and a successive
opposite variation (i.e. increasing a or increasing s) will not be sufficient to move back to the
previous positive equilibrium. So, this bifurcation diagram shows the occurrence of a certain
hysteresis effect, similar to the sudden and irreversible jumps familiar in catastrophe theory (see,
e.g. Rosser, 2000).

4. The coexistence of protected and unprotected areas

The dynamic model with two regions (1) characterized by the two different harvesting functions
described in the previous section becomes{

X1(t + 1) = X1(t) + G1(X1(t)) − En1qX1(t) + σ[X2(t) − X1(t)]

X2(t + 1) = X2(t) + G2(X2(t)) − H∗
2 (X2(t)) + σ[X1(t) − X2(t)].

(21)

However, in this paper we only focus on two particular cases (and meaningful per se) in which
one region is a reserve area (i.e. no fishing is allowed in it).

For sake of simplicity we shall consider the caseα1 = α2 = α andβ1 = β2 = β, that is when the
same growth functions in each region is given by G(X) = X(α − βX), so that the only difference
between the neighboring zones is due to the presence of harvesting.
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4.1. Constant effort and a protected area

This model can be obtained from (21) by assuming n2 = 0 (hence H∗
2 = 0). In this case the

map (21) assumes the form of a linearly coupled quadratic map, given by{
X1(t + 1) = X1(t)(1 + α − σ − En1q − βX1(t)) + σX2(t)

X2(t + 1) = X2(t)(1 + α − σ − βX2(t)) + σX1(t),
(22)

the linear coupling being caused by the diffusion terms. A rich literature exists about this kind of
discrete dynamical systems (see, e.g. Schult et al., 1987; Gardini et al., 1994; Inque and Nishi,
1996; Maistrenko et al., 1998; Dobrynskiy, 1999; Bischi and Kopel, 2001, just to cite a few).

4.1.1. Existence of equilibria
The equilibria in the bidimensional model are the non-negative solutions of the fourth degree

algebraic system{
X1(α − σ − En1q − βX1) + σX2 = 0

X2(α − σ − βX2) + σX1 = 0
(23)

located at the intersections of the two convex parabolas

X1 = f1(X2) = 1

σ
X2(βX2 + σ − α) and

X2 = f2(X1) = 1

σ
X1(βX1 + En1q + σ − α). (24)

The origin X0 = (0, 0) is always a steady state of the model (22) and the following result holds,
as proved in Appendix in Supplementary data (see also Fig. 3):

Proposition 1. The model (22), with constant effort En1q ∈ [0, +∞) and σ < α, has
a unique positive equilibrium (X∗

1, X
∗
2) with X∗

2 ∈ (α−σ
β

, α
β

] and X∗
1 = max(0, f1(X2)) ∈

(max(0,
α−σ−En1q

β
), α

β
).

It is easy to compute the equilibrium in the two limiting cases of no fishing effort and in-
finite fishing effort. When En1q = 0, X∗

1 = X∗
2 = α/β (the two carrying capacities) whereas

limn1qE→+∞ X∗
2 = (α − σ)/β and limn1qE→+∞ X∗

1 = 0+.
We remark that the result given in Proposition 1 contrasts with the classical results obtained

for the model of harvesting with constant effort without a neighboring reserve area, recalled in
Section 3.1, where for En1q > α no positive equilibrium exists. Instead, thanks to the presence
of the neighboring reserve area a positive equilibrium always exists for the model (22).

4.1.2. Stability analysis of equilibria
Since Proposition 1 only concerns the existence of a unique positive equilibrium of the model

(22), it is not sufficient to rule out the extinction of the fish stock. In fact, in order to make a
meaningful comparison with the corresponding one-region model with constant effort harvesting,
it is necessary to investigate the stability of the two equilibria.

The Jacobian matrix of (22) is symmetric

DT (X1, X2) =
(

1 + α − 2βX1 − σ − En1q σ

σ 1 + α − 2βX2 − σ

)
; (25)
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Fig. 3. Existence and uniqueness of the positive equilibrium with constant effort and a protected area. (a) (α − σ −
En1q)/β > 0 and (b) (α − σ − En1q)/β < 0.

hence its eigenvalues λ1, λ2 (given in Appendix in Supplementary data) are always real. When
no harvesting takes place (i.e. En1q = 0), it is easy to show that the equilibrium with no fish
stock X0 is unstable for each value of α and σ (in fact λ2 = 1 + α > 1). Moreover, if 0 < σ < α

the equilibrium with no fish stock is always unstable, in contrast with the case of one region
where the equilibrium with no fish stock becomes stable for En1q � α (details are provided in
Appendix in Supplementary data). However, this result does not rule out extinction in finite time
(i.e. trajectories that involve negative values of X1), as we shall show by numerical simulations.

Now we turn to the positive equilibrium.
Fold and pitchfork bifurcations, characterized by one eigenvalue λi = 1, cannot be present

in this case, because of the uniqueness of the positive equilibrium. Moreover, Neimark–Hopf
bifurcations cannot occur because the eigenvalues are real, being Jacobian matrix symmetric. So,
the positive equilibrium may lose stability only through a flip (or period doubling) bifurcation.
For instance, if condition 2 < α < 2 + σ is met, starting from a situation where the equilibrium
is an unstable node (i.e. λ1, λ2 < −1), there exists a level of En1q above which λ2 > −1 so
that the equilibrium becomes a saddle point or a stable node, depending on λ1. Analytical de-
tails on the stability of the positive equilibrium are again given in Appendix in Supplementary
data.

Let us first consider the case of no fishing (i.e. En1q = 0). In this case the only positive
equilibrium (X∗

1, X
∗
2) = (α/β, α/β) is stable if and only if condition α + 2σ < 2 is satisfied (i.e.

overcrowding effects, due to natural growth or migration, are sufficiently low). At α + 2σ = 2
the point (α

β
, α

β
) looses stability through a flip bifurcation. If (2 − 2σ) < α < 2 then (X∗

1, X
∗
2) is

a saddle point, being λ1 < −1 and −1 < λ2 < 1, whereas for α > 2 it is an unstable node, being
λ2 < −1 as well.

Moreover, from the analysis of the eigenvalue λ1 and being λ1 < λ2 < 1, we can deduce
that when α + 2σ < 2 there exists always a bifurcation value b∗ ∈ (0, 4) such that the positive
equilibrium (X∗

1, X
∗
2) looses stability through a flip bifurcation at En1q = b∗. Through the same

reasoning it is possible to prove that in the case α + 2σ > 2 so that the equilibrium is unstable at
En1q = 0, a backward flip bifurcation is associated with any flip bifurcation; that is, increasing
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Fig. 4. Constant effort and a protected area with parameters n1 = 30, q = 1, α = 2, β = 0.5, σ = 0.25. Being α + 2σ >

2, the equilibrium is unstable for E = 0. (a) Bifurcation diagram with E ranging in the interval [0,0.1]. An interval of
E where stabilization of the equilibrium is present is clearly visible. (b) E = 0. The asymptotic dynamic is a two-cyclic
quasi-periodic attractor.

values of En1q can lead to stability through a backward flip (i.e. period halving) bifurcation and
again to instability through a regular flip bifurcation.6

This results are relevant not only from a mathematical point of view, but also from a regulatory
point of view since we could find an interval for the parameters En1q inside which both eigenvalues
have modulus less than one so that stability is achieved, and consequently preservation of the fish
stock in both areas is favored.

Both these bifurcations, occurring as the fishing effort E increases, can be seen in the bifurcation
diagram shown in Fig. 4a, obtained with n1 = 30, q = 1, α = 2, β = 0.5, σ = 0.25 and E ranging
in the interval [0,0.1]. In this case α + 2σ > 2, so the equilibrium is unstable for E = 0 and the

6 In this case whenever a backward flip bifurcation takes place a flip bifurcation occurs, but it is possible to show by
counterexamples that for given parameters’ values, flip never occurs.
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Fig. 5. Constant effort and a protected area with parameters n1 = 30, q = 1, α = 2, β = 0.5, E = 0.07 and σ ranging in
the interval [0,0.4]. The positive equilibrium flip bifurcates for increasing values of σ.

asymptotic dynamics are characterized by a two-cyclic quasi-periodic attractor (see Fig. 4b). As
E is increased a cycle of period two is obtained and then the positive equilibrium become stable
via a backward flip (period halving) bifurcation. A further increase of E causes a loss of stability
of the positive equilibrium that flip bifurcates giving rise to a stable two-cycle again. Of course,
the fish stock of region 1 decreases as E is increased, and we have extinction in finite time for
E = 0.1, as the oscillations involve negative values of X1.

Instead, for a fixed value of E an increment of the diffusion coefficient σ increases the fish
stock in region 1. This can be seen in the bifurcation diagram in Fig. 5, obtained with parameters
n1 = 30, q = 1, α = 2, β = 0.5, E = 0.07 and σ ranging in the interval [0,0.4]. In this case, the
positive equilibrium flip bifurcates for increasing values of σ.

More complex attractors can be obtained by considering higher values of the growth rate α, as
shown in Fig. 6. The structure of these chaotic attractors that assume the shape of folded veils,
suggests us that the map (22) is a noninvertible map. Indeed, as typically occurs for coupled
quadratic maps, the locus of vanishing Jacobian that coincides with the set of merging preimages
LC−1 (see Mira et al., 1996) is given by an equilateral hyperbola, and the map is a noninvertible
map of type Z4 − Z2 − Z0. The Riemann foliation is very similar to the one described in Bischi
and Kopel (2001) or Bischi and Naimzada (2000).

As is now well known, the property of noninvertibility of an iterated map may give rise to
basins of attraction with a complex topological structure. This also happens in this case. In fact, as
usual with coupled logistic maps, bounded and positive trajectories cannot be obtained if the initial
conditions are taken far from the origin. So, a region of negative and unbounded trajectories exists,
sometimes called basin of unfeasible trajectories (see, for example, the grey region in Fig. 6b).
If a contact between the boundary of this region and a critical curve LC = T (LC−1) occurs such
that a portion of the basin of unfeasible trajectories enters a zone Zk characterized by an higher
number of preimages, then non-connected portions of such basin may appear, nested inside the
basin of bounded attractors As an example see Fig. 7, obtained with n1 = 30, q = 1, α = 2.4, β =
0.7, E = 0.001 and σ = 0.25. In this case, the positive attractor is a cycle of period 2, but its basin
(white color) is quite intermingled with the one of unfeasible trajectories (grey region). In this
case unfeasible trajectories lead to extinction in finite time of the fish stock in both regions.
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Fig. 6. Constant effort and a protected area. (a) A two pieces chaotic attractor is obtained with parameters n1 = 30, q =
1, α = 2.26, β = 0.6, E = 0.02 and σ = 0.3. (b) A chaotic attractor with its basin of attraction (white region) is obtained
with parameters n1 = 30, q = 1, α = 2.4, β = 0.7, E = 0.015 and σ = 0.25. The grey region represents the basin of
attraction of trajectories diverging to minus infinity, leading to extinction in finite time.

4.2. A common property region with oligopolistic competition and a protected area

This model can be derived from (21) by assuming n1 = 0 or E = 0. The harvesting function
of region 2 is given in (15).7

7 In this section we denote the harvesting function H∗
2 (·) = H∗(·) to simplify the notation.
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Fig. 7. Constant effort and a protected area. Two-cycle attractor with basin of attraction (white region) intermingled with
the basin of unfeasible trajectories (grey region), obtained with parameters n1 = 30, q = 1, α = 2.4, β = 0.7, E = 0.001
and σ = 0.25.

As in the previous case, the only coupling between the two regions is given by the diffusion
term, being{

X1(t + 1) = X1(t)(1 + α − σ − βX1(t)) + σX2(t)

X2(t + 1) = X2(t)(1 + α − σ − βX2(t) − H∗(X2(t)) + σX1(t)
(26)

where H∗ is a rational function given by the ratio between two quadratic polynomials, according
to (12) and (13).

4.2.1. Existence and stability of equilibria
The equilibria, defined by the two steady state conditions X1(t + 1) = X1(t), X2(t + 1) =

X2(t), are the non-negative solutions of the system{
X1(t)(α − σ − βX1(t)) + σX2(t) = 0

X2(t)(α − σ − βX2(t) − H∗(X2(t)) + σX1(t) = 0.

and for σ �= 0 they are located at the intersections, in the non-negative orthant, between the two
curves defined by the functions⎧⎪⎨

⎪⎩
X2 = f2(X1) = 1

σ
X1(t)(σ − α + βX1(t))

X1 = f1(X2) = 1

σ
[X2(t)(σ − α + βX2(t)) + H∗(X2)]

(27)

where Xi = fi(Xj) represents the locus of points such that Xj does not change under the appli-
cation of the map. The curves X1 = f1(X2) and X2 = f2(X1) are a sigmoid curve and a convex
parabola, respectively (some situations are shown in Fig. 8). The two curves cross at the origin of
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Fig. 8. Oligopolistic competition and a protected area. (a) A unique (attracting) equilibrium point E1 is obtained as
intersection of two curves, with parameters α = 2, β = 0.7, n2 = 30, γc = γd = 2.5, a = 1, b = 0.3, σ = 0.2 and s =
0.7. (b) Two positive equilibria, E2 and E3, are created by a saddle node bifurcation increasing the parameter s. The
parameters are as in (a) but with s = 0.78. (c) Only the (attracting) equilibrium E3 remains, after the merging of E1 and
E2 through a new saddle-node bifurcation (s = 0.8).

the coordinate axes; hence the point (0,0) is always an equilibrium, and there may be up to three
intersections in the positive orthant.

As before, nontrivial equilibria can be obtained by (27). In fact, f2(X1) is the same as f1(X2)
in the previous section. Instead, the function f1(X2) is a sigmoid, proportional to the sum between
a convex parabola and the concave function H∗(X2) given in (15). Some useful properties of f1(·)
can be deducted by the previous analysis. In fact we have thatf1(·) is differentiable, withf1(0) = 0,
definitely strictly increasing (at least for X2 > (α − σ)/2β) and with limX2→+∞ f1(X2) = +∞.
A first important consequence is

Proposition 2. At least one positive equilibrium exists for all parameters values, with (X1, X2) ∈
(α−σ

β
, α

β
] × (0, α

β
].

Moreover, f1 is strictly increasing at the origin if α − σ < (na/2)((s/γc) + ((1 − s)/γd))
holds.8 When condition H∗′′(0) < −2β holds, then f1(X2) is concave in a right neighborhood of
the origin and convex for sufficiently high values of X2, (recall that limX2→+∞ f ′′

1 (X2) = 2β/σ >

0) and at least one inflection point exists. In this case the uniqueness of the positive equilibrium is
not guaranteed. In fact the positive equilibrium can bifurcate via saddle-node, with the consequent
creation of two more positive equilibria. A necessary condition for the existence of three equilibria
in the set (α−σ

β
, α

β
] × (0, α

β
] is that f1(X2) is a bimodal map. These equilibria can be numerically

computed as the zeroes of a one-dimensional function. In fact, substituting the second equation in
the first one, it is easy to show that the equilibria can be obtained as the positive fixed points of the
composition between f1 and f2: f1 ◦ f2(X1) = X1, such that X2 = f2(X1) � 0 (or, equivalently,
the positive fixed points of f2 ◦ f1(X2) such that X1 = f1(X2) � 0).

The equilibria can also be obtained as the non-negative zeroes of the function

Z(X1) = 1

σ
[G1(X1) + G2(f2(X1)) − H∗(f2(X1))] = 0 (28)

such that X2 = f2(X1) � 0.

8 Being ∂f1
∂X2

|X2=0 = −α+σ+(na/2)((s/γc)+((1−s)/γd))
σ

.
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Fig. 9. Oligopolistic competition and a protected area. Bifurcation diagram with α = 2, β = 0.7, n2 = 30, γc = γd =
2.5, a = 1, b = 0.3, σ = 0.2 and s ranging in the interval [0,1]. The discontinuity of the bifurcation diagram depends
on the chosen initial condition (i.c.) (X1, X2) = (0.5, 1) and on the two successive saddle-node bifurcations through the
intermediate bistability.

Interesting situations are obtained if some parameters of the model are varied so that the fold
bifurcation that creates two positive equilibria occurs. For example, in Fig. 8a–c three situations
are shown with three different values of the parameter s, the fraction of cooperators. With fixed
values of the parameters α = 2, β = 0.7, n2 = 30, γc = γd = 2.5, a = 1, b = 0.3, σ = 0.2, the
two equilibrium curves are represented in Fig. 8a for s = 0.7. In this case a unique positive equi-
librium exists, denoted by E1, which is stable. If the fraction of cooperators is slightly increased
to s = 0.78, two new positive equilibria can be seen, created by a saddle node bifurcation, denoted
by E2 (a saddle point) and E3 (a stable node). A situation of bistability is obtained, and the two
stable equilibria E1 and E3 are characterized by quite different values of equilibrium fish stock
in region 2. The basins of attraction of these two stable equilibria are represented in Fig. 10 by
the light grey and white regions, respectively. The boundary that separates these two basins is
given by the stable set of the saddle E2 whereas the grey region represents the basin of unfeasible
trajectories.

If s is further increased, the two equilibria E1 and E2 merge and disappear via another saddle-
node bifurcation, and the upper equilibrium E3 remains the unique attractor to which the generic
feasible trajectory converges.

To sum up, an increase in the number of cooperators in region 2 causes a transition from a
situation of a low equilibrium fish stock to one in which the sustainable fish stock is much higher.
This can be also seen from the bifurcation diagram depicted in Fig. 9, obtained with the same set
of parameters as in the other figures of this section and s ranging in the interval [0,1]. The sudden
jump to an upper sustainable level of fish biomass is quite evident. Of course, in the range of s
such that coexistence of two stable equilibria occurs, the exact value of s at which the jump occurs
depends on the initial condition chosen to get the bifurcation diagram. In other words, the two
successive saddle-node bifurcations that mark the transition from a lower to an upper equilibrium,
through an intermediate situation of bistability, creates a typical hysteresis effect that resembles
the fast transitions of the models discussed in the framework of the catastrophe theory (see, e.g.
Rosser, 2000; Arnold, 1992).

The bifurcation diagram also shows that if s is further increased, then a flip bifurcation of E3
occurs, leading to a stable cycle of period 2 as unique attractor of the feasible trajectories.
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Fig. 10. Oligopolistic competition and a protected area. Basins of attraction of the stable equilibria E1 and E3 (light
grey and white regions, respectively), in the case of bistability in Fig. 8b. The stable set of the saddle E2 is the boundary
separating the two basins. The grey region is the basin of diverging trajectories.

The stability analysis for the equilibria is analogous to the case with constant effort. The
Jacobian matrix is

DT (X1, X2) =
(

1 + α − 2X1β − σ σ

σ 1 + α − 2X2β − σ − H∗′(X2)

)

with eigenvalues

λ1 = 1 − H∗′(X2)

2
+ α − σ − (X1 + X2)β − 1

2

√
[H∗′(X2) + 2β(X2 − X1)]2 + 4σ2

λ2 = 1 − H∗′(X2)

2
+ α − σ − (X1 + X2)β + 1

2

√
[H∗′(X2) + 2β(X2 − X1)]2 + 4σ2.

The condition α > β + σ, under the reasonable assumption γc = γd = γ , in sufficient to ensure
that λ2 > 1 and hence that the origin is unstable.9 Using the same argument as before and recalling
that H∗′(X2) > 0, it possible to show that it is always λ1 < 1 and that Neimark–Hopf bifurcations
are ruled out by the symmetry of the Jacobian. Hence it is the eigenvalue λ2 = 1 that causes the
saddle-node bifurcations and the consequent creation/destruction of two (positive) equilibria.

We remark that also the map (26) is noninvertible, because the system to extract X1(t), X2(t)
from (26) in terms of X1(t + 1), X2(t + 1) is an algebraic system of degree eight, so up to eight
rank one preimages of a point of the plane may be obtained; consequently for this model quite
complicated structures of the basins can be observed.

Concluding this section we can state that the presence of an exploitable zone where cooperative
and noncooperative behavior takes place introduces in the model a kind of complexity that is not

9 It easily follows from λ2(0, 0) = 1 + α − β − an2
4γ

− σ + 1
4

√
a2n2

2
γ2 + 16σ2.
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present when a level of constant effort is imposed. Firstly uniqueness of the equilibrium is not
guaranteed for all parameters values, but could be replaced by coexistence of multiple equilibria
with possible bistability and hence path-dependence (depending on current fish stocks in both
regions) of the asymptotic steady state, as shown in Fig. 10. Secondly the creation mechanism
of multiple equilibria itself through two successive saddle-node bifurcations introduces typical
hysteresis patterns, clearly visible in Fig. 9.

5. Conclusions

In this paper a general framework has been introduced for the study of discrete-time dynamic
models that represent a system of two adjacent zones where different harvesting policies are
adopted, and we focused on the important case where a given harvesting policy is adopted on
one side and no harvesting is allowed on the other side. The main results have been compared
with those obtained with more traditional models where no subdivision is described. In the region
where harvesting occurs two different kinds of fishing policies have been considered: first the case
of regulated fishery according to constant effort regulation, and second the case of an oligopoly
where profit maximizing agents compete. In any case the presence of a protected area leads to
higher levels of sustainability, since it helps to avoid the danger of biomass decreases. However,
this risk persists when intensive and competitive fishing occurs (such as in the oligopoly case with
low degrees of cooperation). In the case of constant effort we showed that stability of the fish
stock is obtained by imposing intermediate values of effort. In particular we showed that there
exists a range of effort inside which stability of the biomass can be achieved. Moreover, the loss
of stability in this model takes place through flip bifurcations (i.e. oscillations with higher and
lower levels of biomass occur after the loss of stability). This issue is relevant from the point
of view of a central planner (i.e. when implementing regulatory policies based on forecasting
of fish stock): if the oscillations are not properly understood, it is possible to systematically
underestimate or overestimate the fish stock, with severe impact on the sustainability of the
exploitation.

In the case of oligopolistic competition, we showed that even though a protected area exists,
it is possible to observe hysteresis phenomena, leading to irreversibility of the human activity. In
these cases it is even more important to adopt a precautionary principle toward fishery: if stocks
are depleted below certain points, it could become practically impossible to restore the previous
levels of biomass. In order to avoid these kinds of difficulties we showed that, in addition to the
institution of a protected area, other tools favor the sustainability of harvesting. Within our model,
we identified as such a tool every action aimed at diminishing the maximum selling price and/or
the efficiency of the adopted technology or at increasing the level of agents’ cooperation.

As a concluding remark we note that this framework can be extended in many directions. The
first obvious extension of the analysis presented in this paper is obtained by considering different
harvesting policies in the two regions, for instance constant effort in a region and oligopolistic
competition in the other one. In doing so, it is possible to derive the main equations of the model,
namely the harvesting function in the region where oligopolistic competition occurs, by making
different assumptions on the structure of market. For example one may assume separate markets
in the two regions (i.e. each agent sells the harvested fish only in the home market) or that, more
realistically, a global market may be considered, so that each agent sells fish both in the home and
the foreign market. Of course intermediate cases may be considered, where each agent mainly
sells fish in the home market and only partially (i.e. with some restrictions) sells fish in the foreign
market.
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Other possible extensions can be obtained by weakening the assumption of agents’ perfect
foresight on the available fish stock, for example by introducing adaptive expectations as in
Bischi and Kopel (2002) or Bischi et al. (2005). These extensions will be the considered in a
different paper.
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