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1 Introduction

Discrete-time dynamic oligopoly games which exhibit chaotic time pat-
ters of the competitors’ strategic choices are at the center of a flourishing
literature, including the seminal paper by Rand (1978) and several papers af-
ter it (see e.g. Dana and Montrucchio, 1986, Puu, 1991, Kopel, 1996), where
simple microeconomic situations have been proposed which lead to duopoly
games with chaotic dynamics. The main concern, in this stream of literature,
is to emphasize the features of the duopoly games which are responsible for
the transition from regular to chaotic dynamics and to analyze the bifurca-
tions which cause the loss of stability of the equilibria and the appearance of
more complex attractors (see e.g. Bischi et al., 2000).

In this chapter, we stress some peculiar features which characterize dif-
ferent kinds of chaotic behaviors. In particular, given a duopoly game char-
acterized by a chaotic behavior of both the competitors, we try to distinguish
different degrees of correlation between the choices of the two players. With
the term “correlated chaos” we mean that even if both the players behave
chaotically, at each time period their choices, say x; and g, are approxi-
mately related by a function y; = f(x¢) or y = f(y;). This means that the
chaotic attractor, in the two-dimensional state space (x,y), is approximately
located around a portion of a one-dimensional curve. Instead, ‘“uncorrelated
chaos” means that a generic chaotic trajectory fills up a two-dimensional
region, so that no relations can be evidenced, at a given time, between the
decisions of the two players. With other words, provided that in both cases
each player behaves chaotically (so that it is impossible to forecast her/his
next period decision) in the presence of correlated chaos if one observes the
choice of a player then the behavior of the other player at the same time
period can be approximately deduced, whereas in the case of uncorrelated
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chaos, even if one observes what a player does at a given time period, noth-
ing can be inferred about the simultaneous choice of the competitor.

An extreme form of correlation is represented by “chaos synchroniza-
tion”, which means that the chaotic trajectories are embedded into a one-
dimensional invariant submanifold, say M, and are governed by the one-
dimensional dynamical system given by the restriction of the two-dimensional
one to M. Indeed, dynamical systems with chaotic trajectories embedded
into an invariant submanifold of lower dimensionality than the total phase
space have raised an increasing interest in the scientific community (see e.g.
Fujisaka and Yamada, 1983, Pecora and Carrol, 1990, Ott and Sommerer,
1994, Ashwin et al, 1996, Buescu, 1997, Hasler and Maistrenko, 1997, just
to cite a few).

Another kind of chaotic behavior, which can be considered as intermedi-
ate between correlated and uncorrelated chaos, is the so-called on-off inter-
mittency, characterized by chaotic time patterns which are synchronized (or
quasi-synchronized) for several time periods, but sometimes clusters of large
asynchronous fluctuations occur, i.e. sudden bursts away from the submani-
fold where synchronized dynamics take place. The distribution, over time, of
such asynchronous bursts is quite random, but something can be said about
their maximum amplitude (see Bischi and Gardini, 2000, Kopel et al., 2000).

In the mathematical and physical literature these phenomena have mainly
been studied for coupled chaotic oscillators, where a coupling parameter ex-
ists which only influences the dynamics in a direction which is orthogonal
with respect to the invariant submanifold where synchronized dynamics take
place (a so called normal parameter). Indeed, due to the sensitive depen-
dence on initial conditions which characterizes chaotic systems, two identi-
cal and independent chaotic oscillators cannot be, in general, synchronized,
whereas it is possible to synchronize them, in the long run, provided that
some coupling (or interaction) is introduced (Fujisaka and Yamada, 1983,
Pecora and Carrol, 1990).

Chaos synchronization and intermittency are generally associated with
symmetric dynamical systems, and such a situation is commonly met in
dynamic games with identical or quasi-identical competitors, as recently
stressed in Bischi et al., 1998, Bischi et al., 1999, Kopel et al., 2000, Bis-
chi and Gardini, 2000. In these models a perfect symmetry (i.e. an absolute
identity of the parameters which characterize the players’ behaviors) is a very
demanding condition, and even the presence of a normal parameter is not so
common. However, as we shall see through the numerical explorations pre-
sented in this chapter, intermittency phenomena can also be observed with
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heterogeneous interacting players. Indeed, intermittency phenomena may be
seen as a prelude of chaos synchronization as the degree of homogeneity be-
tween the players is gradually increased. However, this is not a general rule,
as we shall see in the following.

In this chapter we try to investigate how, starting from a condition of het-
erogeneous players, an increase of the degree of symmetry, gradually lead-
ing to conditions of quasi-identical or fully identical players, may induce
the appearance of more and more correlated chaotic behaviors. In order to
investigate this issue, we consider a Cournot duopoly game, recently pro-
posed by Bischi and Lamantia (2001), where the interdependence between
the quantity-setting firms is not only related to the selling price, determined
by the total production through a given demand function, but also on posi-
tive cost externalities due to the effects of know-how spillovers, caused by
the ability of a firm to take advantage, for free, of the competitors’ Research
and Development (R& D) results. In this duopoly game, in the case of iden-
tical chaotic players, chaos synchronization can occur, due to the presence
of a one-dimensional chaotic attractor embedded into the invariant diagonal.
The study of this particular Cournot duopoly game allows us to give exam-
ples of different kinds of chaotic behaviors according to the degree of chaos
correlation, and we observe the gradual transition between these different
kinds as the heterogeneity in the spillover parameters, i.e. the asymmetry in
the ability to take advantage of the competitor R& D results, is varied. How-
ever, the spillover parameters are not normal ones, because they influence
both the dynamics along the diagonal and the dynamics transverse to it. This
implies that it is not possible to use many of the results given in the literature
on chaos synchronization. However, following Bischi and Gardini (1998), a
global characterization of the phenomena is still possible by the method of
critical curves, which allow us to obtain the delimitation of an absorbing area
surrounding the one-dimensional attractor on which synchronization occurs
(which is often only an attractor in Milnor sense, see Ashwin et al., 1996,
Buescu, 1997). In fact, as the time evolution of the duopoly game analyzed
in this chapter is represented by the iteration of a noninvertible map, the dy-
namic phenomena observed, such as chaos synchronization, intermittency
and uncorrelated chaos, are confined inside a given absorbing area, whose
boundary can be obtained by segments of critical curves, and behaves as a
bounded vessel inside which the asymptotic dynamics are trapped (see Mira
et al., 1996, Bischi and Gardini, 1998).

The reminder of this chapter is organized as follows: in section 2 we
describe the duopoly game, in section 3 we consider the same game in the
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symmetric case of identical players, in section 4 we describe some numerical
explorations through which the concepts outlined above are illustrated.

2 A Cournot duopoly game with spillovers

To illustrate the concepts outlined in the introduction, we consider a
Cournot duopoly game, proposed in Bischi and Lamantia (2001), where the
interdependence between the quantity-setting firms is not only related to the
selling price, determined by the total production through a given demand
function, but also on cost-reduction effects related to the presence of the
competitor. Such cost reductions are introduced to model the effects of tech-
nological and intellectual spillovers among companies, caused by the ability
of a firm to take advantage, for free, of the competitors’ R& D results, due
to the difficulties to protect know-how or to avoid the movements of skilled
workers among competing firms, see e.g. Audretsch and Feldman (1996)
Aitken et al. (1997). The results of R&D are generally assumed to lead to
costs reductions (see e.g. D’Aspremont and Jaquemin, 1988). So, spillover
effects can be seen as a positive cost externality, which we model by assum-
ing the following cost function of firm ¢:

_ c(qi) + R&D; i
"~ 1+7;9:i (R&D;) + Vil (R&D;)’ "

Ci(q1,92) =1,2; j#1

(1

where ¢ (q;) represents the production costs of firm 4, an increasing func-
tion of its own production ¢;, R& D; represents the R& D expenses of firm
i, g; and h; are increasing functions and the positive parameters ~,; and
7i; give a measure of the cost reduction related to its own and competitor’s
R& D respectively. A particular choice is proposed in Bischi and Lamantia
(2001), where a very simple cost function is obtained by assuming linear
production costs, ¢;(¢;) = kiq;, R&D expenses proportional to the pro-
duction, R&D; = s;q;, h; linear and g; = 0. The last assumption cap-
tures the fact that only external spillovers are considered cost-reducing, be-
cause the benefits from its own R& D are assumed to be balanced by in-
duced costs, such as higher salaries required by more skilled workers or ex-
penses of a firm to avoid spillovers. However, we assume that R&D are
necessary in a high-tech market, where without R& D the produced goods
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become obsolete. With these assumptions, and a linear demand function
D(p) = a—b(q1 + ¢2), the profit of firm ¢ becomes

Cig;

L4459

7i(q1,q2) = gi[a — b(q1 + q2)] —

In a fully rational Cournot duopoly game, each player decides its own pro-
duction in order to maximize the expected profit, on the basis of the follow-
ing two assumptions:

(i) each firm knows beforehand its rival’s production decision;

(ii) each firm has a complete knowledge of the profit function.
From the first order conditions 07;/9q; = 0, we get

1 Ci .. .,

q; = rz(%) ~ % (a bq; 1 JF%‘ij) i,j=1,2; j#i ()
A simple check of the second derivatives testifies that these solutions rep-
resent profit maxima, provided that the quantities are non negative. Hence
the portions inside the positive orthant of the functions ¢g; = 71(¢2) and
g2 = r2(q1), are the two reaction curves. Every intersection between the
two reaction curves, being an optimal choice for both firms, is a Cournot-
Nash Equilibrium, characterized by the fact that no firm has an incentive to
unilaterally deviate from its chosen strategy given the choice of its rival. It
is immediate to realize that the introduction of spillover effects in the cost
functions has the effect of changing the reaction curves from lines to strictly
concave curves, which are unimodal for sufficiently high values of spillover
parameters. In Bischi and Lamantia (2001) it is proved that at most one
Nash Equilibrium exists, and in order to investigate its stability the Nash
Equilibrium is considered as the outcome of a dynamic adjustment process
occurring when less that fully rational players play the game repeatedly (see
e.g. Fudenberg and Levine, 1998, or Binmore, 1992, ch.9 for such evolu-
tionary interpretation of the stability of a Nash equilibrium). This means
that the players generally do not reach a Nash equilibrium immediately, but
play the game repeatedly in order to approach it. Several kinds of bound-
edly rational adjustment processes may be considered, all sharing the same
Nash equilibrium but with different methods to update productions when the
system is out of it. One kind of dynamic adjustment, proposed by Cournot
(1838), is based on the assumption that the two firms have a global knowl-
edge of the profit function, so that they are able to compute their best reply
to the expected production choice of the competitor, but the two firms are



6 Gian-Italo Bischi and Fabio Lamantia

not so rational to be able to know in advance the competitor’s choices, and at
each time step they adopt a very simple (or naive) expectation, by guessing
that the production of the other firm will remain the same as in the previous
period. So the repeated game is defined by the recurrence

g(t+1) =ri(g;(t) 4,7 =12 1#j . “4)

As proved in Bischi and Lamantia (2001) this adjustment mechanism, with
reaction functions (3), leads to global stability of the Nash equilibrium, i.e.
an asymptotic convergence to it for any initial condition in the strategy space.
A second kind of dynamic adjustment is proposed in Bischi and Lamantia
(2001) where the firms are assumed to be even less rational, in the sense
that they don’t have a complete knowledge of the profit function, and con-
sequently they use a simpler (and less expensive) “rule of thumb” (see e.g.
Baumol and Quandt, 1964) in their decision-making processes, known in the
literature as gradient dynamics (or myopic adjustment, see e.g. Sacco, 1991,
Varian, 1992, Flam, 1993). This gives rise, for certain sets of parameters, to
periodic and chaotic dynamics around the Nash equilibrium, and this will be
the object of our studies.

According to this kind of dynamic adjustment, the two players are as-
sumed to update their production strategies at discrete time periods on the
basis of a local estimate of the marginal profit d7; /Jg;: At each time period
t a firm decides to increase (decrease) its production for period ¢ + 1 if it
perceives positive (negative) marginal profit on the basis of information held
at time ¢, according to the following dynamic adjustment mechanism (see
e.g. Bischi and Naimzada, 1999)

gi(t+1) = ai(t) + ai(qz-(t))g—? (a(t), @) ; i=12 (5
1
where «;(g;) is a positive function which gives the extent of production vari-
ation of ith firm following a given profit signal. Notice that the two pro-
ducers are not requested to have a complete knowledge of the demand and
cost functions, since they only need to infer how the market will respond to
small production changes by an estimate of the marginal profit, which may
be obtained by brief experiments of small (or local) production variations
performed at the beginning of period ¢ (Varian, 1992). Of course, this local
estimate of expected marginal profits is much easier to be obtained than a
global knowledge of the demand function (involving values of ¢; that may
be very different from the current ones). In the following we assume linear
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functions «; (¢;) = viq;, i = 1,2, since this assumption captures the fact
that relative production variations are proportional to marginal profits, i.e.

qi(t+1)—qi(t) _ (871'1)
q; (t) “\0gi )
With these assumptions, and the profit functions given in (2), we obtain a dis-

crete dynamical system of the form (q1 (¢ 4+ 1), g2(t + 1)) = T (q1.(¢), q2(t)),
where the map T : R? — R? is given by

@ =aq+uq {a — 2bq1 = bga = ”’iﬁ}
. (6)

@ = @2 + v2q2 {a — 2bg2 — ba1 — 1+’$21‘11}

3 Gradient dynamics with identical players

We now consider the symmetric case of identical players, i.e. firms
which have the same speeds of reaction, the same production costs and the
same ability to take advantage from R& D spillover:

V1 =V2 =0; €1 =C2=C; Y19 =791 =7 )

Under this assumption, the map (6) remains the same if the variables ¢;
and ¢ are interchanged, i.e. after a reflection through the diagonal (line of
identical productions)

A= {(q1.q) € R?q = 2} . ®)

This symmetry property implies that the diagonal is mapped into itself, i.e.,
T (A) C A, which corresponds with the obvious statement that, in a de-
terministic framework, identical competitors, starting from identical initial
conditions, behave identically for each time, and the trajectories embed-
ded into A, characterized by ¢1(t) = g¢2(t) for every ¢, are governed by
the one-dimensional map (restriction of T' to the invariant submanifold A)
f=T|a: A — A, given by:

d=fla)=q (1 +av — 3ubg - 1 f’w) ©)
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In Bischi et al. (1999) this one-dimensional model has been considered as
the model of a representative agent whose dynamics summarize the common
behavior of the two synchronized competitors. The map (9) is a unimodal
map whose iteration generates chaotic trajectories for sufficiently high val-
ues of the common speed of adjustment v. So, synchronized chaos occurs.
Moreover, a trajectory starting out of A, i.e. with ¢1(0) # ¢2(0), is said to
synchronize if |g1(t) — ¢2(t)| — 0 as t — +oc.

A question which naturally arises is whether trajectories starting from
different initial conditions will synchronize in the long run, so that the asymp-
totic behavior is governed by the simpler one-dimensional model. This ques-
tion can be reformulated as follows. Let A, be an attractor of the one-
dimensional map: Is it also an attractor for the two-dimensional map? Of
course, an attractor A, of (9) is stable with respect to perturbations along A,
so an answer to the question raised above can be given through a study of
the stability of Ag with respect to perturbations transverse to S (transverse
stability).

A second question concerns the behavior of the dynamical system when
quasi-identical players are considered, i.e. with small differences among the
parameters. Of course, in this case the invariance property of the diagonal A
is lost, and some different dynamic scenarios may replace synchronization.
For example, the attractor A; embedded inside A may be replaced by another
attractor close to it, where correlated chaos occurs, or a greater attractor
may suddenly appear, surrounding the portion of A where A; was located,
inside which endless intermittency occurs. To distinguish between these two
dynamic scenarios we need at least two steps:

a) a study of the transverse Lyapunov exponents for the symmetric sys-
tem, by which the “average” local behavior of the trajectories in a neighbor-
hood of the invariant set A, can be understood (see below);

b) a study of the global dynamic behavior of the two-dimensional map,
in order to see, in the case A; is a Milnor (but not asymptotic) attractor
if a greater (two-dimensional) Lyapunov attractor exists around A;, where
transient dynamics and intermittency phenomena are trapped (see Bischi et
al., 1998, or Bischi and Gardini, 2000, for details).

In order to compute the transverse Lyapunov exponents for the model (6)
with identical players we consider the Jacobian matrix along the invariant
diagonal
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1+ av — 5vbq — 1_¢fyq vq ((1—5;7(1—)2—@

DT (q,q) =
cY _ _ _ _uvc
q (W b) 1 + av 5qu T+q

whose eigenvalues are \| = 1+av—6vbg—vc/ (1 + ~vq)?, with eigenvector
along A, and A\ = 1 + av — 4vbq — ve (1 — 2yq) / (1 + ~v¢)?, with eigen-
vector orthogonal to A. So, the transverse Lyapunov exponents, computed
along a generic trajectory embedded into A, are:

N
. 1
AL = Jim tz%ln AL ()] (10)

where {q(t) = f*(¢(0)),t > 0} is a trajectory embedded in A,. Indeed,
as in a chaotic attractor A, infinitely many periodic points are nested (all
unstable along A), for a chaotic set A; C A, infinitely many transverse
Lyapunov exponents can be obtained, because if ¢(0) is a k—periodic point
then A| = In ‘)\’ﬂ and the k—cycle is transversely stable if A| < 0,
whereas if ¢(0) belongs to a generic aperiodic trajectory embedded inside
the chaotic set A; then A, is the natural transverse Lyapunov exponent
A"t Hence a spectrum of transverse Lyapunov exponents can be defined,
AT << AT <L < AT (see e.g. Ashwin et al., 1996, Buescu,
1997) where A"% expresses a sort of “weighted balance” between the trans-
versely repelling and transversely attracting cycles. If AT#* < 0, i.e. all the
cycles embedded in A, are transversely stable, then Ay is asymptotically sta-
ble, in the usual Lyapunov sense, for the two-dimensional map 7". However,
it may occur that some cycles embedded in the chaotic set A are transversely
unstable, i.e. AT > 0, while A% < 0. In this case, A, is no longer Lya-
punov stable, but it continues to be a Milnor attractor i.e. it attracts a positive
(Lebesgue) measure set of points of the two-dimensional phase space. In the
latter case intermittency phenomena can occur, according to the global dy-
namic properties of the map. In fact, the trajectories that are locally repelled
along (or near) the local unstable manifolds of the transversely repelling cy-
cles may be reinjected towards Ag by the global (nonlinear) action of the
map, so that the dynamics of such trajectories are characterized by some
bursts far from A before synchronizing on it. This is a rough explanation
of the origin of intermittency phenomena (see Ott and Sommerer, 1994, or
Bischi and Gardini, 1998, 2000, for more detailed explanations).
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The distinction between asymptotic stability and stability in the weaker
Milnor sense may also help to understand the effect of a symmetry breaking
given by the introduction of small heterogeneities between the two players,
i.e. some parameters’ mismatch starting from the homogeneity condition
(7). Indeed, as conjectured in Bischi et al.(1999) starting from a condition
where chaos synchronization occurs, i.e. Aﬁ“t < 0, a parameter mismatch
which breaks the symmetry (and hence destroys the invariance of A) can
lead to different situations according to the sign of a AT®*, i.e. according
to the fact that A is an asymptotic attractor or only an attractor in Milnor
sense. In particular, if A, is an asymptotic attractor (AT** < 0) then we
expect that after a parameter’s mismatch the one-dimensional “synchronized
attractor” Ay is replaced by a similar attractor, on which quasi-synchronized
dynamics occur, i.e. correlated chaos. Instead, if A, is attractor only in Mil-
nor sense (AT%* > 0, i.e. at least a transversely repelling cycle is embedded
inside Ay) then a bigger two-dimensional chaotic area may suddenly appear,
which is an attractor in the usual Lyapunov sense, inside which endless on-
off intermittency is observed. When the time evolution of the duopoly game
is obtained by the iteration of a noninvertible map, as generally occurs in
problems of chaos synchronization, the boundary of such chaotic area can
be often obtained by the method of critical curves, as described in Bischi
and Gardini, 1998, 2000, see also Chapter 3 of this book.

Indeed, the map 7" defined in (6) is a noninvertible map, because given a
point (¢}, ¢5) € R? its preimages are computed by solving (6) with respect
to ¢1 and g9, which gives a sixth degree algebraic system which may have
up to six real solutions. For a given set of parameters, the critical curves of
the map (6) can be easily obtained numerically. In fact, being the map (6)
continuously differentiable, the set LC_; can be obtained numerically as the
locus of points (g1, g2) for which the Jacobian determinant det DT vanishes,
and the critical curves LC, which separate regions Z; whose points have
different numbers of preimages, are obtained as LC' = T'(LC_;).

4 Players’ heterogeneity, correlated chaos, intermittency and synchro-
nization.

In this section we consider the dynamic duopoly game described in sec-
tion 2 in order to illustrate, through numerical explorations guided by the
theoretical background of chaos synchronization and critical curves, some of
the topics outlined above, such as uncorrelated, correlated and synchronized
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chaos, intermittency phenomena and the related concepts of homogeneity
and heterogeneity of the two players.

In the numerical explorations given below, the parameters a = 10, b =
05, v1 = v9 = v = 0.32, c; = co = ¢ = 2 are fixed, and identical for
the two players, and different dynamic situations are obtained by tuning the
two spillover parameters v, and 7y4;. First of all, we consider the case of
homogeneous players (7): in fig. 1a we show the bifurcation diagram, for
ranging from 0.05 to 0.55, for the restriction (9) of the map 7 to the invariant
diagonal; in fig. 1b is the plot of a numerical computation of the transverse
Lyapunov exponent (10) A as a function of v in the same range. Each
point of the graph is obtained by iterating the map (starting from an initial
condition on the diagonal) 10,000 times to eliminate transient behavior, and
then averaging over another 50,000 iterations. Of course, we cannot say that
the graph in fig. 1b represents A”}% because when the parameter  is inside a
periodic window of the bifurcation diagram, the corresponding trajectory is
captured by the stable cycle, so the computation of (10) gives the transverse
Lyapunov exponent of that cycle. However, the global shape of the graph in
fig. 1b can give us a qualitative idea of the values of A’}*" as a function of
the parameter ~y, because the value A"} is well approximated by the value of
the transverse Lyapunov exponent computed along a cycle, provided that the
period of the cycle is sufficiently high. It is plain that the periodic windows
of the cycles of period 5 and 3 and other low-period stable cycles, which are
clearly visible in the bifurcation diagram, correspond to peaks of the graph
in fig. 1b which cannot be peaks of A”%*. Such a difficulty is due to the fact
that v is not a normal parameter, so that as ~y varies also the dynamics along
A change, as clearly shown in the bifurcation diagram of fig. 1a. However,
we can guess that around v = 0.14 we have A7 < 0 and probably also
AT <0, so that the chaotic attractor A; C A, on which synchronized
dynamics occur, is asymptotically stable. Moreover, also around v = 0.4
a small neighborhood exists where ATt < 0, but in this case AT* > 0,
i.e. transversely unstable cycles exist embedded inside chaotic attractor As,
which is, consequently, only an attractor in the weaker Milnor sense.

Our first numerical simulation is shown in fig. 2, where we consider a
situation with a marked heterogeneity (or asymmetry) in the spillover pa-
rameters, i.e. only player 2 has the ability to take advantage from the R& D
results of the competitor, being v, = 0 and v5; = 0.8. For this set of pa-
rameters the time evolution is chaotic, as clearly appears by looking at the
plot, in the phase space (g1, g2), of a generic trajectory starting from an ini-
tial condition in the white region (the grey region represents the set of initial
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conditions which generate unbounded trajectories).

The iterated points of such a trajectory erratically fill up a quite big
chaotic area, and the corresponding time series q1(t) and ga(t) are repre-
sented versus time in fig. 2¢ for 0 < ¢ < 200.

This is a typical example of uncorrelated chaos, because no correlation
can be evidenced between the two simultaneous choices g1 (¢) and ga(¢).
This can be better appreciated if we represent the difference (g1 (t) — ga(t))
versus time, as in fig. 2d. It can be seen that, often, (q1(t) — ¢2(t)) < 0,
i.e. g2(t) > q1(t), as a consequence of the greater ability of firm 2 in taking
advantage from spillover effects. However, some periods such that ¢ (t) >
g2 (1) exists, and no rules seem to correlate production variations of producer
1 to production variations of producer 2 and vice-versa.

Let us remark that, as the time evolution of the repeated duopoly game
is represented by the iteration of a noninvertible map, the boundary of the
chaotic attractor can be obtained by segments of critical curves, as shown
in fig.2b (see Mira et al., 1996, Bischi and Gardini, 1998, Puu, 2000). This
trapping region (also called absorbing area) gives an upper bound for the
oscillations of ¢; (¢) and g2 (t). A practical procedure to obtain such bound-
aries makes use of the concept of critical curves and can be outlined as fol-
lows: starting from a portion of LC_;, say w, approximately taken in the
region occupied by the area of interest, its images by 7' of increasing rank
are computed until a closed region is obtained. The length of the initial seg-
ment must be taken, in general, by a trial and error method, although several
suggestions are given in Mira et al., 1996. In order to obtain the boundary
of the chaotic area .4 shown in fig. 2a, eight images of the generating arc
w = ANLC_; are sufficient, hence in fig. 2b we have d.A C [ J{_, TF(w).

In fig. 3 we consider a more homogeneous situation with respect to the
firms’ ability to take advantage from the spillover effects. Indeed, in the
numerical simulations performed in fig. 3 we used the same set of pa-
rameters as in fig.2, but more homogenous spillover parameters, namely
Y12 = 0.35, 797 = 0.45. As expected, the chaotic attractor shown in
fig.3a is more symmetric with respect to the diagonal, i.e. time periods with
q2(t) > qi1(t) are balanced by more or less equally probable periods charac-
terized by g2(t) < ¢i1(t). Moreover, the fact that the chaotic attractor is larger
than the one shown in fig.2, suggests that greater differences between the two
production choices should be expected at a given time period. However, this
statement is quite misleading, because the density of the iterated points in-
side the chaotic area is mainly concentrated along the diagonal ¢; = ¢, i.e.
a generic trajectory inside the chaotic area visits much more often the region
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Figure 1: Symmetric case of identical players, with parameters a = 10, b =
0.5, v1 = vg = v =0.32, ¢c1 = c2 = ¢ = 2. (a) Bifurcation diagram for the
restriction of the map T to the invariant diagonal (b) numerical computation
of the transverse Lyapunov exponent A | for ~y ranging from 0.05 to 0.55.
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around the diagonal with respect to the portions of the chaotic area which

are far from it.

11
CF

0 (c)

@

0 100

time

200

100 time 200

Figure 2: Numerical simulation obtained with the same set of parameters
as in fig. 1 and 15 = 0 and 5, = 0.8. (a) chaotic attractor represented in
the phase space (q1,q2),; (b) boundary of the chaotic attractor obtained by
segments of critical curves; (c) q1(t) and q2(t) are represented versus time
SJor 0 <t <200, (d) the difference (q1(t) — q2(t)) is represented versus time
for the same time range as in (c).

This property reveals the occurrence of infermittency phenomena, as
clearly appears from the representation of (¢1 (¢) — g2(t)) versus time, shown
in fig. 3b, where it is evident that several time periods exist at which the dif-
ference (q1(t) — q2(t)) is close to zero, i.e. the production choices of the two
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firms are similar (both low or both high). However, very frequent “bursts” of
asynchronous productions occur along the time evolution. With other words,
a typical time evolution is characterized by sequences of time periods, of the
order of e.g. 20 or 30 time periods, at which the two firms produce almost the
same output, interspersed with clusters of large asynchronous fluctuations.

If homogeneity is further increased, the time intervals of synchronized
behavior become longer, i.e. the bursts of asynchronous productions are
more rare, and when the two firms become perfectly homogenous, so that
the diagonal A becomes an invariant submanifold, then chaos synchroniza-
tion can be observed if AT < 0. More precisely, if AT < 0 and also
ATT#* < 0 a fast chaos synchronization occurs, as a consequence of the fact
that A, is an asymptotic attractor, whereas if A'7*" < 0 and AT** > 0 then
synchronization is still obtained in the long run, but after a transient charac-
terized by several bursts. Instead, if ATt > 0 then such bursts never stop
(i.e. asymptotic synchronization does not occur).

[=)}

q9-9

0 250 tme 500

Figure 3: Numerical simulation obtained with the same set of parameters as
in fig.2, but more homogenous spillover parameters, y19 = 0.35, 75, = 0.45
(a) A trajectory is represented in the phase space (q1, q2), (b) the difference
(q1(t) — qa(t)) is represented versus time for 0 < ¢t < 500.

In the case shown in fig. 4, obtained with v;5 = v9; = 0.4, we
have A% < 0 and AT** > 0. In this case, a generic trajectory, starting
in the basin of bounded trajectories, synchronizes along the chaotic one-
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dimensional attractor A; C A after a transient characterized by some asyn-
chronous bursts. The presence of this transient is seen in the phase space
(fig. 4a) where several points out of A can be seen, and it is more clearly
evidenced in the representation, versus time, of ¢; () and ¢2(t) (fig. 4c) and
of the difference (q1(t) — q2(t)) (fig. 4d).
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Figure 4: Numerical simulation obtained with the same set of parameters
as in fig. 1 and v19 = 91 = 0.4 (a) A typical synchronizing trajectory is
represented in the phase space (q1, q2), (b) boundary of the chaotic attractor
obtained by segments of critical curves; (c) q1(t) and q2(t) are represented
versus time for 0 < t < 400; (d) the difference (q1(t) — q2(t)) is represented
versus time for the same time range as in (c).

These time sequences clearly show that after the early 200 iterations the
two players’ production choices become perfectly synchronized, even if each
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of them exhibit a chaotic behavior. Of course, such an asymptotic synchro-
nization occurs because the natural transverse Lyapunov exponent is negative
for v = 0.4 (see fig. 1b), i.e. the one-dimensional chaotic attractor embed-
ded into the invariant diagonal is an attractor. However, being AT** > 0
it is only an attractor in Milnor sense, i.e. transversely repelling cycles are
embedded in the chaotic attractor (even if the attracting ones prevail) and
this gives an explanation of the intermittent transient. We observe, however,
that the locally repelled trajectories cannot reach the basin of infinity due to
the presence of an absorbing area .4, bounded by segments of critical curves
(shown in fig. 4b). Loosely speaking 0.4 behaves as a bounded vessel for the
intermittency phenomena, and the local unstable sets of these transversely re-
pelling cycles embedded inside A are folded back (reinjected) by the folding
action of the critical curves that form 9.4. Moreover, as remarked above, the
presence of such an absorbing area gives us the possibility to define an upper
bound for the asynchronous bursts. Instead, the length of the transients and
the kind of intermittency which characterizes the trajectories before synchro-
nization, cannot be, in general, forecasted. To explain this statement, in fig.5
we show the versus time representations of the early 400 points of trajectories
obtained with the same set of parameters as in fig. 4, but starting from dif-
ferent initial conditions. The trajectory shown in figures 4a.c,d was obtained
starting from the initial condition (¢;(0),¢2(0)) = (5, 6), whereas starting
from other initial conditions different transient behaviors are observed, char-
acterized by longer or shorter asynchronous bursts, even if synchronization
always occurs in the long run. For example, the trajectories used to ob-
tain the (q1(t) — g2(t)) sequences shown in figures 5a and 5b are obtained
starting from (q1(0), ¢2(0)) = (5.7,6.2) and (¢1(0), ¢2(0)) = (5.5,6.5) re-
spectively. It is interesting to note that sometimes synchronization seems to
be reached, but after several time periods other bursts still occur. For exam-
ple, in fig. 5b, after about 90 time periods the evolution of the system seems
to have reached almost complete synchronization. Instead, after 80 time pe-
riods of almost perfect synchronization, the trajectory then moves again far
away from the diagonal, and the two competitors now act again in a differ-
ent fashion. Such an intermittent behavior is typical of the convergence to
a non-topological Milnor attractor. The pattern of the time series resembles
that of a system which is subject to exogenous random shocks, even if the dy-
namical system that generates such a pattern is completely deterministic. We
now consider what happens if we introduce a small heterogeneity, due to a
small parameter mismatch. For example, if we change one of the spillover



18 Gian-Italo Bischi and Fabio Lamantia

8 q]'qz

" MW’WM 1

8 (@)
0 200 time 400
8
ql - qz
0 ﬂoul WA——
-8 (b)
0 200 time 400

Figure 5: With the same set of parameters as in fig.4, two sequences
(q1(t) — q2(t)), are shown, during the transient with 0 < t < 400, obtained
starting from different initial conditions: (a) (q1(0),g2(0)) = (5.7,6.2); (b)
(41(0), ¢2(0)) = (5.5,6.5)
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parameters of just 1% with respect to the homogenous situation of fig.4, i.e.
Y21 = 712 +0.005 (11)

where 7,5 = 0.4, we obtain the result that bursts never stop, and an endless
on-off intermittency is obtained, with bursts whose amplitude is determined
by the absorbing area located around the diagonal (fig. 6).

11 8
ql'qz

11 0 500 time 1000

Figure 6: Symmetry breaking obtained starting from the set of parameters
used in fig.4, and with quasi-identical spillover parameters: ~i9 = 0.4;
Y91 = 0.405. (a) Chaotic attractor in the phase space; (b) for the same
trajectory shwn in (a), the difference (q1(t) — qa2(t)) is represented versus
time for 0 < t < 1000.

Such a parameters’ mismatch causes the destruction of the invariance of
A, due to the fact that the map is no longer symmetric (this kind of pertur-
bation has been called symmetry breaking in Bischi et al. 1999). The fact
that the diagonal is no longer an invariant set causes the disappearance of the
one-dimensional Milnor attractor As along the diagonal, and such a small
perturbation may lead to quite different dynamics, since after the symmetry
breaking synchronization can no longer occur, and the bursts never stop, and
the generic trajectory fills up the absorbing area. However, if the attractor A,
existing along A before the parameters’ mismatch is a topological attractor,
that is AT'** < 0, then the introduction of small heterogeneities does not
have such a disruptive effect. In this case the symmetric model still serves as
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a good approximation of the behavior of the two firms, and correlated chaos
is obtained. Such a situation is shown in fig. 7. In fig.7a identical firms are
considered, with the same values of a, b, ¢, v as in the previous numerical
simulations, but with a lower value of v, v = 0.15. As stated before, while
commenting fig.1, this set of parameters belongs to a region of the parameter
space where the one-dimensional chaotic attractor embedded into the diag-
onal is an asymptotic attractor, i.e. AT'** < 0. We remark that this is not
easy to be proved in general, since the cycles included in a chaotic attractor
are infinitely many. However, we claim the fact that the natural transverse
Lyapunov exponent has a strong negative value, about —0.6, as shown in fig.
1, and the periodic cycles of lower period are transversely stable. This last
point constitutes a well known conjecture, based on the fact that if A4 < 0
and Apax > 0, then some low period cycles should be transversely unsta-
ble, because if a cycle of high period is transversely unstable, i.e. its trans-
verse Lyapunov exponent is positive, also A4 should be positive, see e.g.
Maistrenko et al. 1998.

11 11

9, 9

0 @ 0 (b)

Figure 7: (a) With the same set of parameters as in fig. 1, and 5 =
Y91 = 0.15, a typical synchronizing trajectory is represented in the phase
space (q1,q2); (b) chaotic attractor after a symmetry breaking obtained with
Y12 = 0.15; 79, = 0.17.

The fact that the chaotic set on which synchronized dynamics occur is
an asymptotic attractor implies two things: first, the synchronization of tra-
jectories starting out of it (in its basin) is very fast; second, if we introduce a
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symmetry breaking due to a small parameter mismatch (such as vy;5 = 0.15
and v, = 0.17) the resulting trajectories are “almost synchronized” (see
fig.7b), i.e. small heterogeneities imply small production differences during
the time evolution. This is a typical example of correlated chaos. A compari-
son of figures 6 and 7 leads us to the conjecture that only if the attractor of the
symmetric model is a topological attractor, then the introduction of a small
heterogeneity would still lead to almost synchronized trajectories. Other-
wise, in the case of a Milnor (not asymptotic) attractor endless intermittency
phenomena characterize the chaotic evolutions of the two players.
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